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Regression adjustment in experiments:
A menace to society?

Winston, not Peter :)

Peter’s Class

March 15, 2021
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David Freedman (1938–2008)

Freedman was a great statistician and probabilist,
but he argued for more humility
about what statistics can accomplish.

• Fancy statistics can’t save a weak research design

• Prefer simple, transparent methods
and lots of critical discussion

• Qualitative research is as important as quantitative

Two of his many excellent essays:

• “Statistical models and shoe leather” (with discussion)

Sociological Methodology (1991)

• “On types of scientific inquiry:
The role of qualitative reasoning”

Statistical Models and Causal Inference:
A Dialogue with the Social Sciences (2010)
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Freedman on regression in the social sciences

from “Statistical models and shoe leather”

4-point scale:

1 Regression usually works, although it is (like anything else)
imperfect and may sometimes go wrong.

2 Regression sometimes works in the hands of skillful
practitioners, but it isn’t suitable for routine use.

3 Regression might work, but it hasn’t yet.

4 Regression can’t work.

“My own view is bracketed by categories 2 and 3,
although good examples are quite hard to find.”
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Example: A welfare reform experiment

Average Earnings ($)
Treatment group Control group Difference

Year 1 2,470 1,550 920***
Year 2 3,416 2,233 1,183***
Year 3 3,562 2,552 1,010***

Riccio et al. (MDRC, 1994)

• 5,508 welfare recipients and applicants
(Riverside County, CA)

• Treatment group: Mandatory job search / basic education

• Control group: no mandate
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Example: A welfare reform experiment

Average Earnings ($)
Treatment group Control group Difference

Year 1 2,470 1,550 920***
Year 2 3,416 2,233 1,183***
Year 3 3,562 2,552 1,010***

• All the estimates are regression-adjusted.

• Adjustment is standard in the evaluation industry
and common in academic publications.
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The usual OLS adjustment

Yi Outcome (e.g.: earnings in year 1 after random assignment)

Ti Treatment group dummy variable
Xi Baseline covariate(s) (e.g.: previous earnings, education)

X Mean covariate value for subjects in the experiment

Ordinary least squares (OLS) regression:

Yi = α̂ + β̂ · Xi + γ̂ · Ti + ε̂i

Regression-adjusted estimates:

Treatment group mean α̂ + β̂ · X + γ̂

Control group mean α̂ + β̂ · X
Difference γ̂
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The traditional case for adjustment

Random assignment reduces the need for dubious
statistical models. So why use regression models?

Standard rationale: to improve precision

• Fisher (1932) example: Tea bushes

• Y = Tea yield after random assignment
• X = Tea yield before random assignment

(explains 86% of the variation in Y )
• Adjustment for X reduced the variance of

the estimated treatment effect by a factor of 7

• In social experiments, gains are typically more modest

• Example based on Angrist, Lang, & Oreopoulos (2009)
• Y = First-year college GPA
• X = High school GPA

(explains 15% of the variation in Y )
• Standard error of unadjusted estimate: 0.16
• Standard error of adjusted estimate: 0.15
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The traditional case for adjustment

Assumptions:

• Regression model is correct

• The covariates in the regression are:

• Measured before random assignment
• Pre-specified (no fishing)
• Correlated with the outcome

• Sample size is much larger than no. of covariates

Results:

• The unadjusted and OLS regression-adjusted
treatment effect estimates are both unbiased

• Adjustment tends to improve precision

Adjustment can hurt precision if:

• Too many covariates relative to sample size, or

• Covariates have very little correlation with outcome
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More details on the traditional case

Cox & McCullagh 1982

If the classical regression model is correct,
OLS adjustment multiplies the true SE by about√

(1− ρ2)
N − 3

N − 3− K

ρ2 Population R2 (in regression of outcome on covariates)
N Sample size
K No. of covariates

• Adjustment tends to improve precision if K/N ≈ 0
and ρ2 � 0

• The gain is small if ρ2 < 0.1

• Adjustment can hurt precision if K/N is too large
or ρ2 is too small
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Freedman’s critique

“On regression adjustments to experimental data” (2008a)

“On regression adjustments in experiments with
several treatments” (2008b)

What are the properties of OLS adjustment
when the regression model is false?

Freedman uses Neyman’s model for randomization inference.

(Neyman 1923, 1990)

Completely randomized experiment:

“Population” N subjects in the experiment
Treatment group Simple random sample of fixed size NT

Control group The other N − NT subjects
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Neyman’s model (with covariate)

Observed data for person i

Ti Treatment group dummy variable
Xi Covariate (not affected by treatment)
Yi Outcome

Yi is a composite of two potential outcomes (counterfactuals):

Y1i Outcome that would occur if Ti = 1
Y0i Outcome that would occur if Ti = 0

Individual treatment effect: Y1i − Y0i

Trying to estimate the average treatment effect (ATE)

ATE =
1

N

N∑
i=1

(Y1i − Y0i ) = Y 1, pop − Y 0, pop
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Key features of Neyman’s model

Ti Treatment Observed Random
Y1i Potential outcome Observed if Ti = 1 Fixed
Y0i Potential outcome Observed if Ti = 0 Fixed
Yi Outcome Observed Random
Xi Covariate Observed Fixed

• Treatment effect (Y1i − Y0i ) can vary with i

• No assumptions about relationship between Yi and Xi

• No “error term” assumptions

• No imaginary superpopulation

• Random assignment is the source of randomness

• Does assume SUTVA
(no interference; no hidden versions of treatments)
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Freedman’s conclusions
Freedman found 3 problems with OLS regression adjustment:

1 The precision problem:
Adjustment can actually worsen asymptotic precision
(even if there’s only one covariate
and even if the covariate is strongly correlated
with the outcome).

2 The SE problem:
The conventional OLS standard error estimator
is inconsistent.

3 The small-sample bias problem:
The adjusted estimator of average treatment effect
has a bias of order 1 /N.

“The reason for the breakdown is not hard to find:
randomization does not justify the assumptions
behind the OLS model.”
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Sidebar: On asymptotics

Both Freedman’s analysis and mine rely on asymptotic theory.

Asymptotic approximations are often excellent in moderate or
large samples and enable us to avoid strong parametric
assumptions. But your mileage may vary.

“An important feature of large-sample theory is that it is
nonparametric. Its limit theorems provide distribution-free
approximations for statistical quantities such as significance
levels, critical values, power, confidence coefficients, and
so on. However, the accuracy of these approximations is not
distribution-free but, instead, depends both on the sample size
and on the underlying distribution. To obtain an idea of the
accuracy, it is necessary to supplement the theoretical results
with numerical work, much of it based on simulation.”

Lehmann (1999), Elements of Large-Sample Theory

(Empirical example: Section 7 in paper)
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Hidden bright side of Freedman’s critique

Asymptotic precision:

Adjustment can’t hurt when Pr (Ti = 1) = 0.5
• Noted by Freedman (2008a), but not emphasized

Adjustment hurts only under “severe” conditions

• Suppose Pr (Ti = 1) ∈ [0.25, 0.75]
• Then for adjustment to hurt, Xi must covary more with

the treatment effect than with the expected outcome.
• Not noted by Freedman, but follows from his

asymptotic variance formula.

SE estimation:

The conventional SE is consistent or
asymptotically conservative when Pr (Ti = 1) = 0.5

• Noted by Freedman (2008a), but not emphasized
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The dark side stole the headlines

Freedman and many excellent applied statisticians summarized
his papers in terms that emphasized the dangers of adjustment.

“Random assignment does not justify any form of regression
with covariates.
If regression adjustments are introduced nevertheless,
there is likely to be bias in any estimates of treatment effects
and badly biased standard errors.”

Richard Berk et al. (2010), Journal of Experimental Criminology

“Researchers should be extremely cautious about
using multiple regression to adjust experimental data.
Unfortunately, there is a tendency to use it freely.”

Jas Sekhon (2009), “Opiates for the Matches”
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What my 2013 paper is about

Revealing the hidden bright side (earlier slide)

Simple solutions to Freedman’s major problems (precision, SE)

1 OLS adjustment with treatment × covariate interactions

(see also Yang & Tsiatis 2001)

2 Huber–White sandwich SE estimator (“robust”)

Perspective on Freedman’s 3rd problem (small-sample bias)

• Literally a 2nd-order issue

• The bias can be estimated

Intuitions from parallels with other literatures

• Econometrics: “Agnostic” view of regression

Goldberger 1991; Angrist & Pischke 2009

• Survey sampling: Regression estimators of pop. means
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What my paper is not about

• “Three cheers for regression adjustment”

• Selling a new adjustment method

• Finding the optimal adjustment

• Specific practical guidance

• Nonlinear models (logit, probit, Cox, etc.)

But note that Freedman’s and my results on OLS
are applicable to binary outcomes
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Regression estimators in survey sampling

Cochran (1977)
Sampling Techniques, 3rd ed.

Estimating the mean surface area Y pop of leaves on a plant

Yi Surface area Measured for random sample
Xi Mass Measured for all leaves

Y sample is unbiased, but it ignores the auxiliary info (X ).

If X pop > X sample , then we expect Y pop > Y sample .

OLS regression estimator of Y pop:

Ŷ OLS ≡ Y sample + β̂OLS · (X pop − X sample)
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Consistency of regression estimators

Claim

Under simple random sampling,

Ŷ OLS is a consistent estimator of Y pop,
even if the regression model is horribly misspecified.

Informal argument (under suitable regularity conditions)

Ŷ OLS − Y sample = β̂OLS · (X pop − X sample)

1 (X pop − X sample)
p−→ 0.

2 β̂OLS
p−→ a finite limit (“population least squares”).

3 Therefore, (Ŷ OLS − Y sample)
p−→ 0.

4 Y sample is a consistent estimator of Y pop.

5 Therefore, Ŷ OLS is a consistent estimator of Y pop.



Prelude

Adjustment in
experiments

Introduction

Conventional
wisdom

Freedman’s
critique

Model

Results

Overview of
paper

Lessons from
sampling

Consistency

Precision
improvement

Parallels

Asymptotic
setup

Results

Asymptotic
distribution

Precision
improvement

SE estimation

Takeaways

Epilogue

21 / 50

Adjustment improves asymptotic precision

Claim

Under simple random sampling,
even if the regression model is horribly misspecified,

Ŷ OLS is asymptotically more efficient than Y sample

unless X is uncorrelated with Y (in which case

Ŷ OLS and Y sample have equal asymptotic variance).

Informal argument (Cochran 1977)

First, imagine using a “fixed-slope regression estimator”:

Ŷ fixedslope ≡ Y sample + b · (X pop − X sample)

where b is a constant.

Note that Y sample itself is a fixed-slope regression estimator
(with b = 0).
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Adjustment improves asymptotic precision

Informal argument (cont’d)

Ŷ fixedslope = Y sample − b · (X sample − X pop)

is the sample mean of Yi − b · (Xi − X pop), so its variance is

N − n

N − 1
· 1

n
· 1

N

N∑
i=1

[
(Yi − Y pop) − b · (Xi − X pop)

]2
.

What choice of b minimizes this variance?
The “population least squares” slope, βPopLS .

Call the resulting estimator Ŷ PopLS .

Ŷ PopLS has lower variance than Y sample if βPopLS 6= 0
(i.e., if X is correlated with Y in the population).
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Adjustment improves asymptotic precision

Informal argument (cont’d)

Asymptotically, Ŷ OLS is as efficient as Ŷ PopLS :

Ŷ OLS − Y pop =

(Ŷ PopLS − Y pop) + (β̂OLS − βPopLS ) · (X pop − X sample)

• (Ŷ PopLS − Y pop) is of order 1 /
√
n

• (β̂OLS − βPopLS ) · (X pop − X sample) is of order 1/n

So we have

Avar(Ŷ OLS ) = Avar(Ŷ PopLS ) ≤ Avar(Y sample)

and the inequality is strict unless βPopLS = 0.
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Separated at birth?

Survey sampling Experiments

Estimand Y pop Y 1, pop − Y 0, pop

Outcome data Yi (sample) Y1i (treatment group)
Y0i (control group)

Auxiliary data Xi (population) Xi (population)

Cochran’s Sampling theory when Analysis of covariance:

classic the sampling-units Its nature and uses

paper are of unequal sizes

JASA (1942) Biometrics (1957)

Theory Agnostic Linear model



Prelude

Adjustment in
experiments

Introduction

Conventional
wisdom

Freedman’s
critique

Model

Results

Overview of
paper

Lessons from
sampling

Consistency

Precision
improvement

Parallels

Asymptotic
setup

Results

Asymptotic
distribution

Precision
improvement

SE estimation

Takeaways

Epilogue

25 / 50

What the analogy suggests

Run separate OLS regressions
in the treatment group and the control group:

1 Estimate Y 1, pop

• Regress Yi on Xi in treatment group −→ β̂treat

• Ŷ 1, OLS = Y treat + β̂treat · (X pop − X treat)

2 Estimate Y 0, pop

• Regress Yi on Xi in control group −→ β̂control

• Ŷ 0, OLS = Y control + β̂control · (X pop − X control )

3 Take the difference: ÂTE interact = Ŷ 1,OLS − Ŷ 0,OLS

Shortcut: OLS with “demeaning interactions”

• Regress Yi on Ti , Xi , and Ti · (Xi − X pop)
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Precision improvement in experiments:
Preview of results

Comparing 3 estimators of average treatment effect:

1 Unadjusted: ÂTEunadj = Y treat − Y control

2 Usual OLS adjustment: ÂTE adj

Regress Yi on Ti and Xi

3 OLS with “demeaning interactions”: ÂTE interact

Regress Yi on Ti , Xi , and Ti · (Xi − X pop)

All 3 estimators are consistent and asymptotically normal,
even if the regression models are horribly misspecified.

Asymptotically, ÂTE interact is always either the most efficient
or tied for most efficient,
even if the regression models are horribly misspecified.
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Finite-population asymptotics

Infinite-population asymptotics (more familiar):

• Imagine a sequence of samples of size n = 1, 2, . . .

• Population and estimand (e.g., ATE) don’t vary with n

• Example of a regularity condition:

E (X 4
i ) < ∞

• Example of an asymptotic result (consistency):

ÂTE n
p−→ ATE

Finite-population asymptotics (used by Freedman and me):

• Imagine a sequence of populations of size N = 1, 2, . . .

• Example of a regularity condition:
1
N

∑N
i=1 X

4
i,N < L for all N = 1, 2, . . .

• Example of an asymptotic result (consistency):

ÂTEN − ATEN
p−→ 0

• Freedman and I drop the subscript N
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Regularity conditions (same as Freedman’s)

For simplicity, these slides assume a single covariate Xi .
(My paper allows multiple covariates but assumes
the number of covariates is fixed as N →∞.)

Condition 1

Y1i , Y0i , and Xi have bounded fourth moments.
For example, there exists L <∞ such that

1

N

N∑
i=1

X 4
i < L for all N = 1, 2, . . .
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Regularity conditions (same as Freedman’s)

Condition 2

The population means, variances, and covariances of
Y1i , Y0i , and Xi converge to finite limits as N →∞.
The limiting variances are positive.
For example:

• limN→∞
1
N

∑N
i=1 (Y0i − Y 0, pop) (Xi − X pop) exists.

• limN→∞
1
N

∑N
i=1 (Xi − X pop)2 exists and is positive.

Condition 3

Let NT denote the treatment group size. Then

lim
N→∞

NT

N
= p where 0 < p < 1.
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Additional notation
Limits of “population least squares” slopes:

β1 ≡ lim
N→∞

∑N
i=1 (Xi − X pop) (Y1i − Y 1, pop)∑N

i=1 (Xi − X pop)2

β0 ≡ lim
N→∞

∑N
i=1 (Xi − X pop) (Y0i − Y 0, pop)∑N

i=1 (Xi − X pop)2

Prediction errors:

U1i ≡ (Y1i − Y 1, pop) − β1 · (Xi − X pop)

U0i ≡ (Y0i − Y 0, pop) − β0 · (Xi − X pop)
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Additional notation

Generic notation for population variances and covariances
of any non-random variables Zi and Wi :

σ2Z ≡ 1

N

N∑
i=1

(Zi − Zpop)2

σZ ,W ≡ 1

N

N∑
i=1

(Zi − Zpop) (Wi −W pop)
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OLS with “demeaning interactions” is
consistent and asymptotically normal

Theorem 1

Under Conditions 1–3,

√
N
(
ÂTE interact − ATE

)
d−→ Normal (0,V )

where

V =
1− p

p
lim

N→∞
σ2U1

+
p

1− p
lim

N→∞
σ2U0

+ 2 lim
N→∞

σU1,U0 .

Note

ÂTEunadj and ÂTE adj are also consistent and
asymptotically normal (as shown by Freedman).
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Outline of proof of Theorem 1

1 Imagine a fixed-slope regression estimator ÂTE ideal ,
using the population least squares slopes β1 and β0

2 ÂTE ideal − ATE = U1, treat − U0, control

3 A finite-population multivariate CLT
gives the asymptotic distribution of U1, treat − U0, control

(Freedman 2008b; Li & Ding 2016)

4 Show that
√
N (ÂTE interact − ÂTE ideal )

p−→ 0

• This is
√
N (β̂treat − β1) · (X pop − X treat) minus

the analogous term for the control group

• Show β̂treat
p−→ β1

(use Chebyshev and Cauchy-Schwarz to prove a WLLN)
• By the Central Limit Theorem,

√
N (X pop − X treat) is

stochastically bounded

• So
√
N (β̂treat − β1) · (X pop − X treat)

p−→ 0
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OLS with “demeaning interactions”
cannot hurt asymptotic precision

Corollary 1.1

Asymptotically, ÂTE interact is at least as efficient as ÂTEunadj

(the difference in means), and strictly more efficient unless

(1− p)β1 + pβ0 = 0.

Corollary 1.2

Asymptotically, ÂTE interact is at least as efficient as ÂTE adj

(the usual OLS adjustment), and strictly more efficient unless
either β1 = β0 or p = 0.5.
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Simulation

A road test of the 3 estimators
under “severe weather conditions”:

1 Generate a finite population of 1,000 subjects
• Xi ∼ Uniform (−4, 4)
• Y1i = 0.25 · eXi + 0.25 · eXi/2 + νi

• Y0i = −0.25 · eXi + 0.25 · eXi/2 + εi

• νi and εi independent, standard Normal

2 Simulate a completely randomized experiment
40,000 times, assigning 75% of the subjects to treatment

3 Repeat step 2, assigning a different proportion
to treatment (60%, 50%, 40%, or 25%)
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Potential outcome Y1i vs. covariate Xi
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Potential outcome Y0i vs. covariate Xi
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Treatment effect Y1i − Y0i vs. covariate Xi
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Simulation results

• All 3 estimators are approximately or exactly unbiased

• Empirical SDs (× 1,000) are shown below
(and are very close to the asymptotic predictions)

Proportion in treatment
Estimator 75% 60% 50% 40% 25%

Unadjusted 93 49 53 78 142
Usual OLS-adjusted 171 73 47 80 180
“Demeaning interactions” 81 50 47 59 99

OLS with “demeaning interactions” solves Freedman’s
precision-worsening problem, even though “randomization
does not justify the assumptions behind the OLS model.”

Note that this simulation is an extreme scenario.
It was designed to illustrate that ÂCEinteract does well
even in extreme situations where ÂCEadj hurts precision and
even when the outcome–covariate relationships are highly nonlinear.
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The sandwich variance estimator
Conventional OLS variance estimator: σ̂2(X′X)−1

Sandwich estimator: (X′X)−1X′diag(ε̂2i )X(X′X)−1

• Consistent under i.i.d. sampling
• Don’t need homoskedasticity or even linearity

• Mostly Harmless Econometrics, section 3.1.3
• Powell, “Asymptotics for least squares” (lecture notes)

• Downward bias and high variance in small samples
• Bias corrections exist, but still have high variance
• “HC2” (MacKinnon & White 1985) or “J(1) jackknife”

(Wu 1986) yields the familiar

σ̂2
1

n1
+
σ̂2
0

n0

for the difference in means. In randomized experiments,
this is unbiased or conservatively biased (Neyman 1923;
Reichardt & Gollob 1999; Freedman, Pisani, & Purves
2007).
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The sandwich estimator is consistent
or asymptotically conservative

in completely randomized experiments

Theorem 2

Let v̂ denote the sandwich variance estimator for ÂTE interact .
Under Conditions 1–3,

N v̂
p−→ 1

p
lim

N→∞
σ2U1

+
1

1− p
lim

N→∞
σ2U0

= Avar
(√

N
[
ÂTE interact − ATE

])
+

lim
N→∞

σ2U1−U0
.

A similar result holds for ÂTE adj

and its sandwich variance estimator.
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Comments on SE estimation

• Theorem 2 is analogous to Freedman’s result for ÂTEunadj

and the variance estimator

σ̂21
n1

+
σ̂20
n0

(which, as we noted, is a sandwich-type estimator).

• Theorem 2 (together with the consistency and asymptotic

normality of ÂTE adj and ÂTE interact) implies that
the sandwich SE estimator can be used to construct
asymptotically valid confidence intervals for ATE.

• Freedman’s critique conflates two independent questions:
• To adjust, or not to adjust?
• To use “robust,” or not to use “robust”?
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Practical takeaways

• Freedman’s critique is a major theoretical contribution,
but its practical implications have been exaggerated.

• Careful OLS adjustment is often a reasonable way
to improve precision and power
(but the gains are often modest).

• For careful OLS adjustment, the covariates should be:
• Pre-specified (to prevent fishing)
• Measured before random assignment
• Much fewer than the sample size

• For transparency, reporting both unadjusted and adjusted
estimates is a good idea.
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Some things Freedman and I didn’t cover

• Block-randomized experiments

• Cluster-randomized experiments

• Attrition

• High-dimensional covariate adjustment
Bloniarz, Liu, Zhang, Sekhon, & Yu 2016
Wager, Du, Taylor, & Tibshirani 2016
Wu & Gagnon-Bartsch 2018

• Robust SEs in small samples
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Cheat sheet on robust SEs

• Nice asymptotic properties
• Consistent under i.i.d. sampling
• Consistent or conservative under Neyman model

(complete randomization of finite population)

• Not robust to outliers and heavy tails

• Downward bias and high variance in small samples

• Bias corrections exist, but still have high variance

• Therefore, the confidence interval β̂ ± 1.96 ŜE
may have coverage probability far below 95%

• One possible remedy is Bell & McCaffrey’s (2002) CI
• Bias-reduced (HC2) version of robust SE
• Instead of normal-distribution critical value,

use t-distribution with Satterthwaite df
• Similar to Welch’s unequal-variances t-test
• Discussions and extensions: Imbens & Kolesár 2016;

Pustejovsky & Tipton 2016; Young 2016
• clubSandwich R and Stata packages (among others)
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Rosy vs. gloomy simulation scenarios

Asymptotic theory is only a rough guide.
Carefully designed simulations are valuable.

But simulations can be misleading
if they only examine rosy scenarios.

• In Neyman’s finite-population framework,
robust variance estimators are conservatively biased
if treatment effects are heterogeneous.

(Neyman 1923; Samii & Aronow 2012)

• Therefore, CI coverage probabilities look conservative in
simulations with heterogeneous treatment effects
and large enough N.

• For more stringent checks,
we need to see gloomy scenarios:

• Constant treatment effects, or
• Infinite-population (i.i.d.) sampling
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Simulation setup

• Lin (2013, section 7) used a subset (N = 157)
of Angrist et al.’s (2009) data

• Male first-year undergrads at a Canadian university
• “Treatment”: Peer advising and financial incentives
• “Control”: Peer advising only
• Y = First-year college GPA
• X = High school GPA

• Using a smaller subset here
(N = 30 with lowest high-school GPAs)

• 9 students assigned to “treatment”
• 21 students assigned to “control”

• Treatment effect scenarios (both with Y0i = Yi )
• Rosy: Y1i = max (Y0i , 2.0)
• Gloomy: Y1i = Y0i

• Simulate 250,000 replications of an RCT
and estimate coverage probabilities of nominal 95% CIs
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Rosy scenario (coverage-hacking)

Empirical coverage rates (%) of nominal 95% CIs

SE estimator Critical ATE estimator
value Unadjusted Usual OLS-adjusted

Huber–White normal 98.1 97.3

HC1 normal 98.5 98.1

HC2 normal 98.5 98.1
HC2 Welch 99.0
HC2 BM 99.2 99.0

HC3 normal 98.8 98.7
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Gloomy scenario

Empirical coverage rates (%) of nominal 95% CIs

SE estimator Critical ATE estimator
value Unadjusted Usual OLS-adjusted

Huber–White normal 92.0 91.3

HC1 normal 92.9 92.7

HC2 normal 93.2 93.1
HC2 Welch 94.9
HC2 BM 95.1 95.1

HC3 normal 94.3 94.7
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More takeaways

The methods literature emphasizes intellectual breakthroughs
more than careful practical guidance.

We should try to accumulate a larger inventory of:

• Simulations with gloomy scenarios

• Bake-offs and road tests

• Reanalyses of previous RCTs
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