Problem Set 2

Instructor: Prof. Yun S. Song
Due: February 7, 2013, in the beginning of class.

1. Recall that n events A_{1}, \ldots, A_{n} are said to be independent if

$$
\begin{equation*}
\mathbb{P}\left(B_{1} \cap \cdots \cap B_{n}\right)=\prod_{i=1}^{n} \mathbb{P}\left(B_{i}\right), \quad \text { for all } B_{i} \in\left\{A_{i}, A_{i}^{c}\right\}, i=1, \ldots, n . \tag{1}
\end{equation*}
$$

As discussed in class, another definition of independence is

$$
\begin{equation*}
\mathbb{P}\left(\cap_{i \in S} A_{i}\right)=\prod_{i \in S} \mathbb{P}\left(A_{i}\right), \quad \text { for all subsets } S \subset\{1, \ldots, n\} \text { with size }|S| \geq 2 \tag{2}
\end{equation*}
$$

Note that (2) imposes $2^{n}-n-1$ constraints on the probability distribution, while (1) defines 2^{n} constraints. It turns out that exactly $n+1$ constraints implied by (1) are actually redundant. Explain this.
2. Do the following problems from the textbook: 1.6 (8); $2.1(4,6,10) ; 2.2(2,6,14)$

