STAT 134 (P2): CONCEPTS OF PROBABILITY, UC BERKELEY, SPRING 2013

Problem Set 10

Instructor: Prof. Yun S. Song

Due: April 18, 2013

Show all your work to receive full credit.

- 1. [6 Points] Consider a random arrival process on $(0, \infty)$. For fixed a, b satisfying 0 < a < b, let N(a, b] denote the number of arrivals in the time interval (a, b]. Furthermore, let W_1 denote the waiting time to the first arrival, and, for i > 1, let W_i denote the waiting time between the (i-1)th and the *i*th arrivals.
 - (a) [3 Points] For all $k \ge 1$, suppose W_k are i.i.d. random variables distributed as $\text{Exp}(\lambda)$, where $\lambda > 0$. Show that this implies $N(a, b] \sim \text{Poisson}(\lambda(b a))$, where 0 < a < b.
 - (b) [3 Points] Assuming the condition stated in part (a), find the conditional distribution of N(0,s] given N(0,t] = n, where 0 < s < t and $0 \le m \le n$. What is the name of this distribution?
- 2. [9 Points] Suppose X and Y are i.i.d. normal random variables with mean μ and variance σ^2 . Find the following probabilities in terms of the c.d.f. Φ of the standard normal distribution:
 - (a) [3 Points] $\mathbb{P}(2X < Y + \mu)$.
 - (b) [3 Points] $\mathbb{P}(|\min(X, Y) \mu| < \sigma)$.
 - (c) [3 Points] $\mathbb{P}(\max(X, Y) \min(X, Y) < 2\sigma).$
- 3. [9 Points] Let $(X_1, Y_1), (X_2, Y_2), (X_3, Y_3)$ denote three random points in \mathbb{R}^2 , where $X_1, X_2, X_3, Y_1, Y_2, Y_3$ are independent standard normal random variables. Let D denote the distance between (X_1, Y_1) and (X_2, Y_2) .
 - (a) [3 Points] Find the density and c.d.f. of D. What is the name of this distribution?
 - (b) [3 Points] Find $\mathbb{E}(D)$ and $\operatorname{Var}(D)$.
 - (c) [3 Points] Let C be the circle that contains (X_1, Y_1) and (X_2, Y_2) as antipodal (i.e., diametrically opposite) points. What is the probability that (X_3, Y_3) lies inside C?
- 4. [3 Points] For $\alpha, \beta > 0$, let $X \sim \text{Exp}(\alpha)$ and $Y \sim \text{Exp}(\beta)$ be independent random variables. Find the c.d.f. of Z = X/Y.
- 5. [6 Points] For $\alpha, \beta > 0$, let $X \sim \text{Gamma}(\alpha, \lambda)$ and $Y \sim \text{Gamma}(\beta, \lambda)$ be independent random variables.
 - (a) [3 Points] Show that (X + Y) and X/(X + Y) are independent.
 - (b) [3 Points] For $\alpha, \beta > 0$, recall that the Beta (α, β) distribution on the interval (0, 1) is defined by the density

$$f(z) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} z^{\alpha - 1} (1 - z)^{\beta - 1},$$

for 0 < z < 1. (See Pitman pages 327–329 for further details.) Show that X/(X + Y) has Beta (α, β) distribution.