
Graphics
In the R language

Derived from Peng’s and Nolan’s Notes

Graphics



Base Graphics

Base graphics are used most commonly and are a very powerful
system for creating 2-D graphics.

Calling plot(x, y) or hist(x) will launch a graphics device
(if one is not already open) and draw the plot on the device

If the arguments to plot are not of some special class, then
the default method for plot is called; this function has many
arguments, letting you set the title, x axis and y axis labels, x
and y axis limits, etc.

The base graphics system has many parameters that can set
and tweaked; these parameters are documented in ?par

Graphics



A first assignment: Freeway Traffic in California

Loop detectors at 22,000 locations,

Transmit data every 30 seconds

Collect 2GB a day, and store 4TB

For each of three lanes,
flow (number of cars) and
occupancy (the proportion of time there was a car over the
loop)
were recorded in successive five minute intervals.

We have 1740 such five minute intervals.

Lane 1 is the leftmost lane, lane 2 is in the center, and lane 3
is the rightmost.

Graphics



Tasks

Read the data directly from the web into R. Explain why you
chose the function you did.

Reshape the data (1740*3), with lane as a factor and day and
hour as numeric.

Which lane typically serves the most traffic?

Flow can be regarded as a measure of the throughput of the
system. How does this throughput depend on congestion?

Taxi drivers claim that when traffic breaks down, the fast lane
breaks down first so they move immediately to the right lane.
Can you see any such phenomena in the data?

Graphics



A second assignment: Deconstruct-Reconstruct a Plot

Find a plot on swivel.com that you can improve

Critique the plot

Find the message, and create a new plot that better
communicates that message.

Improve the plot even more by for example adding auxiliary
information.

Graphics



Motivation for this assignment

How to critique a plot for effectiveness is not systematized,
and is difficult to teach.

Important to demonstrate how to figure out what went
wrong, not just point out mistakes

Find it can really highlight the point of a data analysis by
answering the questions:
What is the message?
Is there a better comparison for bringing out the message?

Acts as a good introduction to the basic plotting model in R

Graphics



An example for the students

Graphics



Registered Voters in California

Majority of Democrats,Majority of Republicans,Election Year
21,37,"2004"
23,35,"2008"
29,29,"2000"
37,21,"1996"
43,15,"1992"

Sources: California Secretary of State

http://www.sos.ca.gov/elections/ror/
60day\_presprim/hist\_reg\_stats.pdf

What’s the message?
Can you improve upon it?

Graphics



Critique

Basic plotting issues

x-axis tick marks poorly located - should be located at
election years

y-axis label misleading - it is number of counties

use of color could be improved with red/blue recognizable
party colors

data are turned around, i.e. figures for 1996 are really 2008
data

Message: how party registration has changed over the past 5
presidential elections

More informative if we have registration figures as people vote
not counties

County size may be a lurking variable - small counties tend to
be rural and conservative

Graphics



Revision

Graphics



Alternative Data from same report

Notice that the Other registrations and the “Decline to State”
registrations make up nearly 25% of the registrations in 2008.
Leaving these party affiliations out of the plot distorts the picture.

year, eligible, registered, dem, rep, other, decline
1992, 20612814, 13217022,.485, .389, .031, .095
1996, 19298379, 14314658, .474, .368, .052, .106
2000, 21190865, 14676174, .462, .349, .052, .137
2004, 21843202, 14945031, .432, .357, .049, .162
2008, 22987562, 15468551, .427, .336, .044, .193

Graphics



Alternative Figure

Graphics



Where do we get this material?

Cleveland, The Elements of Graphing Data

Cleveland, Visualizing Data

Wainer, Dirty Dozen, TAS

Tufte, The Visual Display of Quantitative Information

Wainer, Visual Revelations: Graphical Tales of Fate and
Deception From Napoleon Bonaparte To Ross Perot

Robbins, Creating More Effective Graphs

Murrell, R Graphics

Murrell, Class Notes - some of these are excerpted from his
notes

Graphics



General Terminology

Scale

line and label
tick mark and tick mark label

Data: label, plotting symbol

Key or legend

Marker or reference: line or point, and label

Title, subtitle, caption

Juxtapose vs superpose vs inlay

Graphics



What are we looking for?

Clear Vision

Make data stand out
Eliminate chart junk
Avoid clutter in data region

Clear Understanding

Put major conclusion in graphical form
Provide reference information
Proof read for clarity and consistency

Graphics



Scale

Include or nearly include all data
Fill data region
Origin need not be on the scale
Choose a scale that improves resolution, e.g. percent change,
log, ...

General Strategy

Iterative process
Multiplicity is OK
Data rich

Graphics



Basic graphics model - Painter Model

Start with a blank canvas

High-level plotting function wipes the canvas clean and then
”paints” a complete plot on the canvas

Low-level functions can add to what is on the canvas, and will
obscure what is below it

Multitude of parameters available to the user to control details

The canvas can be split up into multiple plotting regions, and
the painter’s model holds on each sub-region

Graphics



High-level plotting functions

Show them the most common ones:
barplot, boxplot, curve, hist, plot, dotchart, image, matplot,
mosaicplot, stripchart, contour

plot is a generic plotting function - plot(x) and something
useful should happen

x is a rpart object - dendogram
x is a dataframe - pairs of scatterplots
x is an lm object - a series of plots
for more see methods(plot)

Graphics



Low-level functions

Low-level functions can be used to augment the plot.

Add to the plotting region: abline, lines, segments, points,
polygon, grid

Add text: legend, text, mtext

Modify/add axes: axis, box, rug

Graphics



Some Important Base Plotting Functions

plot: make a scatterplot, or other type of plot depending on
the class of the object being plotted

lines: add lines to a plot, given a vector x values and a
corresponding vector of y values (or a 2-column matrix); this
function just connects the dots

points: add points to a plot

text: add text labels to a plot using specified x, y coordinates

title: add annotations to x, y axis labels, title, subtitle,
outer margin

mtext: add arbitrary text to the margins (inner or outer) of
the plot

axis: adding axis ticks/labels

Graphics



Parameters

The high and low -level functions take parameters that allow
us to change the appearance of parts of the plot.

Most high level functions contain arguments to modify the
axis labels (xlab, ylab), plot title (main, sub), and scale
of the axis, e.g. xlim, ylim.

It is possible to specify some general parameters (i.e. par()
params) in the high-level functions, e.g. las, type, pch,
mgp

Graphics



par()

Permanent: change parameters permanently

Restore: par returns the par values before it was called, and
these can be saved and restored

Default: Calling par() allows your to reset to the default
parameter values

there are a multitude of graphical parameters that can be set

Scope: parameter values set in high-level functions can have
different effect than those set in par() and different from
other high-level functions, e.g.
par(col="red") and plot(x, col="red").

Graphics



Iteration - from horrible to decent

Graphics



Graphics



Graphics



Some Important Base Graphics Parameters

The par function is used to specify global graphics parameters
that affect all plots in an R session. These parameters can often be
overridden as arguments to specific plotting functions.

pch: the plotting symbol (default is open circle)

lty: the line type (default is solid line), can be dashed, dotted,
etc.

lwd: the line width, specified as an integer multiple

col: the plotting color, specified as a number, string, or hex
code; the colors function gives you a vector of colors by
name

las: the orientation of the axis labels on the plot

Graphics



Some Important Base Graphics Parameters

bg: the background color

mar: the margin size

oma: the outer margin size (default is 0 for all sides)

mfrow: number of plots per row, column (plots are filled
row-wise)

mfcol: number of plots per row, column (plots are filled
column-wise)

Graphics



Color dimensions

Hue typically associated with color names, e.g. red, green, blue,
yellow. It connects to the dominant wavelength: long-wavelength
reds to short-wavelength blues; from red to orange to yellow to
green to blue; purples result from mixing opposite ends of the
spectrum together.
Lightness is a relative measure that describes how much light
appears to reflect from an object compared to what looks like
white in the scene.
Saturation measures the vividness of a color
Computer screens use a reduced set of light primaries for mixing all
the other hues: red, green, and blue (RGB).
Transparency - semi-transparent color for quartz and pdf devices

Graphics



In R, color can be specified using:

an RGB hex triple;

a name, e.g. ”red”;

color generating function, e.g. gray(), rgb() ...

functions that generate a coherent set of colors: heat.colors,
rainbow, colorRamp, terraine.colors;

the RColorBrewer and colorspaces packages.

Graphics



Graphics



Text

text() Can place text anywhere in plotting region

Control: font family, size, face, and color can be specified

Margins: mtext

Orientation:

Math: expression()

main=expression(paste(italic("Poisson"),
"(", lambda == 1,")"))

Graphics



Arranging Plots on the canvas

Multiple plots can appear in one plot region

mfrow parameter cuts the region into a grid

layout() provides a grid with possibly unequal heights and
width, and can place a plot in a rectangular region that covers
more than one grid section

Graphics



Graphics



Steps in drawing a plot:

plot.new() set up plot region

plot.window() set up coordinate system (xlim, ylim)

box() Draw rectangle around plot

axis Draw axes, lines(), points(), text, ...

usr provides/sets the coordinate system

Graphics



Example

#set up canvas with 3 plot regions
par(mfrow=c(3,1), mar=rep(0,4), oma = c(4,4,3,3))

# make the top plot
plot(density(rtraffic$Occ[rtraffic$lane =="Slow"]),

ylim=c(0,15), xlim=c(0, 0.5), main="", axes = FALSE)

#add text to top margin
mtext("Loop Detector Occupancy for Left (bottom),

Middle, and Right (top) lanes", side = 3, line = 2)

# Add box around first plot region
box()

#Add axes to the right side
axis(2, labels=FALSE); axis(3, labels=FALSE); axis(4)

Graphics



# Make middle plot
plot(density(rtraffic$Occ[rtraffic$lane =="Middle"]),

ylim=c(0,15), xlim=c(0, 0.5), main="", axes = FALSE)

# Draw box around it - no axes ticks or labels
box(); axis(2, labels=FALSE); axis(4,labels=FALSE)

# Draw bottom plot
plot(density(rtraffic$Occ[rtraffic$lane =="Passing"]),

ylim=c(0,15), xlim=c(0, 0.5), main="", axes = FALSE)

# add box, then x and y axes
box();axis(1);axis(2)

# add text for a label on the y axes
mtext("Occupancy", side = 1, line =2.5)

Graphics



Advanced Assignment: Replicate Napoleon’s March

Graphics



Learning Objectives

Apprenticeship: Find out about and use a variety of
parameters

Compose multiple plots on one canvas

Work from grammar of graphics to plot functions

Raise the bar: they can create amazing plots

Graphics



Grammar of Graphics - Wilkinson

DATA functions needed to create variables from data.

TRANS Transformations, if any, to be applied to the variables

FRAME The graphic frame describes the context of the plot.
Use algebraic expression:

One-dimensional frame is typically specified by a single
variable, e.g. x.
Two dimensional frame by x*y. Also, x * (y + z) superposes
the units and ranges of y and z on the vertical axis.

SCALE Dimensions on which the graphics orient themselves,
e.g. categorical, interval, log, and power.

Graphics



COORD Coordinate system to use, such as polar and
cartesian. Plus, information about how to reflect, rotate,
stretch, dilate, and translate the coordinates.

GUIDE Details of guiding notation such as axes, legends,
markers, etc.

GRAPH Functions to appear in the frame. Two simple
examples are the point function and the line function.

Graphics



One student’s plot

Advance
Retreat

Kowno

Wilna Smorgoni

Molodexno

Gloubokoe

Minsk
Studienska

Polotzk

Bobr

Witebsk

Orscha

Mohilow

Smolensk

Dorogobouge

Wixma

Chjat
Mojaisk

Moscou

Tarantino

Malo−jarosewli

−30
−20
−10
    0

Longitude

Oct 18Oct 24
Nov 9

Nov 14
Nov 28

Dec 1
Dec 6Dec 7

T
em

perature

ENC

mat = matrix(data=c(1,2),nrow = 2)
layout(mat, heights = c(3,1) )

Graphics



Copying Plots

There are two basic approaches to plotting.

1 Launch a graphics device

2 Make a plot; annotate if needed

3 Close graphics device

Or

1 Make a plot on a screen device (default); annotate if needed

2 Copy the plot to another device if necessary (not an exact
process)

Graphics



Working with Graphics Devices

Print devices - jpeg(), pdf(), png()

Copy a plot from one device to another - dev.copy

Save current device - devSave = dev.cur()

Open a new device - quartz()
Plot to current device plot(x) and then reset to previous
device dev.set(devSave)

Turn off the myDev device if no longer needed
dev.off(myDev)

Graphics



Trellis - Lattice

Rectangular array of plots (panels)

Multi-panel conditioning - cross-tabs plots

Coordinate scale, aspect ratio, labels across plots

Make efficient use of display area

Default display as useful as possible (clear vision)

Abstraction: specify a plot through type of graphic and role of
variables

Parallel to base graphics:

High-level functions produce complete graphic
Low-level functions give tools to augment plot
User-modifiable parameters control details

Graphics



xyplot(Flow ~ Occ | factor(hour), rtraffic, groups=lane,

auto.key= list(columns = 3), layout = c(6,4),

xlab="Occupancy", main="LA traffic - Loop Detector")

Graphics



Formula

The formula specifies the variables involved in the plotting
Primary variables appear in the plot region
~ x for univariate
y ~ x for plot of y on x
y z x+ plots both y ~x and z~x on same region
One panel for each unique value/level of conditioning
variable(s)
Conditioning variables optional
histogram(~x) is like hist(x)
xyplot(y~x) is like plot(x,y)
Conditioning variables appear in the strips along the top of a
panel
Conditioning variable are factors or shingles (may use cut(),
or equal.count() )
High-level lattice functions are generic, all have a “formula”
method
With data parameter, do not need to specify data frame in
formula (also allows other types of input such as lists and
environments)
groups specifies a grouping variable to use in superposing
plots

Graphics



The Panel

Unique combination of levels of conditional variables results in
a packet of data

One packet = one panel

Aspect ratio can be specified, aspect="xy" gives Cleveland’s
banking rule

Layout of panels can be customized

trl = barchart(Class ~ Freq | Sex + Age,
as.data.frame(Titanic),
groups=Survived, stack=TRUE, layout = c(4,1),
auto.key = list(title="Survived", columns=2),
scales = list(x="free"), border = "transparent")

update(trl, panel= function(...) {
panel.grid(h=0, v=-1); panel.barchart(...)})

Graphics



Graphics



Lattice Functions

xyplot: this is the main function for creating scatterplots

bwplot: box-and-whiskers plots (“boxplots”)

histogram: histograms

stripplot: like a boxplot but with actual points

dotplot: plot dots on “violin strings”

splom: scatterplot matrix; like pairs in base graphics system

levelplot, contourplot: for plotting “image” data

Graphics



Lattice Behavior

Lattice functions behave differently from base graphics functions in
one critical way.

Base graphics functions plot data directly to the graphics
device

Lattice graphics functions return an object of class trellis.

The print methods for lattice functions actually do the work
of plotting the data on the graphics device.

Lattice functions return “plot objects” that can, in principle,
be stored (but it’s usually better to just save the code +
data).

On the command line, trellis objects are auto-printed so
that it appears the function is plotting the data

Graphics



Lattice Panel Functions

Lattice functions have a panel function which controls what
happens inside each panel of the entire plot.

x <- rnorm(100)
y <- x + rnorm(100, sd = 0.5)
f <- gl(2, 50, labels = c("Group 1", "Group 2"))
xyplot(y ~ x | f)

plots y vs. x conditioned on f.

Graphics



Lattice Panel Functions

xyplot(y ~ x | f,
panel = function(x, y, ...) {

panel.xyplot(x, y, ...)
panel.abline(h = median(y),

lty = 2)
})

plots y vs. x conditioned on f with horizontal (dashed) line drawn
at the median of y for each panel.

Graphics



Lattice Panel Functions

Adding a regression line

xyplot(y ~ x | f,
panel = function(x, y, ...) {

panel.xyplot(x, y, ...)
panel.lmline(x, y, col = 2)

})

fits and plots a simple linear regression line to each panel of the
plot.

Graphics



Parameters

Layout

layout = c( #cols, #rows, #pages - optional)
(0, #) means that this is a lower bound on the number of
panels per page

Scale

scales = "free"
Provide a list to control tick marks, position of labels, free x or
y scale

between adds spacing between panels

auto.key provide a list of specifications for legend

Titles can be specified via main, sub, xlab, ylab, page

Many of the parameters from base graphics carry over, e.g.
pch, type

Graphics



Panel Function

Each high-level plot has a panel function responsible for
plotting the packet

The high-level function has ... argument to accept extra
arguments, and those it does not recognize will be passed to
the panel function

panel argument in the high-level function takes a panel
function

Default panel function panel.functionName, e.g.
panel.barchart

Default panel function has a ... argument, which makes it
handy to augment the panel function by overriding it, adding
your extra stuff, and invoke the default with ....

panel = myPanel(...) { my code ;
panel.defaultFunction(...)}

Graphics



There are three sorts of functions you can use in a panel
function:

lattice panel functions, e.g. panel.grid()
Low-level plotting functions, e.g. llines()
Grid functions - the lowest level

Graphics



Grid

Page: no plot region or margins, but page/canvas

All functions are low-level, e.g. grid.newpage(),
grid.rect(), grid.curve(), grid.lines(), grid.text()

Build up a plot piecewise using these functions

Parameter: gpar() creates a theme or context, and gp
argument applies the context to output

Coordinate systems: plotting can be relative to different
coordinate systems: mm, npc, points, char, lines, ...

Graphics



Viewports

Drawing is relative to the current viewport

Viewport is a whole ”page”

grid.layout() splits up the viewport as with other layout
functions, except viewports can be defined for particular rows
and columns in the layout

Graphical parameter contexts can be set for a viewport using
the vp argument

New viewports can be created and “pushed” to be the current
viewport

Navigate viewpoints with popViewport(), upViewport(),
downViewport()

grid.ls() provides a list of all viewports and
current.viewport() gives current one

Graphics



pushViewport(viewport(width=0.8, height=0.5,
angle=10, name="vp1"))

grid.rect()
grid.text("top-left corner", x=unit(1,"mm"),

y=unit(1,"npc") - unit(1,"mm"), just = c("left", "top"))
pushViewport(viewport(width=0.8, height=0.5,

angle = 10, name ="vp2"))
grid.rect()
grid.text("top-left corner", x=unit(1,"mm"),

y=unit(1,"npc") - unit(1,"mm"), just = c("left", "top"))

Graphics



Graphics



#Set up viewports in a stack
pvp = plotViewport(c(2,4,1,1), name="plotvp")
dvp = dataViewport(rtraffic$Occ, rtraffic$Flow, name="datavp")
pushViewport(vpStack(pvp, dvp))
upViewport(0)
# Draw rectangle in plotvp
grid.rect(vp= "plotvp")
# Draw points in datavp
grid.points(rtraffic$Occ, rtraffic$Flow, size = unit(2, "mm"),

gp = gpar(col = c("red","blue","green")[rtraffic$lane], lwd = 2),
vp=vpPath("plotvp","datavp"))

# Add the other pieces, text, axes, tickmarks, ...
grid.text("Flow", x = unit(-3, "lines"), rot=90, vp ="plotvp")
grid.text("Occupancy", y = unit(-1, "lines"), vp ="plotvp")

Graphics



Graphics


