Stat 134 (P2): Concepts of Probability, UC Berkeley, Spring 2013

Problem Set 11

Instructor: Prof. Yun S. Song
Due: April 25, 2013

Show all your work to receive full credit.

1. [9 Points] Do the following problems from the textbook: $6.2(2,4), 6.3$ (2)
2. [5 Points] Consider a Poisson process with rate λ. Let W_{1} denote the waiting time to the first arrival, and, for $i>1$, let W_{i} denote the waiting time between the $(i-1)$ th and the i th arrivals. For $1 \leq k \leq n$, find the conditional density of $T_{k}=W_{1}+\cdots+W_{k}$ given that there are n arrivals in the time interval $(0,1)$. What is the name of this density? Determine its parameters.
3. [10 Points] Consider a sequence of independent Bernoulli trials, each with $\mathbb{P}($ success $)=p$ and $\mathbb{P}($ failure $)=1-p$. A "run of s successes" is defined as s consecutive trials that result in successes. A "run of f failures" is similarly defined.
(a) [5 Points] Find the probability that a run of s successes occurs before a run of f failures.
(b) [5 Points] Find the expected number of trials until a run of s successes is obtained for the first time.
4. [15 Points] Let X_{1}, \ldots, X_{n} be independent and uniformly distributed on the interval [0,a], and let L_{1}, \ldots, L_{n+1} denote the associated gap sizes. For $i<j$, define $M_{i, j}=\min \left\{L_{i}, L_{i+1}, \ldots, L_{j}\right\}$.
(a) [5 Points] Find $\mathbb{P}\left(M_{2, n+1}>x\right)$.
(b) [5 Points] Find $\mathbb{P}\left(M_{2, n}>x \mid X_{(n)}=t\right)$.
(c) [5 Points] For $x, t \in[0, a]$, find $\mathbb{P}\left(X_{(1)} \leq x \mid X_{1}=t\right)$, where $X_{(1)}$ is the first order statistic of X_{1}, \ldots, X_{n}. This problem illustrates that the conditional distribution of a continuous random variable can be discontinuous.
