Problem Set 5

Instructor: Prof. Yun S. Song
Due: February 28, 2013, in the beginning of class.

1. A real-valued function f over $[a, b] \subset \mathbb{R}$ is said to be convex if

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right),
$$

for all $x_{1}, x_{2} \in[a, b]$ and $0<\lambda<1$. Let X denote a discrete random variable that takes values in $\{0,1, \ldots, n\}$. Show that, for f a convex function over $[0, n]$,

$$
\mathbb{E}[f(X)] \geq f(\mathbb{E}(X))
$$

2. Consider a biased coin that shows heads (H) with probability p and tails (T) with probability $1-p$. Suppose the coin is tossed n times. A run of k heads refers to consecutive occurrences of exactly k heads. That is, a run of 2 heads at the beginning results in the pattern "HHT...", at the end results in the pattern "...THH", and elsewhere in the sequence leads to "...THHT ...". For $1 \leq k \leq n$, let $X_{n, k}$ denote the number of runs of k heads in n tosses.
(a) For $1 \leq k \leq n$, find $\mathbb{E}\left(X_{n, k}\right)$.
(b) Let Y_{n} denote the total number of non-overlapping runs of heads in n tosses, where runs are of any length between 1 and n. Using (a), find $\mathbb{E}\left(Y_{n}\right)$.
(c) For $1 \leq i \leq n$, what is the probability that a run of heads of some length starts on the i th toss?
(d) Using (c), find $\mathbb{E}\left(Y_{n}\right)$. Check that your answers to (b) and (d) agree.
3. Do the following problems from the textbook: $3.3(8,14,16) ; 3.4(4,10)$
