Let \mathbb{Z} be the set of all integers \{0, 1, -1, 2, -2, \ldots\} and let \mathbb{N} be the positive integers \{1, 2, 3, \ldots\}. Denote the rational numbers by $\mathbb{Q} = \{ \frac{a}{b} : a, b \in \mathbb{Z} \text{ and } b \neq 0 \}$. The ancient Greeks already discovered that rational numbers are not sufficient to describe certain natural geometrical quantities, such as the diagonal in a square of side 1.

Proposition 0.1. $\sqrt{2} \notin \mathbb{Q}$. That is, for every $a, b \in \mathbb{Z}$ with $b \neq 0$, we have $(a/b)^2 \neq 2$.

Proof. Suppose $(a/b)^2 = 2$ with $a, b \in \mathbb{Z}$. We may assume that $a, b > 0$, otherwise we replace a, b by their absolute values. We also may assume that we chose a solution with a minimal.

The equation $a^2 = 2b^2$ implies that a is even, and therefore a^2 is divisible by 4. Consequently $b^2 = a^2/2$ is even whence b is even. Therefore we can replace a and b by $a/2$ and $b/2$, and obtain a smaller pair of integers where the ratio of their squares is 2. This contradicts the minimality of a. \hfill \Box

The construction of the real numbers \mathbb{R} can be done either via Dedekind cuts, or using Cauchy sequences. A Dedekind cut $A|B$ consists of a pair of disjoint nonempty sets $A, B \subset \mathbb{Q}$, such that $A \cup B = \mathbb{Q}$ and $a < b$ holds for all $a \in A$ and $b \in B$. We also require that A has no largest element.

A pertinent example of a Dedekind cut is $A|B$ where

(1) \quad $A = \{ x \in \mathbb{Q} : x < 0 \text{ or } x^2 < 2 \}$ and $B = \{ x \in \mathbb{Q} : x > 0 \text{ and } x^2 > 2 \}$.

We will return to Dedekind cuts later.

Recall that a sequence $\{x_n\}$ converges to a limit L (in symbols, $x_n \to L$ as $n \to \infty$) if for any $\epsilon > 0$ there is an $n_0 \in \mathbb{N}$ such that $|x_n - L| < \epsilon$ for all $n > n_0$. For now, focus on $x_n, L, \epsilon \in \mathbb{Q}$. This also applies to the next definition. However, these definitions will apply more generally later. We need a more sophisticated definition that describes when the members of a sequence are getting closer to each other without referring to any limit.

Definition 0.2. A sequence $\{x_n\}_{n=1}^\infty$ is a Cauchy sequence if for all (rational) $\epsilon > 0$, there exists an N such that $m, n > N \Rightarrow |x_m - x_n| < \epsilon$.

For example, the sequence $\{3.1, 3.14, 3.141, 3.1415, 3.14159, \ldots\}$ where each time we add another digit in the decimal expansion of π, is a Cauchy sequence. As we shall see later in the course, $\pi \notin \mathbb{Q}$, so this sequence does not converge in \mathbb{Q}. Similarly, if $x_n^2 \to 2$, then $\{x_n\}$ cannot converge to any rational L.

Problem 0.3 (Challenge). Find an explicit sequence $\{x_n\} \subset \mathbb{Q}$ such that $x_n^2 \to 2$ for all $x_n > 0$.

\textit{Date: September 5, 2005.}
Following the preceding example, we can take \(x_1 = 1.4 \), and \(x_n = x_{n-1} + \frac{a_n}{10^n} \) for \(n > 1 \), where \(a_n \) is the largest integer \(a \) such that \((x_{n-1} + \frac{a_n}{10^n})^2 < 2\). Then \(\{x_n\} \) is a Cauchy sequence, and \(x_n^2 \to 2 \) as \(n \to \infty \).

Here is an idea for a more insightful solution, motivated by a standard algorithm to approximate square roots. Let

\[
\begin{align*}
(2) & \quad x_1 = 2 \quad \text{and} \quad x_n = \frac{1}{2} \left(x_{n-1} + \frac{2}{x_{n-1}} \right) \quad \text{for} \quad n > 1 .
\end{align*}
\]

By induction, \(x_n \in \mathbb{Q} \) for all \(n \).

Problem 0.4 (Exercise). For the sequence in (2), check that \(x_{n+1} < x_n \) for all \(n > 0 \) and that the Cauchy property holds. Hint: Consider \(x_n^2 - 2 \).

To ensure that a sequence \(\{y_n\} \) is Cauchy, it is not enough to verify that \(y_n - y_{n-1} \to 0 \) as \(n \to \infty \).

Example 0.5. Consider \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \), so that \(H_n - H_{n-1} = \frac{1}{n} \to 0 \). Nevertheless, \(\{H_n\} \) is not a Cauchy sequence. To see this, take \(\epsilon = 1/3 \), for instance. Given any \(N \), we must find \(m, n > N \) with \(|H_n - H_m| \geq 1/3 \). Let \(m = N + 1 \) and \(n = 2m \). Then

\[
H_{2m} - H_m = \frac{1}{m + 1} + \frac{1}{m + 2} + \cdots + \frac{1}{2m} \geq \frac{m}{2m} = \frac{1}{2} .
\]

We are done.

In the preceding example, the sequence \(H_n \) is not bounded.

Problem 0.6 (Exercise).

- Show that every Cauchy sequence is bounded.
- Show that every convergent sequence is a Cauchy sequence.
- Find an example of a bounded sequence \(\{y_n\} \) such that \(y_n - y_{n-1} \to 0 \) yet \(\{y_n\} \) is not a Cauchy sequence. Hint: Consider the distance from \(H_n \) to the nearest integer.

To define real numbers via Cauchy sequences, we must deal with the fact that many different sequences might converge to the same limit.

Definition 0.7. Suppose \(\{x_n\} \) and \(\{y_n\} \) are Cauchy sequences of rational numbers. We say that \(\{x_n\} \) is **equivalent to** \(\{y_n\} \), and write \(\{x_n\} \sim \{y_n\} \), if \(x_n - y_n \to 0 \).

Given a Cauchy sequence \(\{x_n\} \subset \mathbb{Q} \), consider its **equivalence class**

\[
\overline{\{x_n\}} = \{ \text{all sequences} \ \{y_n\} \ \text{such that} \ \{x_n\} \sim \{y_n\} \}.
\]

We can define a real number as such an equivalence class. To do so, and still think of \(\mathbb{Q} \) as a subset of \(\mathbb{R} \), we identify every rational number with the equivalence class of (Cauchy) sequences converging to it.

University of California, Berkeley
E-mail address: peres@stat.berkeley.edu