Package ‘h2oEnsemble’

November 6, 2015

Type Package

Title H2O Ensemble Learning

Version 0.1.3

Date 2015-11-06

Author Erin LeDell

Maintainer Erin LeDell <erin@hRoNai>

Description H2O Ensemble implements the Super Learner ensemble (stacking) algorithm using the H2O R interface to provide base learning algorithms.

License Apache License (== 2.0)

Depends R (>= 2.13.0), h2o (>= 3.2.0.9)

NeedsCompilation no

SystemRequirements Java (>= 1.6)

Suggests SuperLearner, cvAUC, testthat

URL https://github.com/h2oai/h2o-3/tree/master/h2o-r/ensemble/h2oEnsemble-package

R topics documented:

h2oEnsemble-package .. 2
h2o.ensemble .. 3
h2o.example.wrapper ... 6
h2o.load_ensemble ... 7
h2o.metalearn ... 9
h2o.save_ensemble ... 11
predict.h2o.ensemble .. 13
print.h2o.ensemble ... 14

Index 15
Description

H2O Ensemble implements the Super Learner ensemble (stacking) algorithm using the H2O R interface to provide base learning algorithms.

Details

Package: h2oEnsemble
Type: Package
Version: 0.1.3
Date: 2015-11-06
License: Apache License (== 2.0)

Author(s)

Erin LeDell
Maintainer: Erin LeDell <erin@h2o.ai>

References

http://dx.doi.org/10.2202/1544-6115.1389
http://biostats.bepress.com/ucbbiostat/paper222

http://dx.doi.org/10.1007/BF00117832

See Also

SuperLearner, subsemble
h2o.ensemble

Description

This function creates a "Super Learner" (stacking) ensemble using the H2O base learning algorithms specified by the user.

Usage

```r
h2o.ensemble(x, y, training_frame, model_id = "", validation_frame = NULL, family = c("AUTO", "binomial", "gaussian"), learner = c("h2o.glm.wrapper", "h2o.randomForest.wrapper", "h2o.gbm.wrapper", "h2o.deeplearning"), metalearner = "h2o.glm.wrapper", cvControl = list(V = 5, shuffle = TRUE), seed = 1, parallel = "seq", keep_levelone_data = TRUE)
```

Arguments

- `x`: A vector containing the names of the predictors in the model.
- `y`: The name of the response variable in the model.
- `training_frame`: An H2O Frame object containing the variables in the model.
- `family`: A description of the error distribution and link function to be used in the model. This must be a character string. Currently supports "binomial" and "gaussian".
- `model_id`: (Optional) The unique id assigned to the resulting model. If none is given, an id will automatically be generated.
- `validation_frame`: (Optional) An H2O Frame object indicating the validation dataset used to construct the confusion matrix. If left blank, this defaults to the training data when nfolds = 0. Currently not used.
- `learner`: A string or character vector naming the prediction algorithm(s) used to train the base models for the ensemble. The functions must have the same format as the h2o wrapper functions.
- `metalearner`: A string specifying the prediction algorithm used to learn the optimal combination of the base learners. Supports both h2o and SuperLearner wrapper functions.
- `cvControl`: A list of parameters to control the cross-validation process. The V parameter is an integer representing the number of cross-validation folds and defaults to 10. Other parameters are stratifyCV and shuffle, which are not yet enabled.
- `seed`: A random seed to be set (integer); defaults to 1. If NULL, then a random seed will not be set. The seed is set prior to creating the CV folds and prior to model training for base learning and metalearning.
- `parallel`: A character string specifying optional parallelization. Use "seq" for sequential computation (the default) of the cross-validation and base learning steps. Use "multicore" to perform the V-fold (internal) cross-validation step as well as the final base learning step in parallel over all available cores. Or parallel can...
be a snow cluster object. Both parallel options use the built-in functionality of the R core "parallel" package. Currently, only "seq" is compatible with the parallelized H2O algorithms, so this argument may be removed or modified in the future.

keep_levelone_data
Logical, defaults to TRUE. Keep the levelone H2O Frame of cross-validated predicted values (Z matrix) and original response vector, y (cbind to Z).

Value

x
A vector containing the names of the predictors in the model.

y
The name of the response variable in the model.

family
Returns the family argument from above.

cvControl
Returns the cvControl argument from above.

folds
A vector of fold ids for each observation, ordered by row index. The number of unique fold ids is specified in cvControl$V.

ylim
Returns range of y.

seed
An integer. Returns seed argument from above.

parallel
An character vector. Returns character argument from above.

basefits
A list of H2O models, each of which are trained using the data object. The length of this list is equal to the number of base learners in the learner argument.

metafit
The predictive model which is learned by regressing y on Z (see description of Z below). The type of model is specified using the metalearner argument.

levelone
An H2O Frame object. The levelone H2O Frame includes the "Z matrix" (the cross-validated predicted values for each base learner) and original response vector, y. In the stacking ensemble literature, the Z matrix is the design matrix used to train the metalearner.

runtime
A list of runtimes for various steps of the algorithm. The list contains cv, metalearning, baselearning and total elements. The cv element is the time it takes to create the Z matrix (see above). The metalearning element is the training time for the metalearning step. The baselearning element is a list of training times for each of the models in the ensemble. The time to run the entire h2o.ensemble function is given in total.

h2o_version
The version of the h2o R package.

h2oEnsemble_version
The version of the h2oEnsemble R package.

Author(s)

Erin LeDell <erin@h2o.ai>

References

http://dx.doi.org/10.2202/1544-6115.1389
http://biostats.bepress.com/ucbbiostat/paper222

http://dx.doi.org/10.1007/BF00117832
http://statistics.berkeley.edu/sites/default/files.tech-reports/367.pdf

See Also
SuperLearner, subsemble

Examples

```r
## Not run:

# An example of binary classification on a local machine using h2o.ensemble

library(h2o.ensemble)  # Requires version >=0.8.4 of h2o.ensemble
library(cvAUC)          # Used to calculate test set AUC (requires version >=1.0.1 of cvAUC)
localH2O <- h2o.init(nthreads = -1)  # Start an H2O cluster with nthreads = num cores on your machine

# Import a sample binary outcome train/test set into R
train <- h2o.importFile(“http://www.stat.berkeley.edu/~ledell/data/higgs_10k.csv”)
test <- h2o.importFile(“http://www.stat.berkeley.edu/~ledell/data/higgs_test_5k.csv”)
y <- “C1”
x <- setdiff(names(train), y)
family <- “binomial”

# For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])

# Specify the base learner library & the metalearner
learner <- c(“h2o.glm.wrapper”, “h2o.randomForest.wrapper”,
             “h2o.gbm.wrapper”, “h2o.deeplearning.wrapper”)
metalearner <- “h2o.deeplearning.wrapper”

# Train the ensemble using 5-fold CV to generate level-one data
# More CV folds will take longer to train, but should increase performance
fit <- h2o.ensemble(x = x, y = y,
                      training_frame = train,
                      family = family,
                      learner = learner,
                      metalearner = metalearner,
                      cvControl = list(Y = 5, shuffle = TRUE))

# Generate predictions on the test set
pp <- predict(fit, test)
predictions <- as.data.frame(pp$pred)[,3]  # third column, p1 is P(Y==1)
labels <- as.data.frame(test[,y]rbind[,1])
```
Ensemble test AUC
cvAUC::AUC(predictions = predictions, labels = labels)
0.7888723

Base learner test AUC (for comparison)
L <- length(learner)
auc <- sapply(seq(L), function(l) cvAUC::AUC(predictions = as.data.frame(pp$basepred)[,l], labels = labels))
data.frame(learner, auc)
1 h2o.glm.wrapper 0.6871288
2 h2o.randomForest.wrapper 0.7711654
3 h2o.gbm.wrapper 0.7817075
4 h2o.deeplearning.wrapper 0.7425813

Note that the ensemble results above are not reproducible since
h2o.deeplearning is not reproducible when using multiple cores,
and we did not set a seed for h2o.randomForest.wrapper or h2o.gbm.wrapper.

Additional note: In a future version, performance metrics such as AUC
will be computed automatically, as in the other H2O algo.

Here is an example of how to generate a base learner library using custom base learners:
h2o.randomForest.1 <- function(...) {ntrees = 1000, nbins = 100, seed = 1) {
h2o.randomForest.wrapper(..., ntrees = ntrees, nbins = nbins, seed = seed)
}
h2o.deeplearning.1 <- function(..., hidden = c(500,500), activation = "Rectifier", seed = 1) {
h2o.deeplearning.wrapper(..., hidden = hidden, activation = activation, seed = seed)
}
h2o.deeplearning.2 <- function(..., hidden = c(200,200,200), activation = "Tanh", seed = 1) {
h2o.deeplearning.wrapper(..., hidden = hidden, activation = activation, seed = seed)
}
learner <- c("h2o.randomForest.1", "h2o.deeplearning.1", "h2o.deeplearning.2")

End(Not run)

h2o.example.wrapper Wrapper functions for h2o algorithms

Description

This is an example h2o algorithm wrapper function.

Usage

h2o.example.wrapper(x, y, training_frame, model_id = "", family = c("gaussian", "binomial"), ...)

Arguments

x A vector containing the names of the predictors in the model.
h2o.load_ensemble

- **y** The name of the response variable in the model.
- **training_frame** An H2O Frame object containing the variables in the model.
- **model_id** (Optional) The unique id assigned to the resulting model. If none is given, an id will automatically be generated.
- **family** A description of the error distribution and link function to be used in the model. This must be a character string. Currently supports "binomial" and "gaussian".
- ... Additional arguments to be passed to or from methods.

Value

An H2O model.

Author(s)

Erin LeDell <erin@h2o.ai>

See Also

h2o.ensemble

h2o.load_ensemble Load an H2O Ensemble model

Description

Load an H2O Ensemble model from disk. This includes a set of cross-validated H2OModels serialized using the h2o.saveModel, a serialized RData object (the ensemble object) and optionally, the level-one matrix of cross-validated predicted values as a CSV file.

Usage

h2o.load_ensemble(path = "", import_levelone = FALSE)

Arguments

- **path** String indicating the directory the model will be loaded from.
- **import_levelone** Logical, defaults to FALSE. Will load the level-one matrix of cross-validated predicted values from a CSV file if the model was saved with h2o.save_ensemble using the export_levelone = TRUE. The level-one matrix is required for retraining the metalearner using the h2o.metalearn function.

Author(s)

Erin LeDell <erin@h2o.ai>

See Also

h2o.save_ensemble for saving an H2O Ensemble to disk.
Examples

```
## Not run:
# An example of binary classification on a local machine using h2o.ensemble

library(h2oEnsemble)  # Requires version >=0.0.4 of h2oEnsemble
library(cvAUC)        # Used to calculate test set AUC (requires version >=1.0.1 of cvAUC)
localH2O <- h2o.init(nthreads = -1)  # Start an H2O cluster with nthreads = num cores on your machine

# Import a sample binary outcome train/test set into R
train <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_10k.csv")
test <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_test_5k.csv")
y <- "C1"
x <- setdiff(names(train), y)
family <- "binomial"

# For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])

# Specify the base learner library & the metalearner
learner <- c("h2o.glm.wrapper", "h2o.randomForest.wrapper",
              "h2o.gbm.wrapper", "h2o.deeplearning.wrapper")
metalearner <- "h2o.deeplearning.wrapper"

# Train the ensemble using 5-fold CV to generate level-one data
# More CV folds will take longer to train, but should increase performance
fit <- h2o.ensemble(x = x, y = y,
                     training_frame = train,
                     family = family,
                     learner = learner,
                     metalearner = metalearner,
                     cvControl = list(V = 5, shuffle = TRUE))

# Save ensemble model (a collection of H2OModels and an RData object) to disk
h2o.save_ensemble(fit, path = "/h2o-ensemble-model-loadtest", force = FALSE, export_levelone = FALSE)
rm(fit)

# Load model from disk
fit <- h2o.load_ensemble(path = "/h2o-ensemble-model-loadtest")

# Generate predictions from ensemble model on a test set
pp <- predict(fit, test)
predictions <- as.data.frame(pp$pred[,3])  # third column, p1 is P(Y=1)
labels <- as.data.frame(test[,y]][,1]

# Ensemble test AUC
cvAUC::AUC(predictions = predictions, labels = labels)
# 0.7888723

## End(Not run)
```
h2o.metalearn

Description

Re-trains an existing H2O Ensemble fit using a new metalearning function.

Usage

```r
h2o.metalearn(object,
                metalearn = "h2o.glm.wrapper",
                seed = 1,
                keep_levelone_data = TRUE)
```

Arguments

- **object**
 - An object of class, "h2o.ensemble".
- **metalearn**
 - A string specifying the prediction algorithm used to learn the optimal combination of the base learners. Supports both h2o and SuperLearner wrapper functions.
- **seed**
 - A random seed to be set (integer); defaults to 1. If NULL, then a random seed will not be set. The seed is set prior to creating the CV folds and prior to model training for base learning and metalearning.
- **keep_levelone_data**
 - Logical, defaults to TRUE. Keep the levelone H2O Frame of cross-validated predicted values (Z matrix) and original response vector, y (cbind to Z).

Value

- **x**
 - A vector containing the names of the predictors in the model.
- **y**
 - The name of the response variable in the model.
- **family**
 - Returns the family argument from above.
- **cvControl**
 - Returns the cvControl argument from above.
- **folds**
 - A vector of fold ids for each observation, ordered by row index. The number of unique fold ids is specified in cvControl$V.
- **ylim**
 - Returns range of y.
- **seed**
 - An integer. Returns seed argument from above.
- **parallel**
 - An character vector. Returns character argument from above.
- **basefits**
 - A list of H2O models, each of which are trained using the data object. The length of this list is equal to the number of base learners in the learner argument.
- **metafit**
 - The predictive model which is learned by regressing y on Z (see description of Z below). The type of model is specified using the metalearn argument.
- **levelone**
 - An H2O Frame object. The levelone Frame includes the Z matrix (the cross-validated predicted values for each base learner), fold id column and original response vector, y. In the stacking ensemble literature, the Z matrix is the design matrix used to train the metalearn.
runtime

A list of runtimes for various steps of the algorithm. The list contains cv, metalearning, baselearning and total elements. The cv element is the time it takes to create the Z matrix (see above). The metalearning element is the training time for the metalearning step. The baselearning element is a list of training times for each of the models in the ensemble. The time to run the entire h2o.ensemble function is given in total.

h2o_version

The version of the h2o R package.

h2oEnsemble_version

The version of the h2oEnsemble R package.

Author(s)

Erin LeDell <erin@h2o.ai>

References

http://dx.doi.org/10.2202/1544-6155.1309
http://biostats.bepress.com/ucbbiostat/paper222

http://dx.doi.org/10.1007/BF00117832

See Also

h2o.ensemble

Examples

Not run:

An example of binary classification on a local machine using h2o.ensemble

library(h2oEnsemble) # Requires version >=0.8.4 of h2oEnsemble
library(cvAUC) # Used to calculate test set AUC (requires version >=1.0.1 of cvAUC)
localH2O <- h2o.init(nthreads = -1) # Start an H2O cluster with nthreads = num cores on your machine

Import a sample binary outcome train/test set into R
train <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_10k.csv")
test <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_test_5k.csv")
y <- "C1"
x <- setdiff(names(train), y)
family <- "binomial"

#For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])
Specify the base learner library & the metalearners
Let’s use a reproducible library (set seed on RF and GBM):

```r
h2o.randomForest.1 <- function(..., ntree = 100, seed = 1) h2o.randomForest.wrapper(..., ntree = ntree, seed = seed)
h2o.gbm.1 <- function(..., ntree = 100, seed = 1) h2o.gbm.wrapper(..., ntree = ntree, seed = seed)
learner <- c("h2o.gbm.wrapper", "h2o.randomForest.1", "h2o.gbm.1")
metalearners <- c("h2o.glm.wrapper")
```

Train the ensemble using 10-fold CV to generate level-one data
More CV folds will take longer to train, but should increase performance

```r
fit <- h2o.ensemble(x = x, y = y,
                     training_frame = train,
                     family = family,
                     learner = learner,
                     metalearners = metalearners,
                     cvControl = list(V = 10, shuffle = TRUE))
```

Generate predictions on the test set

```r
pp <- predict(fit, test)
predictions <- as.data.frame(pp$pred)[,3]  # third column, p1 is P(Y==1)
labels <- as.data.frame(test[,y])[,1]
```

Ensemble test AUC

```r
cvAUC::AUC(predictions = predictions, labels = labels)  # 0.787226
```

Now let’s re-train the metalearners fit to see if we get better performance.
Previously, we used a GLM metalearners, and now we will try a GBM.

```r
newfit <- h2o.metalearn(fit, metalearners = "h2o.gbm.1")
```

Generate predictions on the test set

```r
pp <- predict(newfit, test)
predictions <- as.data.frame(pp$pred)[,3]  # third column, p1 is P(Y==1)
labels <- as.data.frame(test[,y])[,1]
```

Ensemble test AUC

```r
cvAUC::AUC(predictions = predictions, labels = labels)  # 0.7777479
```

We see that on this dataset & base learner combination,
that an ensemble with a GLM metalearners performs better,
in terms of test set AUC, than an ensemble with a GBM metalearners.

```r
## End(Not run)
```

h2o.save_ensemble
Save an H2O Ensemble model

Description

Save an H2O Ensemble model to disk. This includes a set of cross-validated H2OModels serialized using the h2o.saveModel, a serialized RData object (the ensemble object) and optionally, the level-
one matrix of cross-validated predicted values as a CSV file.

Usage

```r
h2o.save_ensemble(object, path = "", force = FALSE, export_levelone = FALSE)
```

Arguments

- `object` An object of class "h2o.ensemble".
- `path` String indicating the directory the model will be written to.
- `force` Logical, defaults to FALSE. Indicates how to deal with files that already exist.
- `export_levelone` Logical, defaults to FALSE. Will write the level-one matrix of cross-validated predicted values to a CSV file.

Details

In the case of existing files `force = TRUE` will overwrite the file. Otherwise, the operation will fail.

Author(s)

Erin LeDell <erin@h2o.ai>

See Also

- `h2o.load_ensemble` for loading an H2O Ensemble from disk.

Examples

```r
## Not run
# An example of binary classification on a local machine using h2o.ensemble

library(h2oEnsemble)  # Requires version >=0.8.4 of h2oEnsemble
library(cvAUC)         # Used to calculate test set AUC (requires version >=1.0.1 of cvAUC)
localH2O <- h2o.init(nthreads = -1) # Start an H2O cluster with nthreads = num cores on your machine

# Import a sample binary outcome train/test set into R
train <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_10k.csv")
test <- h2o.importFile("http://www.stat.berkeley.edu/~ledell/data/higgs_test_5k.csv")
y <- "C1"
x <- setdiff(names(train), y)
family <- "binomial"

# For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])

# Specify the base learner library & the metalearner
learner <- c("h2o.glm.wrapper", "h2o.randomForest.wrapper", "h2o.gbm.wrapper", "h2o.deeplearning.wrapper")
metalearner <- "h2o.deeplearning.wrapper"
```
Train the ensemble using 5-fold CV to generate level-one data
More CV folds will take longer to train, but should increase performance
fit <- h2o.ensemble(x = x, y = y,
 training_frame = train,
 family = family,
 learner = learner,
 metalearner = metalearner,
 cvControl = list(V = 5, shuffle = TRUE))

Save ensemble model (a collection of H2OModels and an RData object) to disk
h2o.save_ensemble(fit, path = "./h2o-ensemble-model-savetest", force = FALSE, export_levelone = FALSE)
rm(fit)

Load model from disk
fit <- h2o.load_ensemble(path = "./h2o-ensemble-model-savetest")

End(Not run)

predict.h2o.ensemble Predict method for an 'h2o.ensemble' object

Description

Obtains predictions on a new data set from a h2o.ensemble fit.

Usage

S3 method for class 'h2o.ensemble'
predict(object, newdata, ...)

Arguments

object An object of class 'h2o.ensemble', which is returned from the h2o.ensemble function.
newdata An H2O Frame object in which to look for variables with which to predict.
... Additional arguments passed on to the function.

Value

pred A vector of predicted values from ensemble fit.
basepred An H2O Frame object with the predicted values from each base learner algorithm for the rows in newdata.

Author(s)

Erin LeDell <erin@h2o.ai>

See Also

h2o.ensemble
print.h2o.ensemble

Examples

See h2o.ensemble documentation for an example.

print.h2o.ensemble Print method for an 'h2o.ensemble' object

Description

Print metadata for an h2o.ensemble fit.

Usage

S3 method for class 'h2o.ensemble'
print(x, ...)

Arguments

x An object of class 'h2o.ensemble', which is returned from the h2o.ensemble function.

... Additional arguments passed on to the function.

Author(s)

Erin LeDell <erin@h2o.ai>

See Also

h2o.ensemble
Index

*Topic **models**
 h2oEnsemble-package, 2
*Topic **utilities**
 h2o.example.wrapper, 6

h2o.deeplearning.wrapper
 (h2o.example.wrapper), 6
h2o.ensemble, 3, 7, 10, 13, 14
h2o.example.wrapper, 6
h2o.gbm.wrapper (h2o.example.wrapper), 6
h2o.glm.wrapper (h2o.example.wrapper), 6
h2o.load_ensemble, 7, 12
h2o.metalearn, 9
h2o.randomForest.wrapper
 (h2o.example.wrapper), 6
h2o.save_ensemble, 7, 11
h2oEnsemble (h2oEnsemble-package), 2
h2oEnsemble-package, 2

predict.h2o.ensemble, 13
print.h2o.ensemble, 14

subsemble, 2, 5
SuperLearner, 2, 5