Stat 134 (P2): Concepts of Probability, UC Berkeley, Spring 2013

Problem Set 10

Instructor: Prof. Yun S. Song
Due: April 18, 2013

Show all your work to receive full credit.

1. [6 Points] Consider a random arrival process on $(0, \infty)$. For fixed a, b satisfying $0<a<b$, let $N(a, b]$ denote the number of arrivals in the time interval $(a, b]$. Furthermore, let W_{1} denote the waiting time to the first arrival, and, for $i>1$, let W_{i} denote the waiting time between the $(i-1)$ th and the i th arrivals.
(a) [3 Points] For all $k \geq 1$, suppose W_{k} are i.i.d. random variables distributed as $\operatorname{Exp}(\lambda)$, where $\lambda>0$. Show that this implies $N(a, b] \sim \operatorname{Poisson}(\lambda(b-a))$, where $0<a<b$.
(b) [3 Points] Assuming the condition stated in part (a), find the conditional distribution of $N(0, s]$ given $N(0, t]=n$, where $0<s<t$ and $0 \leq m \leq n$. What is the name of this distribution?
2. [9 Points] Suppose X and Y are i.i.d. normal random variables with mean μ and variance σ^{2}. Find the following probabilities in terms of the c.d.f. Φ of the standard normal distribution:
(a) $[3$ Points $] \mathbb{P}(2 X<Y+\mu)$.
(b) $[3$ Points $] \mathbb{P}(|\min (X, Y)-\mu|<\sigma)$.
(c) $[3$ Points $] \mathbb{P}(\max (X, Y)-\min (X, Y)<2 \sigma)$.
3. [9 Points] Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right),\left(X_{3}, Y_{3}\right)$ denote three random points in \mathbb{R}^{2}, where X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3} are independent standard normal random variables. Let D denote the distance between $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$.
(a) [3 Points] Find the density and c.d.f. of D. What is the name of this distribution?
(b) $[3$ Points $]$ Find $\mathbb{E}(D)$ and $\operatorname{Var}(D)$.
(c) [3 Points] Let C be the circle that contains $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ as antipodal (i.e., diametrically opposite) points. What is the probability that $\left(X_{3}, Y_{3}\right)$ lies inside C ?
4. [3 Points] For $\alpha, \beta>0$, let $X \sim \operatorname{Exp}(\alpha)$ and $Y \sim \operatorname{Exp}(\beta)$ be independent random variables. Find the c.d.f. of $Z=X / Y$.
5. [6 Points] For $\alpha, \beta>0$, let $X \sim \operatorname{Gamma}(\alpha, \lambda)$ and $Y \sim \operatorname{Gamma}(\beta, \lambda)$ be independent random variables.
(a) [3 Points] Show that $(X+Y)$ and $X /(X+Y)$ are independent.
(b) [3 Points] For $\alpha, \beta>0$, recall that the $\operatorname{Beta}(\alpha, \beta)$ distribution on the interval $(0,1)$ is defined by the density

$$
f(z)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} z^{\alpha-1}(1-z)^{\beta-1}
$$

for $0<z<1$. (See Pitman pages 327-329 for further details.) Show that $X /(X+Y)$ has $\operatorname{Beta}(\alpha, \beta)$ distribution.

