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Summary

1. Presence-only records may provide data on the distributions of rare species, but commonly suffer from large,

unknown biases due to their typically haphazard collection schemes. Presence–absence or count data collected in

systematic, planned surveys aremore reliable but typically less abundant.

2. Weproposed a probabilistic model to allow for joint analysis of presence-only and survey data to exploit their

complementary strengths. Our method pools presence-only and presence–absence data for many species and

maximizes a joint likelihood, simultaneously estimating and adjusting for the sampling bias affecting the pres-

ence-only data. By assuming that the sampling bias is the same for all species, we can borrow strength across spe-

cies to efficiently estimate the bias and improve our inference from presence-only data.

3. We evaluate ourmodel’s performance on data for 36 eucalypt species in south-easternAustralia.We find that

presence-only records exhibit a strong sampling bias towards the coast and towards Sydney, the largest city. Our

data-pooling technique substantially improves the out-of-sample predictive performance of our model when the

amount of available presence–absence data for a given species is scarce

4. If we have only presence-only data and no presence–absence data for a given species, but both types of data

for several other species that suffer from the same spatial sampling bias, then ourmethod can obtain an unbiased

estimate of the first species’ geographic range.

Key-words: presence-absence, presence-only, sampling bias, spatial point processes, species

distributionmodels

Introduction

Presence-only data sets (Pearce & Boyce 2006) are key sources

of information about factors that influence the habitat

relationships and distributions of plants and animals, and anal-

ysing them accurately is crucial for successful wildlife manage-

ment policy. Examples include specimen collection data from

museums and herbaria, and atlas records maintained by gov-

ernment agencies and non-government organizations. Often,

these are the most abundant and freely available data on spe-

cies occurrence. However, sampling bias often confounds

efforts to reconstruct species distributions.

Recent work has shown that several of the most popular

methods for species distribution modelling with presence-

only data are equivalent or nearly equivalent to each other,

and may be motivated by an underlying inhomogeneous

Poisson process (IPP) model (Warton & Shepherd 2010;

Aarts, Fieberg & Matthiopoulos 2012; Fithian & Hastie

2013; Renner & Warton 2013). In effect, all of these methods

estimate the distribution of species sightings (i.e. of presence-

only records) under an exponential family model for the

species distribution (Fithian & Hastie 2013). Because pres-

ence-only data are commonly collected opportunistically, the

sightings distribution is typically biased towards regions more

frequented by whoever is collecting the data. Thus, it may be

a poor proxy for the distribution of all organisms of that

species, sighted or unsighted.

Presence–absence and other data sets collected via system-

atic surveys do not typically suffer from such bias. Even if (say)

survey sites cluster near amajor city, the data will containmore

presences and more absences there. Unfortunately, if the spe-

cies under study is rare, presence–absence data may carry little

information about its species distribution. In this article, we

consider a large presence–absence data set on eucalypts in

south-eastern Australia. Although there are over 32 000 sites,

four of the 36 species we consider are present in fewer than 20

of the survey sites. Presence-only data for rare species, suitably

adjusted for bias, can supplement survey data.

We propose a natural extension of the IPP model for single-

species presence-only data, with a view towards estimating and*Correspondence author. E-mail: wfithian@stanford.edu
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adjusting for sampling bias. In particular, our method brings

other sources of data – presence-only and presence–absence

data for multiple species – to bear on the problem, by incorpo-

rating them into a single joint probabilistic model to estimate

and adjust for the bias. Some of the most popular approaches

to analysis of presence–absence or presence-only data for one

species are special cases of our joint approach. We evaluate

our model using both presence-only and presence–absence

data for a set of eucalypt species from south-eastern Australia.

An R package implementing our method, multi-
speciesPP, is available in the public github repository

wfithian/multispeciesPP.

THE INHOMOGENEOUS POISSON PROCESS MODEL

The starting point for our model is the random set S of point

locations of all individuals of a given species in some geo-

graphic domain D. In spatial statistics, such a random set is

called a point process, and we will call the set S the species pro-

cess. Typically,D is a bounded two-dimensional region.

The IPP model is a probabilistic model for the random set

S ¼ fsig � D. It is characterized by an intensity function k(s),
which maps sites in D to non-negative real numbers. Infor-

mally, k(s) quantifies howmany si are likely to occur near s.

For any subregionAwithinD, letNSðAÞ denote the number

of points si 2 S falling into A. If S is an IPP with intensity k,
thenNSðAÞ is a Poisson random variable withmean

KðAÞ ¼
Z
A

kðsÞds: eqn 1

For non-overlapping subregions A and B, NSðAÞ and NSðBÞ
are independent.

If A is a quadrat centred at s, small enough that k is nearly

constant overA, then Λ(A) � k(s)|A|, where |A| represents the
area of subregionA. Therefore, the intensity k(s) represents the
expected species count per unit area near s. The integral KðDÞ
over the entire study region is the expectation of NSðDÞ, the
population size.

We can normalize k(s) to obtain the function

pkðsÞ ¼ 1
KðDÞ kðsÞ, which integrates to one and represents the

probability distribution of individuals. An IPP may be defined

equivalently as an independent random sample from pk(s)

whose size NSðDÞ is itself a Poisson random variable with

meanKðDÞ. Conditional on the numberNSðDÞ of points, their
locations s1; . . .; sNSðDÞ are independent and identically distrib-

uted (i.i.d.) draws from pk(s). We call the intensity k(s) of S the

species intensity and the density function pk(s) the species distri-

bution. See Cressie (1993) for a more in-depth discussion of

Poisson processes and other point process models.

The first panel of Fig. 1 shows a realization of a simulated

IPP on a rectangular domain. The background colouring

shows the intensity, and the black circles denote the si 2 S.
Relatively more of the black circles occur in the green region

where the intensity is highest.

In modern ecological data sets each site in the domain has

associated environmental covariates x(s) measured in the field,

by satellite, or on biophysicalmaps. These are assumed to drive

the intensity k(s). It is convenient tomodel the intensity using a

loglinear form for its dependence on the features:

logkðsÞ ¼ aþ b0xðsÞ eqn 2

The linear assumption in (2) is not nearly as restrictive as it

might at first seem. The feature vector x(s) could contain basis

expansions such as interactions or spline terms allowing us to

fit highly nonlinear functions of the raw features [see, e.g.

Hastie, Tibshirani &Friedman (2009)].

Unfortunately, we cannot observe the entire species process

S, but we can glimpse it incompletely in various ways. The

most straightforward and reliable way to learn about S is with

presence–absence or count sampling via systematic surveys, as

depicted in the second panel of Fig. 1. In survey data, an ecolo-

gist visits numerous quadrats Ai throughout D (the blue

squares) and records the species’ occurrence or count NSðAiÞ
at each one.

Presence-only data is a less reliable but oftenmore abundant

source of information about S. We discuss our model for pres-

ence-only data in the next section.

THINNED POISSON PROCESSES

The presence-only process T comprises the set of all individuals

observed by opportunistic presence-only sampling. Assuming

they are identified correctly (not always a given), T is the sub-

set of S that remains after the unobserved individuals are

removed – or thinned, in statistical language.

We propose a simple model for how T arises given S: an
individual at location si 2 S is included in T (is observed) with

probability b(si) 2 [0,1], independently of all other individuals.

The function b(s), which we call the sampling bias, represents

the expected fraction (typically small) of all organisms near

location s that are counted in the presence-only data. As a

result of the biased thinning, individuals in areas with relatively

large b(s) will tend to be over-represented relative to areas with

small b(s).

It can be shown thatmarginally

T � IPPðkðsÞ bðsÞÞ eqn 3

For a formal proof, see Cressie (1993) section 8.5.6, p. 689.

Informally, a small subregion A centred at s contains on aver-

age |A|k(s) individuals, of which on average |A|k(s) b(s)

are observed. If two sites s1 and s2 have the same intensity

k(s1) = k(s2), but b(s1) = 2b(s2), then (3) means the

presence-only data will have about twice as many records near

s1 as s2.

The third panel of Fig. 1 displays a thinning of the Poisson

process shown in the first two panels. The thinned process T ,

consisting of the solid blue triangles, is shown against a heat

map of the biased intensity k(s) b(s).
Sampling bias in presence-only data is not a subtle phenom-

enon. By our estimates in Eucalypt data, b(s) ranges from

about 3 9 10�3 near Sydney to about 3 9 10�7 in the more
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rugged inland areas of south-eastern Australia – a dynamic

range of 10 000.

Some of the most popular methods for analysing presence-

only data are based explicitly or implicitly on fitting a loglinear

IPP model for the process T . It is clear from (3) that this

approach effectively yields an estimate of the presence-only

intensity k(s) b(s) and not the species intensity k(s). These esti-
mates may be dramatically inaccurate if treated as estimates of

the species intensity or species distribution.

In the case of presence-only data, b(s) typically depends on

the behaviour of whoever is collecting the presence-only data.

When sampling bias is thought to depend mainly on a few

measured covariates z(s) (such as distance froma road network

or a large city), several authors have proposed modelling pres-

ence-only data directly as a thinned Poisson process (Chakr-

aborty et al. 2011; Fithian & Hastie 2013; Hefley et al. 2013b;

Warton, Renner & Ramp 2013). A similar method was pro-

posed in Dudık, Schapire & Phillips (2005) in the context of

the Maxent method, and Zaniewski, Lehmann & McC Over-

ton (2002) similarly propose weighting background points in

presence-background GAMs according to a model for their

likelihood of appearing as absences in presence–absence data.

If both k and b are modelled as loglinear in their respective

covariates, thenwe have

log kðsÞ bðsÞð Þ ¼ aþ b0xðsÞ þ cþ d0zðsÞ eqn 4

Modelling the bias as above amounts to estimating the

effects of the variables x(s) in a generalized linear model
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Fig. 1. A Poisson process with two different

sampling schemes representing our models for

presence–absence and presence-only data. The
top panel represents the species process

against a heat map of the species intensity k(s).
The second panel depicts presence–absence or
other systematic survey methods: quadrats

(blue squares) are surveyed and organisms

counted in each one. The third panel depicts

biased presence-only sampling, with the blue

triangles indicating the presence-only process,

a small and unrepresentative subset of the spe-

cies process. The heat map shows the pres-

ence-only intensity k(s) � b(s).
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(GLM) for the Poisson process T , while adjusting for control

variables z(s). We will refer to it as the ‘regression adjustment’

strategy.1

IDENTIF IABIL ITY , ABUNDANCE AND THE ROLE OF c

Modelling presence-only data as a thinned Poisson process as

in (4) sheds light on why it is so difficult to obtain useful esti-

mates of presence probabilities: at best, presence-only data

reflect relative intensities and not properly calibrated probabili-

ties of occurrence. If the covariates comprising x and z are

distinct and have no perfect linear dependencies on one

another, then b, d, and the sum a + c are identifiable, but indi-
vidually a and c are not.
To see why, consider

1. A presence-only process governed by species process

parameters (a, b) and thinning parameters (c, d) and
2. An alternative process with a replaced by ~a ¼ aþ log 2

(trees are twice as abundant overall) and c replaced by

~c ¼ c� log 2 (the chance of observing any given tree is halved

overall).

(4) means that the probability distribution of the thinned

process T is identical in these two cases. Therefore, no mat-

ter how much data we collect, we can never distinguish

parameters (a, b, c, d) from ~a; b; ~c; dð Þ on the basis of pres-

ence-only data alone.

Because b is identifiable, we can use presence-only data

alone to obtain an estimate for k(s) up to the unknown propor-
tionality constant ea; in other words, we can estimate the spe-

cies distribution pk but not the species intensity k. If the model

is correctly specified, then likelihood estimation gives an

asymptotically unbiased estimate of the model’s parameters

(see e.g. Lehmann&Casella 1998).

The species intensity k(s) is the product of the species distri-
bution pk(s) and the overall abundance KðDÞ. Predicting the

probability that a species is present in some new quadrat A

requires information about both. Considerable attention has

focused on whether or not we can obtain plausible estimates of

abundance or of presence probabilities based on presence-only

data alone. Methods like Maxent and presence-background

logistic regression explicitly estimate pk(s), but require an exter-

nally given specification of the overall abundance if presence

probabilities are required (for example, Maxent’s ‘logistic out-

put’, see Elith et al. 2011). Other methods attempt to estimate

presence probabilities (Lele & Keim 2006; Royle et al. 2012),

but estimates can be highly variable and non-robust to minor

misspecifications of the modelling assumptions (Ward et al.

2009; Hastie &Fithian 2013).

One of the purported advantages of the IPP as a model for

presence-only data is that it does yield an estimate of overall

abundance because its intercept term is identifiable (Renner &

Warton 2013). However, Fithian & Hastie (2013) show that

the maximum-likelihood estimate of bKðDÞ obtained from that

model is exactly the number of presence-only records in the

data set, so it should not be regarded as an estimate of the over-

all abundance.

CHALLENGES FOR REGRESSION ADJUSTMENT USING

PRESENCE-ONLY DATA

Regression adjustment works best when the control variables

z(s) are not too correlated with x(s), the covariates of inter-

est. If, for example, x1(s) and z2(s) are highly correlated, then

we can increase b1 and decrease d2 without altering the mod-

el’s predictions much. As a result, we may need a great deal

of data to distinguish the effects of b1 and d2 and hence to

tease apart k and b.

Unfortunately, correlation between x and z is all too com-

mon, in part because humans respond to many of the same co-

variates as other species do. For example, in south-eastern

Australia, major population centres lie along the eastern coast-

line, but many important climatic variables are also correlated

with distance from the coast. Figure 2 plots the mean diurnal

temperature range over a region of south-eastern Australia,

juxtaposed against our fitted bias from the model we will fit in

the section Eucalypt data. The bias is almost perfectly con-
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Fig. 2. Mean diurnal temperature range in a

coastal region of south-eastern Australia, jux-

taposed against our model’s fitted sampling

bias. Because most people live near the coast,

sampling bias is highly correlated with dis-

tance from the coastline. Unfortunately, so

are many important climatic variables.

Because these variables are almost perfectly

confounded with bias, it is very difficult to cor-

rect for sampling bias using presence-only

data alone.

1Because b(s) is a probability, readers familiar with logistic regression

may wonder why we model bðsÞ¼ ecþd0zðsÞ instead of bðsÞ ¼ ecþd0zðsÞ

1þecþd0zðsÞ.

When b(s) is close to zero, the denominator 1þ ecþd0zðsÞ � 1 and the

twomodels roughly coincide.We use the loglinear formbecause it leads

to the convenient loglinear form for the presence-only intensity in (4).
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founded with temperature range, making estimation highly

variable even if themodel is correctly specified.

Another difficulty of regression adjustment in real-world set-

tings is that our functional form is always misspecified. In par-

ticular, it may be difficult to obtain good features in modelling

the bias. Suppose, for example, that x1(s) is highly correlated

with z2(s)
2, which (unbeknown to us) is an important bias co-

variate. If we fit our model without including z2(s)
2, then the

b1x1(s) term may serve as a proxy for the missing quadratic

effect, biasing our estimate b̂1.
In practice we expect there to be missing variables as well as

unaccounted for nonlinearities and interactions in our models

for both the species intensities and the bias alike. We can miti-

gate this sort of problem by adding more basis functions to z

(s), but as the dimension of the model increases, the standard

errors of our estimates will tend to increase alongwith it.

If any bias covariates coincide with x variables – for exam-

ple, if rugged terrain is undersampled due to inaccessibility and

has an effect on a species’ abundance – then, the corresponding

coordinates of b and d are unidentifiable no matter how much

presence-only data we collect.

For all its difficulties, regression adjustment on presence-

only data is often preferable to no adjustment and may be the

best option when unbiased survey data is unavailable. Still,

when some components of x are nearly or completely con-

founded by z, a small quantity of unbiased data can go a long

way, because it may provide the only solid information to dis-

tinguish true effects from bias effects (see, e.g. Fig. 3). This

motivates a method that can combine both biased and unbi-

ased data to exploit the strengths of each.

Aunifyingmodel for presence–absence and
presence-only data

The above discussion motivates a natural unifying model to

explain both presence–absence and presence-only data for

many species at once, which we discuss in detail here.

Assume we are equipped with a real-valued environmental

covariate function x(s), which takes values in Rp, and bias co-

variate function z(s), which takes values inRr. x(s) and z(s) rep-

resent features thought respectively to influence habitat

suitably and heterogeneity in sampling effort. In general, some

variables may appear in both x and z.

Let m denote the total number of species for which we have

data. Let Sk and T k denote the species and presence-only pro-

cesses for species k = 1,. . .,m. Our data set consists of two dis-

tinct types of observations for each species, presence–absence

or count survey sites and presence-only sites. By modelling

each of the two sampling schemes in terms of the latent species

processes, we can use likelihood methods to pool data from

each.We adopt the convention of indexing observations by the

letter i, variables by the letter j and species by the letter k.

Each observation i is associated with a site si 2 D, as well as

covariates xi = x(si) and zi = z(si). For survey sites, si repre-

sents the centroid of a quadrat Ai. At survey site i we observe

counts Nik ¼ NSk
ðAiÞ or binary presence/absence indicators

yik, with yik = 1 ifNik > 0and yik = 0 otherwise.

JOINT LOGLINEAR IPP MODEL FOR MULTISPECIES DATA

For species k, we propose to model Sk � IPPðkkðsÞÞ, with
T k � IPPðkkðsÞ bkðsÞÞ obtained by thinning Sk via bk(s). Both

Sk and T k are assumed to be independent across species with

loglinear intensity kk and bias bk:

log kkðsÞ ¼ ak þ b0kxðsÞ eqn 5

log bkðsÞ ¼ ck þ d0zðsÞ: eqn 6

Note that d is the only model parameter not allowed to

vary across species – in other words, the functions b1(s),. . .,

bm(s) are all assumed to be proportional to one another. We

call this the proportional-bias assumption, and it lets us pool

information across allm species to jointly estimate the selection

bias affecting the presence-only data. When m is large, this

affords us the option of working with a more expansive model

for the bias term, reducing the resulting bias in our estimates

for the ak and bk, which are typically of greater scientific

interest.

Scientifically, the proportional-bias assumption corresponds

to a belief that the biasing process has more to do with the

behaviour of observers than of plants and animals. Put simply,

if one species is oversampled near Sydney by a factor of five rel-

ative to another region with similar features, the most likely

explanation is that observers spend one fifth as much time in

the second region as they do in Sydney. In that case, we should

expect other species to be undersampled in the second region

by roughly the same factor relative to Sydney.

The proportional-bias assumption could well be violated if,

for example, most of the observers collecting samples for spe-

cies 1 reside in Sydney and those collecting samples for species

2 reside in Newcastle. Even under the best of circumstances,

this modelling assumption (like the other assumptions we have

made) is an idealization of the truth, but it can be a very useful

one if it is not too badly wrong. In Eucalypt data we provide

evidence that the proportional-bias model improves out-of-

sample reconstruction of the species intensity.

We allow ck, the proportionality constant of the sampling

bias, to vary by species, representing a species-dependent

effect on overall sampling effort. This allows us to account

for observers systematically oversampling some species rela-

tive to others. For example, if an ecologist is collecting sam-

ples in a forest, she may preferentially collect samples from

rarer species. In the section Eucalypt data we give some evi-

dence that sampling effort does indeed vary significantly by

species in just this way. The cost of letting ck vary by spe-

cies is that ak is unidentifiable unless we have some pres-

ence–absence data for species k. Consequently, we can

estimate the species distribution pk(s), but not the overall

abundance KðDÞ, unless we have some presence–absence or

count data for species k.

While this paper was in press we learned of concurrent and

independent work byGiraud (2014) andDorazio (2014) which

use similar Poisson thinning models to combine survey and

collection data.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution
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INDUCED MODEL FOR SURVEY DATA

Survey data provides information about the species process Sk

restricted to the survey quadrats. If the point locations of each

individual within quadrat Ai are recorded, we can directly

model those locations as a loglinear IPP over the entire sur-

veyed domain
S

i Ai. Often, we donot have access to such gran-

ular data, and only the count Nik ¼ NSk
ðAiÞ or presence/

absenceyik is recorded. In such cases, the IPPmodel still induces

a GLM likelihood for the available summary statistics Nik or

yik, so thatwe canmaximize likelihood for the available data.

If the features are continuous, then for a small quadrat Ai

the species count at the site is

Nik ¼ NSk
ðAiÞ � PoisðjAijkkðsiÞÞ

¼ Pois jAij expfak þ b0kxðsiÞg
� �

:
eqn 7

Thus, our joint IPPmodel induces a Poisson loglinearmodel

for survey count data. The probability of yik=1 is

PðNik [ 0Þ � 1� expf�jAijkkðsiÞg
¼ 1� expf�eakþb0kxðsiÞþlog jAijg;

eqn 8

a Bernoulli GLM with complementary log-log link (McCul-

lagh&Nelder 1989; Baddeley et al. 2010). The complementary

log-log link has been used before to study presence–absence

data in ecology (e.g. Yee & Mitchell 1991; Royle & Dorazio

2008; Lindenmayer et al. 2009). If the expected count

g ¼ jAijkkðsiÞ is very small, then there is not much difference

between the complementary log-log link, the logistic link and

the log link, since

1� expf�egg � eg

1þ eg
� eg: eqn 9

For simplicity assume quadrat sizes are constant and work

in units where jAij ¼ 1. When this is not the case, log jAij
enters as an offset in theGLM for observation i.

Importantly, we make no assumption that the survey quad-

rats Ai are distributed evenly across D in any sense. However,

our model does assume that, given the locations of Ai, the

responses yik for the presence–absence data are in no way

impacted by b(s), the sampling bias of the presence-only data.

Informally, if the Ai tend to cluster near some population

centre, then we will see many presences yik = 1 and absences

yik = 0 there, so we will not be fooled into believing the species

is more prevalent there. Because we are only modelling the dis-

tribution of yik, the presence–absence data do not suffer from

selection bias even if the geographic distribution of quadrats is

very uneven.

TARGET-GROUP BACKGROUND METHOD

Phillips et al. (2009) suggested another method of using many

species’ presence-only data to account for sampling bias. Using

a discretization of D into grid cells, they propose sampling

background points only from grid cells where at least one

species was sighted, guaranteeing that completely inaccessible

areas play no role in estimation. This method, dubbed the

‘target-group background’ (TGB) method, can tackle sam-

pling bias with only presence-only data, and without requiring

specification of its functional form.

However, the TGB method does not distinguish between

inaccessible regions and regions in which all the species are not

very prevalent. Moreover, because it samples background

points equally from all accessible grid cells, the TGB method

does not adjust for biased sampling from one accessible region

relative to another. Ourmethod can leverage presence–absence

data to directly estimate sampling bias and predict absolute

prevalence. We will empirically compare our method’s out-of-

sample predictive performance to several competitors includ-

ing the TGBmethod.

MAXIMUM-L IKEL IHOOD ESTIMATION

In this section, we discuss estimation of our joint model. As we

will see, maximum-likelihood estimation amounts to fitting a

very large generalized linear model to all of the data. More-

over, several familiar methods for single-species distribution

modelling amount to exactly or approximately maximizing

our model’s likelihood for a specific subset of our joint data

set.

Because we have various sorts of observation sites si we

introduce notation to allow for summing over relevant subsets

of them. Let IPA denote the set of indices i for which si are pres-

ence–absence survey quadrats, and let IPOk
denote the indices

for presence-only sites si 2 Sk. Let nPA be the total number of

survey quadrats.

For species k, the log-likelihood for the presence–absence

data is

‘k;PAðak; bkÞ ¼
X
i2IPA

�yik log 1� e� expfakþb0kxig
� �

þ ð1� yikÞ expfak þ b0kxig:
eqn 10

If Pðyi ¼ 1Þ is small for each quadrat, then ‘k,PA is very

close to the log-likelihood for logistic regression on presence–

absence data. In other words, applying our method to a single

presence–absence data set with no other data reduces to some-

thing very close to presence–absence logistic regression for that

species.

The log-likelihood for the presence-only data is

‘k;POk
ðak; bk; ck; dÞ ¼

X
i2IPOk

log kk � bkðsiÞð Þ�

Z
D
kk � bkðsÞds eqn 11

¼
X
i2IPOk

ak þ b0kxi þ ck þ d0zi
� �

�

Z
D
eakþb0kxiþckþd0zi ds eqn 12

In general, we cannot evaluate the integral in (12) exactly.

As usual, we replace the integral with a weighted sum over nBG
background sites si 2 D. For weightswi, we obtain the numeri-

cal approximation

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution
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‘k;POk
ðak; bk; ck; dÞ �

X
i2IPOk

ak þ b0kxi þ ck þ d0zi
� �

�
X
i2IBG

wie
akþb0kxiþckþd0zi ;

eqn 13

where IBG are the indices corresponding to background

sites. In the simplest case, the background sites are sam-

pled uniformly from D and all the wi ¼ jDj
nBG

, but other

sampling schemes are possible (for a review of techniques

see Renner et al. 2014). Popular procedures like Maxent

and presence-background logistic regression approximately

maximize (13).

Maximizing (13) for a single species k with the ck + d0zi
terms included reduces to the regression adjustment strategy

discussed the section in Challenges for regression adjustment

using presence-only data. If we do not include ck + d0zi terms

(i.e. if we assume there is no bias) we obtain the unadjusted fit

(i.e. the usual fit) to the biased presence-only intensity kk(s)
bk(s).

The presence–absence and presence-only data sets for all

m species together represent 2m independent data sets.2

Maximizing likelihood for all the data means maximizing

the sum

‘ðhÞ ¼
X
k

‘k;PAðak; bkÞ þ ‘k;POðak; bk; ck; dÞ; eqn 14

where h represents the full complement of coefficients

h ¼ ða1; b1; c1; . . .; am; bm; cm; dÞ: eqn 15

With a bit of work, we can massage the form of (14) into

one large GLM in terms of a common set of m(p + 2) + r

predictors corresponding to the entries of h. We do so by

introducing auxiliary predictor variables uk, a binary indica-

tor that we are predicting for species k, and v, an indicator

that we are predicting for presence-only instead of presence–

absence data. In terms of these variables, ak is the coefficient

for uk, bk,j for ukxj, ck for ukv and dj for vzj. More details are

given in Appendix S1.

The result is a very large GLM with m(p + 2) + r total

parameters and m(nBG + nPA) total observations (one per

species for each survey site and background site). Because

both the number of observations and number of parameters

scale linearly with m, the computational cost of standard

approaches to estimation scales asm3p2(nBG + nPA).

For our eucalypt example, we have m = 36 species,

nBG = 40 000 background sites, nPA = 32,612 survey quadrats

and p = 38 predictors (including interactions and nonlinear

terms), so m3p2(nBG + nPA) � 5 9 1012. This is a very high

computational load even formodern computers.

Fortunately, there is a great deal of structure in the design

matrix, and if we exploit it properly, our computations need

only scale linearly with m, cutting the cost by a factor of

roughly 362 �1000. Appendix S1 also details our efficient

computing scheme.

FITT ING PROPORTIONAL-B IAS MODELS IN R

As a companion to this article, we have released an R package,

multispeciesPP, that can efficiently fit the models

described here. The method requires formulae for the species

intensity and the sampling bias and carries out maximum like-

lihood as described in Maximum-likelihood estimation. For

example, the code

mod\� multispeciesPPð� x1þ x2; � z; PA ¼ PA;

PO ¼ PO; BG ¼ BGÞ

would fit a multispecies Poisson process model with presence–

absence data set PA, list of presence-only data sets PO and

background data BG. The R function maximizes likelihood

under themodel

logkkðsiÞ ¼ ak þ bk;1xi;1 þ bk;2xi;2 eqn 16

log bkðsiÞ ¼ ck þ dzi eqn 17

and returns fitted coefficients and predictions.

Simulation

Thus far, we have discussed several distinct data sources we

can bring to bear on estimating kk(s), the intensity for the kth

species process. A simple simulation illustrates the interplay of

the different data types.

We simulate from the model (4) with covariates (x1, x2, z)

following a trivariate normal distribution with mean zero and

covariance

Covðx1; x2; zÞ ¼
1 0 0�95
0 1 0

0�95 0 1

0
@

1
A; eqn 18

and the coefficients for species 1 equal to:

ða1; b1;1; b1;2; c1; dÞ ¼ ð�2; 1;�0�5;�4;�0�3Þ eqn 19

Presence–absence data for species 1 are the most reliable

reflection of k1(s), but are available only in small quantities.

Presence-only data for species 1 are abundant, but biased, as

they are sampled from the intensity

k1ðsÞ � b1ðsÞ ¼ a1 þ b01xðsÞ þ c1 þ d0zðsÞ eqn 20

Because z is independent of x1 but highly correlated with x2,

a presence-only data point is mainly informative about b1,1
and b1,2 + d. Without supplementary data, it carries almost no

information about b1,2 itself.
If presence-only and presence–absence data are available for

many other species, then they all contribute information help-

2Technically, the portion of T k that coincides with survey quadrats Ai

is not independent of the presence–absence data for species k.We could

repair this by discarding all presence-only and background sites occur-

ring in survey quadrats, but in practice this is unnecessary because the

Ai represent aminiscule fraction of the domain.
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ing us to precisely estimate d. This makes species 1’s presence-

only data much more useful: given a precise estimate of d from
other species’ data, information about b1,2 + d is equivalent to
information about b1,2.
Figure 3 and the accompanying commentary show what

each data set contributes to estimating b1,1 and b1,2 by

plotting the 95% Wald confidence ellipse for each of several

models.

Eucalypt data

We have just seen how the various sources of data can

work in concert to give far more precise estimates than we

could obtain from any one data set by itself. Additionally,

we evaluate our model’s performance on a data set of 36

species of genera Eucalyptus, Corymbia and Angophora in

south-eastern Australia.

The presence–absence data consist of 32 612 sites where all

the species were surveyed, with an average of 547 presences per

species. The species exhibit a great deal of variability with

respect to their overall abundance, with four species having

fewer than 20 total observations, and eight having more than

1000.

The presence-only data consist of 764 observations on aver-

age per species, supplemented with 40 000 background points

sampled uniformly at random from the study region.

More information on data sources may be found in Appen-

dix S3. The rarest species in the presence-only data,Eucalyptus

stenostoma, has 90 observations.

We use 15 environmental covariates in our model for

the species process, allowing for nonlinear effects in four

of them: temperature seasonality, rainfall seasonality,

precipitation in June/July/August, moisture index in the

lowest quarter and annual precipitation overall. Our model

for the bias includes nonlinear effects for predictors

including distance to road, distance to the nearest town,

distance to the coast, ruggedness, whether the locale has

extant vegetation and the number of presence–absence sites

nearby. Appendix S2 discusses the model form in more

detail.

The four panels of Fig. 4 contrast our model’s fit for a sin-

gle species, Eucalyptus punctata, with the fit that we would

obtain by using presence-only data alone with no bias adjust-

ment. A satellite image of the same region is provided for

comparison and orientation. The top left panel displays the

fitted intensity we obtain by modelling E. punctata’s presence-

only data as an IPP whose intensity is driven by environmen-

tal variables. We obtain an estimate of the presence-only

intensity, which in this case is concentrated mostly near Syd-

ney and the coast.

The top right and lower left panels show our model’s esti-

mates b̂kðsÞ of the bias and k̂kðsÞ of the species intensity.

Unsurprisingly, distance from the coast, and from Sydney, is

strong driver of our model’s fitted sampling bias. In the lower

left panel, the intensity is shifted significantly towards the wes-

tern hinterland.

To evaluate our model quantitatively, we ask two ques-

tions: first, how well do the data agree with the assumption

of proportional sampling bias? Secondly, do we obtain better

predictions when pooling multiple data sets across multiple

species?

CHECKING THE PROPORTIONAL-B IAS ASSUMPTION

We can check the proportional-bias assumption within the

context of ourGLM.To checkwhether the bias coefficient cor-

responding to some zj should vary by species, we can estimate

the same model as before, but now allowing that coordinate of

d to vary by species.
In terms of the large GLM described in the section

Maximum-likelihood estimation, we can estimate our

model as before by augmenting the design matrix with

interactions between the species identifiers uk and the bias

variable zj. These variables then have coefficients dk,j. In

Simulation: Confidence Ellipses for β1

β1,1

β 1
,2

0·5 1·0 1·5

−0
·5

PA Only
PO Only (Unadj)
PO Only (Adj)
PA and PO
All Species

Fig. 3. Ninety-five percent Wald confidence regions for b1, the species
distribution coefficients for species 1, obtained by using five different

methods. The plot illustrates the precision and accuracy with which the

coefficients are estimated by each method. The black star denotes the

true values of the parameters of interest. The different model types are

described below: PA data alone (Green): The most straightforward

method when PA data for species 1 is to maximize likelihood for it

alone. Our estimates of both coefficients are unbiased but less precise

than they could be. z plays no role in the PA data or ourmodel for it, so

the precisions for the two coordinates of b1 are about the same;POdata

alone, no regression adjustment (Red): The most common use of pres-

ence-only data is to maximize likelihood using only the presence-only

data for species 1, making no adjustment for sampling bias. In that

case, we are effectively estimating the presence-only intensity instead of

the species intensity. Here, x1 proxies for the confounding variable z

and b̂1;1 is severely biased, whereas b̂1;2 is unaffected; PO data alone,

with regression adjustment (Blue): We can address sampling bias by

attempting to estimate the effect of the confounder z. Our estimates are

now unbiased, but b̂1;1 is noisy and its interval is very wide. It is quite

hard to tease apart the effects of x1 and z given only PO data; PA and

PO data for species 1 (Black): The PO data carry solid information

about b1,2, whereas the PA data carry the only usable information

about b1,1.Whenwe combine both data sources for species 1, the preci-

sion of b̂1;2 roughly matches the methods using PO alone (blue and

red), and the precision of b̂1;1 matches the method using PA alone

(green); Pooled data for all species (Purple):We obtain the best results

by pooling both presence–absence and presence-only data sets for

many different species. Species 2,3,…,m all contribute to estimating d
to high precision. As a result, the presence-only data for species 1

becomes much more useful for estimating b1,1, because we know how

to correct for the sampling bias.
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this model, the proportional-bias assumption corresponds

to the null hypothesis of no interaction effects, which we

can test using standard likelihood-based methods.

As usual, it is rather unlikely that the proportional-bias

assumption – or any other aspect of our model – holds exactly.

Even if the assumption holds for some true functions kk(s) and
bk(s), we may still see spurious correlations when we fit a com-

plexmodel using amisspecified loglinear functional form.Nev-

ertheless, it is of interest to identify whether some interactions

stand out strongly compared to the noise level, and if so how

large they are.

Because of spatial autocorrelation in both the presence–

absence and presence-only data, traditional likelihood-based

confidence intervals for the interaction effects dk,j are likely to

be anticonservative, as are bootstrap intervals based on i.i.d.

resampling. To account properly for the spatial autocorrela-

tion, we use the block bootstrap to compute confidence inter-

vals for the coefficients (Efron&Tibshirani 1993).We separate

the landscape into a checkerboard patternwith 261 rectangular

regions with sides of length 1/3-degree of longitude and lati-

tude (approximately 31 km 9 37 km at latitude 33� South).
In each of 400 bootstrap replicates, we resample 261 whole

regions with replacement.

Dependence of d on species

We test our assumption explicitly for the variable ‘distance to

coast’, which is the most important predictor of bias. The

evidence in the data regarding our assumption is somewhat

mixed, but on the whole, it does not appear that the propor-

tional-bias model fits the data perfectly. For some species,

there is sufficient evidence to rejectH0.

Figure 5 shows the 95% bootstrap confidence interval for

the idiosyncratic sampling bias of Eucalyptus punctata, as a

function of distance to coast. We see that, even after account-

ing for the overall bias that affects the other 35 species, we still

have too many coastal presence-only observations of punctata.

This could be linked to the fact that the punctata data are con-

centrated near Sydney, which is more heavily populated than

other coastal regions, but with many confounding factors at

play it is hard to know. Appendix S2 has more detailed results

formore species.

If interactions like these are strong, we can allow some of the

coordinates of d to vary by k and others not. There is a bias-

variance trade-off, however, as the proportional-bias assump-

tion is what allows us to share information across species. We

will see in the section Predictive evaluation of the model that

even when themodel is an imperfect fit, it can nevertheless sub-

Presence−Only IPP Fit

Sydney

0.0

0.1

0.2

0.3

0.4

λ̂k(s)b̂k(s)

Observer bias

Sydney

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

b̂k(s)

Species intensity

Sydney
1000

2000

3000

4000

5000

λ̂k(s)

Satellite map

Fig. 4. Model fits for Eucalyptus punctata in

south-eastern Australia. Top left panel:

estimate of presence-only intensity in units of

1/km2, using presence-only data alone and

making no adjustment for bias. Top right:

fitted sampling bias b̂kðsÞ in our proportional

sampling bias model. Lower left: fitted

species intensity k̂kðsÞ for our model, in units

of 1/km2. Lower right: satellite image from

Google Earth. In the presence-only data,

manymore treeswere observed in near Sydney

than in the western hinterland, but our model

infers a higher intensity in the undersampled

western region.
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stantially improve predictive performance on held-out pres-

ence–absence data.

Dependence of c on species

By default, our model allows c to vary by species, but we need

not always do so. In fact, if we assumed c does not vary by

species, then we would only need joint presence–absence and

presence-only data for one species to obtain an estimate for c.
Therefore, we could estimate abundance (and therefore pres-

ence probabilities) for every species given presence–absence

and presence-only data for a single species and presence-only

data for every other species.

Define relative sampling effort as the ratio

qk ¼
expfckg

min
m

k0¼1
expfck0 g

; eqn 21

so that qk = 1 for all k if and only if the ck are all equal.
Figure 6 shows our model’s estimates q̂k, plotted against the

total number of presence–absence observations. For the euca-

lypt data, it appears that the assumption of a common c for

every species is probably not reasonable. It appears the pres-

ence-only intercept c varies systematically by species, with effort

being substantially higher for the rarer species. Thus, the data

appear to support our decision to allow c to vary by species.

PREDICTIVE EVALUATION OF THE MODEL

Our goal in pooling data was to supplement the presence–

absence data for a given species withmultiple othermore abun-

dant sources of data, to allow for more efficient estimation of

the species intensity kk(s) and its coefficients. One measure of

our success is whether this data pooling actually improves pre-

dictive performance on held-out presence–absence data.

For comparison, we also estimate our joint model using (i)

both the presence-only and presence–absence data for species

k and (ii) presence-only and presence–absence data for all 36

species combined.

Note that in all three cases, we are estimating the exact same

joint model with three nested data sets:

PA data alone for species k. The most natural competitor to

our method is to fit the Bernoulli complementary log-log

GLM model with the same predictors, but only on species k’s

presence–absence data. This is a special case of the joint

method, for which only presence–absence data are available

for species k.

PA and PO data for species k. Augmenting the presence–

absence data with presence-only data for the same species

improves our coefficient estimates for environmental variables

that are independent of sampling bias. When there is no pres-

ence–absence data, we are fitting the thinned Poisson process

model to PO data alone. This is regression-adjusted analysis of

PO data, discussed in the section Challenges for regression

adjustment using presence-only data.

Pooled data for all species. Using data for all species gives

better estimates of the predictors that are badly confounded by

sampling bias.

In addition, we introduce two more competitors that

use presence-only data alone:

POdata alone for species k, unadjusted for bias:Using species

k’s presence-only data alone, and ignoring sampling bias, is the

0 50 100 150 200
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−2

0
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Eucalyptus punctata

0 50 100 150 200

−4
−2

0
2

4

Eucalyptus dives
Fitted Species−Specific Bias

Fig. 5. Idiosyncratic sampling bias for E.

punctata and E. dives as a function of distance

to coast in km. The dashed lines show 95%

block-bootstrap confidence intervals. It

appears that after adjusting for the bias d0z(s)
that is shared across all species, there is some

residual bias left over for punctata. By con-

trast, for E. dives, there is no significant inter-

action. Even though the proportional

sampling bias model is misspecified for E.

punctata, it still substantially improves out-of-

sample predictive accuracy, as we will see in

Predictive evaluation of the model. The corre-

sponding curves for all the species can be

found inAppendix S2.
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Fig. 6. Our model’s estimate of relative sampling effort qk, plotted vs.

the total abundance of each species, with each variable plotted on a log

scale. It appears thatmore effort is made to sample rare species.
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most common method for analysing presence-only data. It

estimates the presence-only intensity and then makes predic-

tions as though that were the same as the species intensity. This

method can suffer dramatically from bias.

PO data for all species, using the TGB method: We imple-

ment the TGBmethodwith pixel size 9 arc seconds (the resolu-

tion level of our covariates).

Our evaluation method effectively treats the presence–

absence data as a ‘gold standard’, unaffected by bias. This

point of view may not always be reasonable, but eucalypts are

relatively large and hard for surveyors to miss, so the pres-

ence–absence data probably do reflect the true presence or

absence of trees in their respective quadrats, notwithstanding

identification errors.

We emphasize that we are comparing the different methods

with respect to their performance on held-out presence–

absence data and not on held-out presence-only data. This dis-

tinction is important, because our goal is to reconstruct the

species intensity and not the presence-only intensity. All three

methods train on the same amount of presence–absence data

for species k. The data-pooling methods can only beat the sim-

pler method if the other data sets carry useful information

about the species intensity of species k, and if our joint model

effectively processes that information without biasing our esti-

mate too badly.

We then use ten-fold block cross-validation to evaluate each

method with respect to its predictive log-likelihood. Using the

same rectangular regions as in Checking the proportional-bias

assumption, we randomly assign the 261 whole regions to ten-

folds, with each fold containing 26 random regions and the

one left-over region excluded. Figure 7 shows one training-test

split used for our procedure. Importantly, all data taken from

the test region – presence–absence, presence-only and back-

ground – is held out of the training set.

The gains from data pooling are greatest when the presence–

absence data for a species of particular interest (say, species k)

are either scarce or non-existent. To emulate estimation with

presence–absence data sets ranging from scarce to abundant,

we further downsampled the presence–absence training data

for species k.

We fit all the models with a ridge penalty on all of the coeffi-

cients except the intercepts a and c. That is, weminimize

‘ða; b; c; dÞ þ m
2
kbk22 þ

m
2
kdk22; eqn 22

with penalty multiplier m = 100. Penalizing the coefficients in

this way is known as regularization, and it allows for efficient

estimation of parameters in complex models. For more details,

see for exampleHastie, Tibshirani &Friedman (2009).

Figures 8 and 9 show the results of block cross-validation

for two species in the data set: Eucalyptus punctata and Euca-

lyptus dives. Results for the other species are qualitatively simi-

lar and can be found in Appendix S2. We evaluate the various

methods according to two metrics of predictive performance:

predictive log-likelihood (left panel) and area under the predic-

tive ROC curve, averaged over the ten test folds (AUC, right

panel). Lawson et al. (2014) contrast prevalence-dependent

metrics like log-likelihood, which measure the accuracy of

absolute out-of-sample presence probabilities, with prevalence-

independent metrics like AUC, which depend only on the

ordering of predictions.

Doing well in predictive log-likelihood requires a good

estimate of the intercept ak – that is, of the absolute intensity

kk(s). Because ak is confounded with ck in presence-only

data, and because ck varies by species, the two data-pooling

methods cannot estimate absolute intensities without a little

presence–absence data from species k. By contrast, AUC

only depends on estimates of relative intensity kkðsÞ
KkðDÞ, which is

invariant to âk and can be estimated with no presence–

absence data for species k. Estimates without any presence–

absence data for species k are shown above the label ‘0’ on

the horizontal axis.

As we have seen in Fig. 4, E. punctata suffers dramatically

from sampling bias because Sydney, the largest city, lies on the

eastern edge of its habitable zone. As a result, the unadjusted

presence-only method performs very poorly compared to the

methods that account for bias. By contrast, the habitable zone

of E. dives lies mainly in the western part of the study region

where the sampling bias function log bk has a much gentler

gradient. As a result, the unadjusted presence-only analysis

does relatively well. Themethod that pools across all 36 species

does even better: its AUCusing none ofE. punctata’s presence–

absence data (and only the presence–absence data for the other

35 species) is indistinguishable from its AUC using all of the

presence–absence data. See Appendix S2 for the correspond-

ing plots for all species.

Table 1 compares the four best methods using a moderate

value, 1000, for the number of non-missing presence–absence

sites. Ourmethod pooling presence–absence and presence-only

data for all species performs well consistently, coming within

0�01 of the best method for all but one species. Interestingly,

the TGB method performs second best despite its having no

access to the presence–absence data.

Block cross−Validation

Train
Test

Fig. 7. Depiction of our block cross-validation scheme for the eucalypt

data. Entire rectangular blocks are sampled together to help account

for spatial autocorrelation.
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Discussion

We have proposed a unifying Poisson process model that

allows for joint analysis of presence–absence and presence-

only data from many species. By sharing information, we can

obtain more precise and reliable estimates of the species inten-

sity thanwe could obtain from either data set by itself.

Moreover, we have seen in Eucalypt data that the propor-

tional bias can be a reasonable fit for some real ecological data

sets. In this data set, and we suspect in many others, sampling

bias can have amajor effect on fitted intensities if not appropri-

ately accounted for.

BENEFITS OF DATA POOLING

Throughout we have focused mainly on the way that pooling

presence–absence and presence-only data from many species

can help address selection bias. Even when selection bias is not

amajor concern, data pooling can still be beneficial.

In the simplest case, presence–absence data can be fruit-

fully supplemented by more abundant presence-only data

from the same species. In Fig. 9, we see that the presence-

only data for E. dives is not very biased, as evidenced by

the good performance of the unadjusted fit. In this case,

combining the presence–absence data with presence-only

data still led to a substantial improvement in predictive

performance, and combining with data from other species

helped even more. In other cases, we may have presence-

only data for many species but no presence–absence data.

In that case, our method still provides a means for pooling

data to estimate d more efficiently.

COMMON MISSPECIF ICATIONS OF THE IPP MODEL

Aside from the proportional-bias assumption, we should be

mindful of several other sources of misspecification. The most

obvious is that our loglinear functional form is almost certainly

incorrect in any given case. Three others that merit special
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strategy discussed in the section Challenges for regression adjustment using presence-only data. Note that using presence-only data without any

adjustment for bias performs quite poorly compared to the other methods. Because the habitable zone for E. punctata includes Sydney as well as

more inaccessible regions to its west, ignoring the sampling bias canwreak havoc on our estimates.
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region, where the bias function has a relatively gentle gradient, the sampling bias plays a less vital role. In the right panel, the leftmost blue triangle

(‘1 species: PA + PO’ with no PA data), we are fitting the thinned IPP model to PO data alone. This is the regression adjustment strategy discussed
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consideration are spatial autocorrelation in the data, biased

detection of presence–absence data and spatial errors in envi-

ronmental covariates and point observations.

Spatial autocorrelation

The Poisson process model assumes that, given the covari-

ates for a given site, an individual is no more or less likely

to occur simply because there is another individual nearby.

In ecological data, this assumption is rather tenuous; for

example, trees of the same species often occur together in

stands; or different species may compete with each other for

resources. Renner & Warton (2013) discuss goodness-of-fit

checks and present empirical evidence against the Poisson

assumption. For a more general discussion of alternatives to

the Poisson process model, see Cressie (1993); Gaetan &

Guyon (2009).

Similarly, for systematic survey data, we should proceed

with caution in modelling count data as Poisson, because

actual counts may be overdispersed due to autocorrelation

within a quadrat, or correlated with counts for nearby sites

because of longer-range autocorrelation. When autocorrela-

tion is present, nominal standard errors computed under the

Poisson assumption can be much too small, as can i.i.d. cross-

validation estimates of prediction error or i.i.d. bootstrap stan-

dard errors. Resampling methods such as the bootstrap or

cross-validation can be made much more robust to autocorre-

lation if they resample whole blocks at a time (Efron &

Tibshirani 1993), and in the section Eucalypt data, we use the

block bootstrap and block cross-validation to analyse our

eucalypt data set. Discussion of alternative block bootstrap

procedures and choosing block size may be found in Hall,

Horowitz & Jing (1995); Nordman, Lahiri & Fridley (2007);

Guan&Loh (2007).

Imperfect detection

Even in presence–absence and other systematic survey data,

surveyors may not have the time or resources to exhaustively

survey a given quadrat, and thus, some organisms may be

missed in the surveys.

Suppose, for example, that an organism at s is detected by

surveyors with probability q(s). Then, the count y in quadratA

centred at s is not distributed as Pois(k(s)|A|), but rather as

Pois(q(s)k(s)|A|). If q(s) is constant, all our estimates of ak will
be biased downward by exactly log q. This would bias esti-

mates of abundance but not the estimated species distribution,

which depends only on b̂k.
If q(s) is a non-constant function of s – for example, if non-

detection is a bigger problem in heavily forested sites – then we

may incur bias for both ak and bk. If sites are visited repeat-

edly, then under some assumptions an estimate of non-detec-

tion may be obtained, by methods discussed in, for example,

Royle & Nichols (2003); Dorazio (2012). Estimates of detec-

tion probability can sometimes be obtained without repeat

observations under stronger modelling assumptions (Lele,

Moreno&Bayne 2012; S�olymos, Lele &Bayne 2012)

Non-detection in presence–absence data is largely analogous

to the sampling bias problem for presence-only data, and we

could in principlemodel and adjust for it using similarmethods

to the ones we propose for addressing biased presence-only

data.

Spatial errors

Opportunistic presence-only data may also suffer from

errors in the recorded locations of point observations. Simi-

larly, environmental covariates are often measured at a rela-

tively coarse scale, in which case the covariates attributed

to point si may be inaccurate. If important environmental

covariates fluctuate on a fine scale compared to the scale of

these errors, the errors may lead to attenuated effect size

estimates (see e.g. Graham et al. 2008). Hefley et al. (2013a)

propose methods to correct for spatial errors in presence-

only records.

A similar issue can arise in the analysis of presence–absence

or count data, when we use the centroid of a presence–absence

quadrat as a proxy for the integral
R
Ai
kðsÞds, which may not

be appropriate if the variables fluctuate on a fine scale relative

to quadrat size. In such cases, it is especially helpful to record

point locations within quadrats rather than recording only

presence–absence or count data summarized at the quadrat

level.

Table 1. AUC cross-validation results for all species with at least 100

presence–absence data points. The first three methods are evaluated

with 1000 non-missing presence– absence data points for the species

under study. In each row, numbers are bolded for methods coming

within 0�01 of the best method. Our method pooling presence–absence
and presence-only data for all species performs well consistently, com-

ingwithin 0�01 of the bestmethod for all but one species

PAOnly PA +PO PA +PO TGB

1 Species 1 Species 36 Species 36 Species

A. bakeri 0�893 0�915 0�932 0�933
C. eximia 0�921 0�947 0�952 0�952
C. maculata 0�783 0�778 0�785 0�742
E. agglomerata 0�801 0�834 0�820 0�808
E. blaxlandii 0�904 0�934 0�944 0�934
E. cypellocarpa 0�861 0�852 0�867 0�825
E. dalrympleana (S) 0�873 0�910 0�926 0�931
E. deanei 0�811 0�855 0�906 0�894
E. delegatensis 0�971 0�971 0�981 0�982
E. dives 0�920 0�934 0�941 0�929
E. fastigata 0�905 0�900 0�916 0�907
E. fraxinoides 0�920 0�935 0�963 0�963
E. moluccana 0�881 0�909 0�911 0�881
E. obliqua 0�870 0�914 0�918 0�906
E. pauciflora 0�874 0�897 0�928 0�928
E. pilularis 0�807 0�807 0�805 0�811
E. piperita 0�889 0�844 0�886 0�871
E. punctata 0�882 0�893 0�896 0�901
E. quadrangulata 0�835 0�843 0�840 0�823
E. robusta 0�878 0�883 0�892 0�894
E. rossii 0�957 0�966 0�965 0�962
E. sieberi 0�857 0�813 0�881 0�875
E. tricarpa 0�969 0�970 0�971 0�965
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EXTENSIONS

As discussed elsewhere, there are many useful ways to extend

GLM fitting procedures. GAMs, gradient-boosted trees and

other forms of regularization on model parameters are all

immediate extensions of the approach we have outlined here.

Like other methods, our method’s results on a given data set

will depend on making good choices regarding featurization

and regularization.

Finally, in our approach, we are forced to assume a func-

tional form for the sampling bias, and if our model is wrong,

we will not account correctly for the sampling bias. Studies

quantifying patterns of sampling bias in relation to spatial co-

variates are currently scarce, but could help to justify a more

accurate model of sampling bias than one based on intuitive

selection of covariates, as applied here. Nonetheless, in future

work, we plan to investigate models that treat the sampling

bias nonparametrically, imposing no assumptions on its func-

tional form.
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