
The shell

The shell: Why we (I?) teach it

• Many of the students in my classes know the computer as a Desktop
and a handful of applications (a browser, Word, Excel, maybe R); to
introduce the shell means having a discussion about the structure
of the computer, about operating systems, about filesystems, about
history

• The shell offers programmatic access to a computer’s constituent
parts, allow students to “do” data analysis on directories, on
processes, on their network (and I realize that the “data analysis”
metaphor is getting stretched a bit thin)

• Given that there are so many flavors of shell, it is also the first time we
can talk about choosing tools (that the choice is theirs to make!),
about evaluating which shell is best for them, and about the shifting
terrain of software development (maybe a point best left for the
graduate students)

The shell: Why we teach it

• As a practical matter, shell tools are an indispensable part of my own
practice, for data “cleaning,” for preliminary data processing, for
exploratory analysis; by design, they let you deal with data on a scale
that can be difficult from within R

• The shell also becomes important as they start to make use of shared
course resources (data, software, hardware)

The shell: How I teach it

• First, all the students in the class need access to a shell; as we
mentioned yesterday, this means having to download something like
Cygwin for students with Windows machines (next page)

• In my case, lectures can take place in a lab with uniform hardware and
software (iMacs); when I’m not in the lab, easily 50% of the students
bring their laptops to class and (after preparing them in discussion or
lab session), we can have a “find a buddy” interactive session

• The tools are taught in the context of some data task (although by
this point in our workshop the first couple of data sets that I use have
been discussed numerous times and the sense of “discovery” is gone)

The shell: What I teach

• The next few slides are samples of what
I teach; I hadn’t intended to teach the
material here, but instead review the
kinds of things I talk about

• In a couple places, we’ll have an
opportunity to look at some data and i’ll
point you to that; we’ll slow down for
those less standard parts of what I
cover

• They are a work in progress and each
year I encounter things that would make
them smoother...

• Oh and this GAP icon will indicate
where my lecture notes have been
diced up to focus on just the shell...

For the rest of the session

• We will look at the Unix operating system, the philosophy underlying
its design and some basic tools

• We will use as our case study the last week of traffic across the
department’s website www.stat.ucla.edu

• You will have a chance to kick the tires on these tools and address
some simple web site usage statistics

Operating systems

• Most devices that contain a computer of some
kind will have an OS; they tend to emerge when
the appliance will have to deal with new
applications, complex user-input and possibly
changing requirements on its function

• Your Tivo, Treo and (soon)
Peugeot will all have operating
systems

Operating systems

• An operating system is a piece of software
(code) that organizes and controls hardware and
other software so your computer behaves in a
flexible but predictable way

• For home computers, Windows, MacOS and
Linux are among the most commonly used
operating systems

Some history

• In 1964, Bell Labs partnered with MIT and GE to create Multics (for Multiplexed
Information and Computing Service)

“Such systems must run continuously and reliably 7 days a week, 24 hours a
day in a way similar to telephone or power systems, and must be capable of
meeting wide service demands: from multiple man-machine interaction to the
sequential processing of absentee-user jobs; from the use of the system with
dedicated languages and subsystems to the programming of the system
itself”

Some history

• Bell Labs pulled out of the Multics project in 1969, a group of
researchers at Bell Labs started work on Unics (Uniplexed
information and computing system) because initially it could
only support one user; as the system matured, it was
renamed Unix, which isn’t an acronym for anything

• Richie simply says that Unix is a “somewhat
treacherous pun on Multics”

The Unix filesystem

• In Multics, we find the first notion of a hierarchical file system; files
were arranged in a tree structure allowing users to have control of their
own areas

• Unix began (more or less) as a file system and then an interactive
shell emerged to let you examine its contents and perform basic
operations

The kernel and the shell

• The Unix kernel is the part of the operating system that carries out
basic functions like accessing files, handling communication, and other
functions will discuss shortly

• The Unix shell is a user interface to the kernel (keep in mind that Unix
was designed by computer scientists for computer scientists and the
interface is not optimized for novices)

Unix shells

• A shell is a type of program called an interpreter; think of it as a text-
based interface to the kernel

• It operates in a simple loop: It accepts a command, interprets it,
executes the command and waits for another

• The shell displays a prompt to tell you that it is ready to accept a
command

* A boring slide, but full of potential!

Unix shells

• The shell is itself a program that the Unix operating system runs for
you (a program is referred to as a process when it is running)

• The kernel manages many processes at once, many of which are the
result of user commands (others provide services that keep the
computer running)

• Some commands are built into the shell, others have been added by
users

• Either way, the shell waits until the command is executed

The result of typing in the command
top; a printout of all the processes
running on your computer

Process ID

Name of the command

How hard the computer
is thinking about it

How much memory is
being used

Operating systems

• Processor management

• Schedules jobs (formally referred to as processes) to be executed
by the computer

• Memory and storage management

• Allocate space required for each running process in main memory
(RAM) or in some other temporary location if space is tight; and
supervise the storage of data onto disk

Operating systems

• Device management

• A program called a driver translates data (files from the filesystem)
into signals that devices like printers can understand; an operating
system manages the communication between devices and the
CPU, for example

• Application interface

• An API (application programming interface) let programmers use
functions of the computer and the operating system without having
to know how something is done

• User interface

• Finally, the operating system turns and looks at you; the UI is a
program that defines how users interact with the computer -- some
are graphical (Windows is a GUI) and some are text-based (your
Unix shell)

Unix shell(s)

• There are, in fact, many different kinds
of Unix shells

• The table on the right lists a few of the
most popular; your default shell is tcsh

Bourne shell /bin/sh
The oldest and most standardized shell. Widely used for
system startup files (scripts run during system startup).
Installed in Mac OS X.

Bash (Bourne Again SHell) /bin/bash
Bash is an improved version of sh. Combines features from
csh, sh, and ksh. Very widely used, especially on Linux
systems. Installed in Mac OS X.
http://www.gnu.org/manual/bash/

C shell /bin/csh
Provides scripting features that have a syntax similar to that
of the C programming language (originally written by Bill
Joy). Installed in Mac OS X.

Korn shell /bin/ksh
Developed at AT&T by David Korn in the early 1980s. Ksh is
widely used for programming. It is now open-source
software, although you must agree to AT&T's license to
install it. http://www.kornshell.com

TC Shell /bin/tcsh
An improved version of csh. The t in tcsh comes from the
TENEX and TOPS-20 operating systems, which provided a
command-completion feature that the creator (Ken Greer) of
tcsh included in his new shell. Wilfredo Sanchez, formerly
lead engineer on Mac OS X for Apple, worked on tcsh in the
early 1990s at the Massachusetts Institute of Technology.

Z shell /bin/zsh
Created in 1990, zsh combines features from tcsh, bash,
and ksh, and adds many of its own. Installed in Mac OS X.
http://zsh.sourceforge.net

Th
e

or
ig

in
al

 U
N

IX
 s

ys
te

m
 s

he
ll

w
as

 a
 s

im
pl

e
pr

og
ra

m
 w

rit
te

n
by

 K
en

 T
ho

m
ps

on
 a

t B
el

l L
ab

or
at

or
ie

s,
 a

s
th

e
in

te
rfa

ce
 to

th

e
ne

w
 U

N
IX

 o
pe

ra
tin

g
sy

st
em

. I
t a

llo
w

ed
 th

e
us

er
 to

 in
vo

ke

si
ng

le
 c

om
m

an
ds

, o
r t

o
co

nn
ec

t c
om

m
an

ds
 to

ge
th

er
 b

y
ha

vi
ng

 th
e

ou
tp

ut
 o

f o
ne

 c
om

m
an

d
pa

ss
 th

ro
ug

h
a

sp
ec

ia
l

fil
e

ca
lle

d
a

pi
pe

 a
nd

 b
ec

om
e

in
pu

t f
or

 th
e

ne
xt

 c
om

m
an

d.

Th
e

Th
om

ps
on

 s
he

ll
w

as
 d

es
ig

ne
d

as
 a

 c
om

m
an

d
in

te
rp

re
te

r,
no

t a
 p

ro
gr

am
m

in
g

la
ng

ua
ge

. W
hi

le
 o

ne
 c

ou
ld

pu

t a
 s

eq
ue

nc
e

of
 c

om
m

an
ds

 in
 a

 fi
le

 a
nd

 ru
n

th
em

, i
.e

.,
cr

ea
te

 a
 s

he
ll

sc
rip

t,
th

er
e

w
as

 n
o

su
pp

or
t f

or
 tr

ad
iti

on
al

la

ng
ua

ge
 fa

ci
lit

ie
s

su
ch

 a
s

flo
w

 c
on

tro
l,

va
ria

bl
es

, a
nd

fu

nc
tio

ns
. W

he
n

th
e

ne
ed

 fo
r s

om
e

flo
w

 c
on

tro
l s

ur
fa

ce
d,

 th
e

co
m

m
an

ds
 /b

in
/if

 a
nd

 /b
in

/g
ot

o
w

er
e

cr
ea

te
d

as
 s

ep
ar

at
e

co
m

m
an

ds
. T

he
 /b

in
/if

 c
om

m
an

d
ev

al
ua

te
d

its
 fi

rs
t a

rg
um

en
t

an
d,

 if
 tr

ue
, e

xe
cu

te
d

th
e

re
m

ai
nd

er
 o

f t
he

 li
ne

. T
he

 /b
in

/g
ot

o
co

m
m

an
d

re
ad

 th
e

sc
rip

t f
ro

m
 it

s
st

an
da

rd
 in

pu
t,

lo
ok

ed
 fo

r
th

e
gi

ve
n

la
be

l,
an

d
se

t t
he

 s
ee

k
po

si
tio

n
at

 th
at

 lo
ca

tio
n.

W

he
n

th
e

sh
el

l r
et

ur
ne

d
fro

m
 in

vo
ki

ng
 /b

in
/g

ot
o,

 it
 re

ad
 th

e
ne

xt
 li

ne
 fr

om
 s

ta
nd

ar
d

in
pu

t f
ro

m
 th

e
lo

ca
tio

n
se

t b
y

/b
in

/
go

to
.

U
nl

ik
e

m
os

t e
ar

lie
r s

ys
te

m
s,

 th
e

Th
om

ps
on

 s
he

ll
co

m
m

an
d

la
ng

ua
ge

 w
as

 a
 u

se
r-

le
ve

l p
ro

gr
am

 th
at

 d
id

 n
ot

 h
av

e
an

y
sp

ec
ia

l p
riv

ile
ge

s.
 T

hi
s

m
ea

nt
 th

at
 n

ew
 s

he
lls

 c
ou

ld
 b

e
cr

ea
te

d
by

 a
ny

 u
se

r,
w

hi
ch

 le
d

to
 a

 s
uc

ce
ss

io
n

of
 im

pr
ov

ed

sh
el

ls
. I

n
th

e
m

id
-1

97
0s

, J
oh

n
M

as
he

y
at

 B
el

l L
ab

or
at

or
ie

s
ex

te
nd

ed
 th

e
Th

om
ps

on
 s

he
ll

by
 a

dd
in

g
co

m
m

an
ds

 s
o

th
at

 it

co
ul

d
be

 u
se

d
as

 a
 p

rim
iti

ve
 p

ro
gr

am
m

in
g

la
ng

ua
ge

. H
e

m
ad

e
co

m
m

an
ds

 s
uc

h
as

 if
 a

nd
 g

ot
o

bu
ilt

-in
s

fo
r i

m
pr

ov
ed

pe

rfo
rm

an
ce

, a
nd

 a
ls

o
ad

de
d

sh
el

l v
ar

ia
bl

es
.

A
t t

he
 s

am
e

tim
e,

 S
te

ve
 B

ou
rn

e
at

 B
el

l L
ab

or
at

or
ie

s
w

ro
te

 a

ve
rs

io
n

of
 th

e
sh

el
l w

hi
ch

 in
cl

ud
ed

 p
ro

gr
am

m
in

g
la

ng
ua

ge

te
ch

ni
qu

es
. A

 ri
ch

 s
et

 o
f s

tru
ct

ur
ed

 fl
ow

 c
on

tro
l p

rim
iti

ve
s

w
as

 p
ar

t o
f t

he
 la

ng
ua

ge
; t

he
 s

he
ll

pr
oc

es
se

d
co

m
m

an
ds

 b
y

bu
ild

in
g

a
pa

rs
e

tre
e

an
d

th
en

 e
va

lu
at

in
g

th
e

tre
e.

 B
ec

au
se

of

 th
e

ric
h

flo
w

 c
on

tro
l p

rim
iti

ve
s,

 th
er

e
w

as
 n

o
ne

ed
 fo

r a

go
to

 c
om

m
an

d.
 B

ou
rn

e
in

tro
du

ce
d

th
e

"h
er

e-
do

cu
m

en
t"

w
he

re
by

 th
e

co
nt

en
ts

 o
f a

 fi
le

 a
re

 in
se

rte
d

di
re

ct
ly

 in
to

 th
e

sc
rip

t.
O

ne
 o

f t
he

 o
fte

n
ov

er
lo

ok
ed

 c
on

tri
bu

tio
ns

 o
f t

he

B
ou

rn
e

sh
el

l i
s

th
at

 it
 h

el
pe

d
to

 e
lim

in
at

e
th

e
di

st
in

ct
io

n
be

tw
ee

n
pr

og
ra

m
s

an
d

sh
el

l s
cr

ip
ts

. E
ar

lie
r v

er
si

on
s

of
 th

e
sh

el
l r

ea
d

in
pu

t f
ro

m
 s

ta
nd

ar
d

in
pu

t,
m

ak
in

g
it

im
po

ss
ib

le
 to

us

e
sh

el
l s

cr
ip

ts
 a

s
pa

rt
of

 a
 p

ip
el

in
e.

B
y

th
e

la
te

 1
97

0s
, e

ac
h

of
 th

es
e

sh
el

ls
 h

ad
 s

iz
ab

le

fo
llo

w
in

gs
 w

ith
in

 B
el

l L
ab

or
at

or
ie

s.
 T

he
 tw

o
sh

el
ls

 w
er

e
no

t
co

m
pa

tib
le

, l
ea

di
ng

 to
 a

 d
iv

is
io

n
as

 to
 w

hi
ch

 s
ho

ul
d

be
co

m
e

th
e

st
an

da
rd

 s
he

ll.
 S

te
ve

 B
ou

rn
e

an
d

Jo
hn

 M
as

he
y

ar
gu

ed

th
ei

r r
es

pe
ct

iv
e

ca
se

s
at

 th
re

e
su

cc
es

si
ve

 U
N

IX
 u

se
r g

ro
up

m

ee
tin

gs
. B

et
w

ee
n

m
ee

tin
gs

, e
ac

h
en

ha
nc

ed
 th

ei
r s

he
ll

to

ha
ve

 th
e

fu
nc

tio
na

lit
y

av
ai

la
bl

e
in

 th
e

ot
he

r.
A

co
m

m
itt

ee
 w

as

se
t u

p
to

 c
ho

os
e

a
st

an
da

rd
 s

he
ll.

 It
 c

ho
se

 th
e

B
ou

rn
e

sh
el

l
as

 th
e

st
an

da
rd

.

A
t t

he
 ti

m
e

of
 th

es
e

so
-c

al
le

d
``

sh
el

l w
ar

s'
',

I w
or

ke
d

on
 a

pr

oj
ec

t a
t B

el
l L

ab
or

at
or

ie
s

th
at

 n
ee

de
d

a
fo

rm
 e

nt
ry

 s
ys

te
m

.
W

e
de

ci
de

d
to

 b
ui

ld
 a

 fo
rm

 in
te

rp
re

te
r,

ra
th

er
 th

an
 w

rit
in

g
a

se
pa

ra
te

 p
ro

gr
am

 fo
r e

ac
h

fo
rm

. I
ns

te
ad

 o
f i

nv
en

tin
g

a
ne

w

sc
rip

t l
an

gu
ag

e,
 w

e
bu

ilt
 a

 fo
rm

 e
nt

ry
 s

ys
te

m
 b

y
m

od
ify

in
g

th
e

B
ou

rn
e

sh
el

l,
ad

di
ng

 b
ui

lt-
in

 c
om

m
an

ds
 a

s
ne

ce
ss

ar
y.

Th

e
ap

pl
ic

at
io

n
w

as
 c

od
ed

 a
s

sh
el

l s
cr

ip
ts

. W
e

ad
de

d
a

bu
ilt

-
in

 to
 re

ad
 fo

rm
 te

m
pl

at
e

de
sc

rip
tio

n
fil

es
 a

nd
 c

re
at

e
sh

el
l

va
ria

bl
es

, a
nd

 a
 b

ui
lt-

in
 to

 o
ut

pu
t s

he
ll

va
ria

bl
es

 th
ro

ug
h

a
fo

rm
 m

as
k.

 W
e

al
so

 a
dd

ed
 a

 b
ui

lt-
in

 n
am

ed
 le

t t
o

do

ar
ith

m
et

ic
 u

si
ng

 a
 s

m
al

l s
ub

se
t o

f t
he

 C
 la

ng
ua

ge
 e

xp
re

ss
io

n
sy

nt
ax

. A
n

ar
ra

y
fa

ci
lit

y
w

as
 a

dd
ed

 to
 h

an
dl

e
co

lu
m

ns
 o

f d
at

a
on

 th
e

sc
re

en
. S

he
ll

fu
nc

tio
ns

 w
er

e
ad

de
d

to
 m

ak
e

it
ea

si
er

to

 w
rit

e
m

od
ul

ar
 c

od
e,

 s
in

ce
 o

ur
 s

he
ll

sc
rip

ts
 te

nd
ed

 to
 b

e
la

rg
er

 th
an

 m
os

t s
he

ll
sc

rip
ts

 a
t t

ha
t t

im
e.

 S
in

ce
 th

e
B

ou
rn

e
sh

el
l w

as
 w

rit
te

n
in

 a
n

A
lg

ol
-li

ke
 v

ar
ia

nt
 o

f C
, w

e
co

nv
er

te
d

ou
r v

er
si

on
 o

f i
t t

o
a

m
or

e
st

an
da

rd
 K

&
R

 v
er

si
on

 o
f C

. W
e

re
m

ov
ed

 th
e

re
st

ric
tio

n
th

at
 d

is
al

lo
w

ed
 I/

O
 re

di
re

ct
io

n
of

bu

ilt
-in

 c
om

m
an

ds
, a

nd
 a

dd
ed

 e
ch

o,
 p

w
d,

 a
nd

 te
st

 b
ui

lt-
in

co

m
m

an
ds

 fo
r i

m
pr

ov
ed

 p
er

fo
rm

an
ce

. F
in

al
ly,

 w
e

ad
de

d
a

ca
pa

bi
lit

y
to

 ru
n

a
co

m
m

an
d

as
 a

 c
op

ro
ce

ss
 s

o
th

at
 th

e
co

m
m

an
d

th
at

 p
ro

ce
ss

ed
 th

e
us

er
-e

nt
er

ed
 d

at
a

an
d

ac
ce

ss
ed

 th
e

da
ta

ba
se

 c
ou

ld
 b

e
w

rit
te

n
as

 a
 s

ep
ar

at
e

pr
oc

es
s.

A
t t

he
 s

am
e

tim
e,

 a
t t

he
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 a
t B

er
ke

le
y,

B

ill
 J

oy
 p

ut
 to

ge
th

er
 a

 n
ew

 s
he

ll
ca

lle
d

th
e

C
 s

he
ll.

 L
ik

e
th

e
M

as
he

y
sh

el
l,

it
w

as
 im

pl
em

en
te

d
as

 a
 c

om
m

an
d

in
te

rp
re

te
r,

no
t a

 p
ro

gr
am

m
in

g
la

ng
ua

ge
. W

hi
le

 th
e

C
 s

he
ll

co
nt

ai
ne

d
flo

w
 c

on
tro

l c
on

st
ru

ct
s,

 s
he

ll
va

ria
bl

es
, a

nd
 a

n
ar

ith
m

et
ic

fa

ci
lit

y,
 it

s
pr

im
ar

y
co

nt
rib

ut
io

n
w

as
 a

 b
et

te
r c

om
m

an
d

in
te

rfa
ce

. I
t i

nt
ro

du
ce

d
th

e
id

ea
 o

f a
 h

is
to

ry
 li

st
 a

nd
 a

n
ed

iti
ng

fa

ci
lit

y,
 s

o
th

at
 u

se
rs

 d
id

n'
t h

av
e

to
 re

ty
pe

 c
om

m
an

ds
 th

at

th
ey

 h
ad

 e
nt

er
ed

 in
co

rr
ec

tly
.

I c
re

at
ed

 th
e

fir
st

 v
er

si
on

 o
f k

sh
 s

oo
n

af
te

r I
 m

ov
ed

 to
 a

re

se
ar

ch
 p

os
iti

on
 a

t B
el

l L
ab

or
at

or
ie

s.
 S

ta
rti

ng
 w

ith
 th

e
fo

rm

sc
rip

tin
g

la
ng

ua
ge

, I
 re

m
ov

ed
 s

om
e

of
 th

e
fo

rm
-s

pe
ci

fic

co
de

, a
nd

 a
dd

ed
 u

se
fu

l f
ea

tu
re

s
fro

m
 th

e
C

 s
he

ll
su

ch
 a

s
hi

st
or

y,
 a

lia
se

s,
 a

nd
 jo

b
co

nt
ro

l.

In
 1

98
2,

 th
e

U
N

IX
 S

ys
te

m
 V

 s
he

ll
w

as
 c

on
ve

rte
d

to
 K

&
R

 C
,

ec
ho

 a
nd

 p
w

d
w

er
e

m
ad

e
bu

ilt
-in

 c
om

m
an

ds
, a

nd
 th

e
ab

ili
ty

to

 d
ef

in
e

an
d

us
e

sh
el

l f
un

ct
io

ns
 w

as
 a

dd
ed

. U
nf

or
tu

na
te

ly,

th
e

S
ys

te
m

 V
 s

yn
ta

x
fo

r f
un

ct
io

n
de

fin
iti

on
s

w
as

 d
iff

er
en

t
fro

m
 th

at
 o

f k
sh

. I
n

or
de

r t
o

m
ai

nt
ai

n
co

m
pa

tib
ili

ty
 w

ith
 th

e
S

ys
te

m
 V

 s
he

ll
an

d
pr

es
er

ve
 b

ac
kw

ar
d

co
m

pa
tib

ili
ty

, I

m
od

ifi
ed

 k
sh

 to
 a

cc
ep

t e
ith

er
 s

yn
ta

x.

Th
e

po
pu

la
r i

nl
in

e
ed

iti
ng

 fe
at

ur
es

 (v
i a

nd
 e

m
ac

s
m

od
e)

 o
f

ks
h

w
er

e
cr

ea
te

d
by

 s
of

tw
ar

e
de

ve
lo

pe
rs

 a
t B

el
l

La
bo

ra
to

rie
s;

 th
e

vi
 li

ne
 e

di
tin

g
m

od
e

by
 P

at
 S

ul
liv

an
, a

nd

th
e

em
ac

s
lin

e
ed

iti
ng

 m
od

e
by

 M
ik

e
Ve

ac
h.

 E
ac

h
ha

d
in

de
pe

nd
en

tly
 m

od
ifi

ed
 th

e
B

ou
rn

e
sh

el
l t

o
ad

d
th

es
e

fe
at

ur
es

, a
nd

 b
ot

h
w

er
e

in
 o

rg
an

iz
at

io
ns

 th
at

 w
an

te
d

to
 u

se

ks
h

on
ly

 if
 k

sh
 h

ad
 th

ei
r r

es
pe

ct
iv

e
in

lin
e

ed
ito

r.
O

rig
in

al
ly

 th
e

id
ea

 o
f a

dd
in

g
co

m
m

an
d

lin
e

ed
iti

ng
 to

 k
sh

 w
as

 re
je

ct
ed

 in

th
e

ho
pe

 th
at

 li
ne

 e
di

tin
g

w
ou

ld
 m

ov
e

in
to

 th
e

te
rm

in
al

 d
riv

er
.

H
ow

ev
er

, w
he

n
it

be
ca

m
e

cl
ea

r t
ha

t t
hi

s
w

as
 n

ot
 li

ke
ly

 to

ha
pp

en
 s

oo
n,

 b
ot

h
lin

e
ed

iti
ng

 m
od

es
 w

er
e

in
te

gr
at

ed
 in

to

ks
h

an
d

m
ad

e
op

tio
na

l s
o

th
at

 th
ey

 c
ou

ld
 b

e
di

sa
bl

ed
 o

n
sy

st
em

s
th

at
 p

ro
vi

de
d

ed
iti

ng
 a

s
pa

rt
of

 th
e

te
rm

in
al

in

te
rfa

ce
.

A
s

us
e

of
 k

sh
 g

re
w

, t
he

 n
ee

d
fo

r m
or

e
fu

nc
tio

na
lit

y
be

ca
m

e
ap

pa
re

nt
. L

ik
e

th
e

or
ig

in
al

 s
he

ll,
 k

sh
 w

as
 fi

rs
t u

se
d

pr
im

ar
ily

fo

r s
et

tin
g

up
 p

ro
ce

ss
es

 a
nd

 h
an

dl
in

g
I/O

 re
di

re
ct

io
n.

 N
ew

er

us
es

 re
qu

ire
d

m
or

e
st

rin
g

ha
nd

lin
g

ca
pa

bi
lit

ie
s

to
 re

du
ce

 th
e

nu
m

be
r o

f p
ro

ce
ss

 c
re

at
io

ns
. T

he
 1

98
8

ve
rs

io
n

of
 k

sh
, t

he

on
e

m
os

t w
id

el
y

di
st

rib
ut

ed
 a

t t
he

 ti
m

e
th

is
 is

 w
rit

te
n,

ex

te
nd

ed
 th

e
pa

tte
rn

 m
at

ch
in

g
ca

pa
bi

lit
y

of
 k

sh
 to

 b
e

co
m

pa
ra

bl
e

to
 th

at
 o

f t
he

 re
gu

la
r e

xp
re

ss
io

n
m

at
ch

in
g

fo
un

d
in

 s
ed

 a
nd

 g
re

p.

In
 s

pi
te

 o
f i

ts
 w

id
e

av
ai

la
bi

lit
y,

 k
sh

 s
ou

rc
e

is
 n

ot
 in

 th
e

pu
bl

ic

do
m

ai
n.

 T
hi

s
ha

s
le

d
to

 th
e

cr
ea

tio
n

of
 b

as
h,

 th
e

``
B

ou
rn

e
ag

ai
n

sh
el

l'',
 b

y
th

e
Fr

ee
 S

of
tw

ar
e

Fo
un

da
tio

n;
 a

nd
 p

dk
sh

, a

pu
bl

ic
 d

om
ai

n
ve

rs
io

n
of

 k
sh

. U
nf

or
tu

na
te

ly,
 n

ei
th

er
 is

co

m
pa

tib
le

 w
ith

 k
sh

.

In
 1

99
2,

 th
e

IE
E

E
 P

O
S

IX
 1

00
3.

2
an

d
IS

O
/IE

C
 9

94
5-

2
sh

el
l

an
d

ut
ili

tie
s

st
an

da
rd

s
w

er
e

ra
tif

ie
d.

 T
he

se
 s

ta
nd

ar
ds

de

sc
rib

e
a

sh
el

l l
an

gu
ag

e
th

at
 w

as
 b

as
ed

 o
n

th
e

U
N

IX

S
ys

te
m

 V
 s

he
ll

an
d

th
e

19
88

 v
er

si
on

 o
f k

sh
. T

he
 1

99
3

ve
rs

io
n

of
 k

sh
 is

 a
 v

er
si

on
 o

f k
sh

 w
hi

ch
 is

 a
 s

up
er

se
t o

f t
he

P

O
S

IX
 a

nd
 IS

O
/IE

C
 s

he
ll

st
an

da
rd

s.
 W

ith
 fe

w
 e

xc
ep

tio
ns

, i
t

is
 b

ac
kw

ar
d

co
m

pa
tib

le
 w

ith
 th

e
19

88
 v

er
si

on
 o

f k
sh

.

Th
e

aw
k

co
m

m
an

d
w

as
 d

ev
el

op
ed

 in
 th

e
la

te
 1

97
0s

 b
y

A
l

A
ho

, B
ria

n
K

er
ni

gh
an

, a
nd

 P
et

er
 W

ei
nb

er
ge

r o
f B

el
l

La
bo

ra
to

rie
s

as
 a

 re
po

rt
ge

ne
ra

tio
n

la
ng

ua
ge

. A
 s

ec
on

d-
ge

ne
ra

tio
n

aw
k

de
ve

lo
pe

d
in

 th
e

ea
rly

 1
98

0s
 w

as
 a

 m
or

e
ge

ne
ra

l-p
ur

po
se

 s
cr

ip
tin

g
la

ng
ua

ge
, b

ut
 la

ck
ed

 s
om

e
sh

el
l

fe
at

ur
es

. I
t b

ec
am

e
ve

ry
 c

om
m

on
 to

 c
om

bi
ne

 th
e

sh
el

l a
nd

aw

k
to

 w
rit

e
sc

rip
t a

pp
lic

at
io

ns
. F

or
 m

an
y

ap
pl

ic
at

io
ns

, t
hi

s
ha

d
th

e
di

sa
dv

an
ta

ge
 o

f b
ei

ng
 s

lo
w

 b
ec

au
se

 o
f t

he
 ti

m
e

co
ns

um
ed

 in
 e

ac
h

in
vo

ca
tio

n
of

 a
w

k.
 T

he
 p

er
l l

an
gu

ag
e,

de

ve
lo

pe
d

by
 L

ar
ry

 W
al

l i
n

th
e

m
id

-1
98

0s
, i

s
an

 a
tte

m
pt

 to

co
m

bi
ne

 th
e

ca
pa

bi
lit

ie
s

of
 th

e
sh

el
l a

nd
 a

w
k

in
to

 a
 s

in
gl

e
la

ng
ua

ge
. B

ec
au

se
 p

er
l i

s
fre

el
y

av
ai

la
bl

e
an

d
pe

rfo
rm

s
be

tte
r t

ha
n

co
m

bi
ne

d
sh

el
l a

nd
 a

w
k,

 p
er

l h
as

 a
 la

rg
e

us
er

co

m
m

un
ity

, p
rim

ar
ily

 a
t u

ni
ve

rs
iti

es
.

From "ksh - An Extensible High Level Language" by David G. Korn

Why the choices?

• A shell program was originally meant to take commands,
interpret them and then execute some operation

• Inevitably, one wants to collect a number of these
operations into programs that execute compound tasks;
at the same time you want to make interaction on the
command line as easy as possible (a history mechanism,
editing capabilities and so on)

• The original Bourne shell is ideal for programming; the C-
shell and its variants are good for interactive use; the
Korn shell is a combination of both

Steve Bourne, creator of sh, in 2005

And while we are at it...

• Unix itself comes in different flavors; the 1980s saw an incredible
proliferation of Unix versions, somewhere around 100 (System V, AIX,
Berkeley BSD, SunOS, Linux, ...)

• Vendors provided (diverging) version of Unix, optimized for their own
computer architectures and supporting different features

• Despite the diversity, it was still easier to “port” applications between
versions of Unix than it was between different proprietary OS

• In the 90s, some consolidation took place; today Linux dominates the
low-end market, while Solaris, AIX and HP-UX are leaders in the mid-
to-high end

A few common commands

First, commands to explore your file system; walk through directories and
list files

• pwd, ls, cd

• mkdir, rmdir

• cp, mv, rm

Another view of the
filesystem; here,
your Mac will display
directories as folders
and you navigate by
clicking rather than
typing commands

An example

• [fad-gadget ~/stat202] ls -l

total 5197144
• drwxr-xr-x 11 cocteau staff 374 4 Oct 10:10 .

drwx------ 315 cocteau staff 10710 4 Oct 08:59 ..
-rw-r--r-- 1 cocteau staff 2660935974 4 Oct 08:46 access__2005...
drwxr-xr-x 33 cocteau staff 1122 2 Oct 15:15 lec6.key
drwxr-xr-x 11 cocteau staff 374 2 Oct 15:49 lecture1
drwxr-xr-x 86 cocteau staff 2924 2 Oct 15:57 lecture1.key
drwxr-xr-x 4 cocteau staff 136 4 Oct 09:41 lecture2
drwxr-xr-x 32 cocteau staff 1088 4 Oct 10:10 lecture2.key
drwxr-xr-x 35 cocteau staff 1190 4 Oct 08:44 lecture3.key
drwxr-xr-x 152 cocteau staff 5168 2 Oct 15:08 mtd.key

Your user name

The group you belong to
that owns the file

The file’s size
in bytes

The file’s
creation date

The file’s name

Shorthand for your present
working directory (where
you’re at)

Shorthand for the directory
one level above

Kinds of files

• What you’ll notice right away is that there are different types of files
having different permissions

• Unix filesystem conventions places (shared, commonly used)
executable files in places like /usr/bin or /usr/local/bin

• Different files are opened by different kinds of programs; in OSX, there
is a beautiful command called open that decides which program to use

Kinds of files

• Filenames which contain special characters like * and ~ are candidates
for filename substitution

• ~ refers to your home directory and * is a wildcard for any number of
characters

• Other special characters like {, [and ? can also be expanded, but we’ll
get to them when we learn a bit more about regular expressions

Unix shells

• There are many flavors of Unix Shells; that is, there are many kinds of
programs that operate as shells

sh, csh, tcsh, bash, ksh

• They are all programs and can be found on the file system

which sh

An example: HTTP access logs

www.stat.ucla.edu

• The department runs an Apache Web server running on
taia.stat.ucla.edu

• Each request, each click by a user out on the Internet browsing our
site, is logged

• There are standards for these files, but in general, they can be a bit
hairy to “parse”

Data

• The students (if I’m in the lab) will have a data set
(access_log.txt) pre-loaded for them; otherwise I point them
to the location of the data and we (inevitably) have to talk about
downloading, etc.

• http://www.stat.ucla.edu/~cocteau/stat202a/data

•

HTTP access logs

A bit of digging...

Commands

• pwd, ls, cd

• more/less, tail, wc

• cut, sort, uniq

% head access_log.txt

134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/daught.gif HTTP/1.0" 200 1898 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"
134.226.32.57 - - [20/Sep/2007:07:54:29 -0700] "GET /~sczhu/icons/bio.gif HTTP/1.0" 200 1681 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"
134.226.32.57 - - [20/Sep/2007:07:54:30 -0700] "GET /~sczhu/Zhu_LA_sm.gif HTTP/1.0" 200 39313 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"
134.226.32.57 - - [20/Sep/2007:07:54:30 -0700] "GET /favicon.ico HTTP/1.0" 200 318 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"
74.6.28.138 - - [20/Sep/2007:07:54:50 -0700] "GET /~nchristo/statistics100B/syllabus100b.pdf HTTP/1.0" 200 47206 "-" "Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"
164.67.132.219 - - [20/Sep/2007:07:54:55 -0700] "GET /robots.txt HTTP/1.0" 200 559 "-" "gsa-crawler%20%28gsa1%2C%20contact%3A%20jhuang%40ais.ucla.edu%29 (Enterprise; S5-J4JEBZS9PUJJA; jhuang@ais.ucla.edu)"
164.67.132.219 - - [20/Sep/2007:07:54:55 -0700] "GET /rss/feed.php?unit=uclastat HTTP/1.0" 200 1739 "-" "gsa-crawler%20%28gsa1%2C%20contact%3A%20jhuang%40ais.ucla.edu%29 (Enterprise; S5-J4JEBZS9PUJJA; jhuang@ais.ucla.edu)"
134.226.32.57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/talks.html HTTP/1.0" 200 9489 "http://www.stat.ucla.edu/~sczhu/" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"
134.226.32.57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/icons/back2.gif HTTP/1.0" 200 17061 "http://www.stat.ucla.edu/%7Esczhu/talks.html" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"
134.226.32.57 - - [20/Sep/2007:07:55:03 -0700] "GET /%7Esczhu/icons/bio.gif HTTP/1.0" 200 1681 "http://www.stat.ucla.edu/%7Esczhu/talks.html" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

% wc access_log.txt

200000 3890201 46321543 access.txt

% tail access_log.txt

76.169.68.146 - - [26/Sep/2007:19:31:57 -0700] "GET /graphics/rss20.gif HTTP/1.1" 200 219 "http://www.stat.ucla.edu/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
76.168.75.194 - - [26/Sep/2007:19:31:58 -0700] "GET /favicon.ico HTTP/1.1" 304 - "-" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20070731 Ubuntu/dapper-security Firefox/1.5.0.12"
217.212.224.159 - - [26/Sep/2007:19:31:58 -0700] "GET /~dinov/courses_students.dir/PIC20_Summer00.dir/docs/appenda/?M=D HTTP/1.0" 200 814 "-" "psbot/0.1 (+http://www.picsearch.com/bot.html)"
68.180.251.16 - - [26/Sep/2007:19:32:12 -0700] "GET /~dinov/courses_students.dir/Applets.dir/Normal_T_Chi2_F_Tables.htm HTTP/1.0" 200 11205 "-" "Wget/1.10.2 (Red Hat modified)"
68.180.251.16 - - [26/Sep/2007:19:32:12 -0700] "GET /index.php HTTP/1.0" 200 17447 "-" "Wget/1.10.2 (Red Hat modified)"
74.6.24.11 - - [26/Sep/2007:19:32:27 -0700] "GET /~ktranbar/deptphotos-Pages/Image35.html HTTP/1.0" 200 480 "-" "Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"
216.125.49.252 - - [26/Sep/2007:19:32:39 -0700] "GET / HTTP/1.1" 200 17335 "http://www.mhhe.com/biosci/cellmicro/lewis4e/student/casehist.mhtml" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30)"
216.125.49.252 - - [26/Sep/2007:19:32:39 -0700] "GET /index.css HTTP/1.1" 200 5869 "http://www.stat.ucla.edu/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30)"
216.125.49.252 - - [26/Sep/2007:19:32:39 -0700] "GET /css/uclastat/site.css HTTP/1.1" 200 4822 "http://www.stat.ucla.edu/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30)"
216.125.49.252 - - [26/Sep/2007:19:32:39 -0700] "GET /graphics/rss20.gif HTTP/1.1" 200 219 "http://www.stat.ucla.edu/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30)"

Combined log format

IP address

Identity

Userid

date

Request

Status

Bytes

Referrer

Agent

Unix pipes

• Programs usually take some kind of input and generate some kind of
output

• Unix tools often take input from the user and print the output to the
screen

• “Redirection” of data to and from files or programs is controlled by
pipes

Redirecting output with “|”

Takes output from one command and submits it as input to the next
command

Examples

• cut -d” “ -f1,10 access_log.txt

• cut -d” “ -f9 access_log.txt

% cut -d” “ -f9 access_log.txt | head

200
200
200
200
302
200
304
200
200
200
200
200
200
200
200
200
200
200
302
200
200
200
200
200 ...

In general...

cut -d” “ -f1,5,9 select the first, fifth and ninth
cut -d” “ -f1-5 select the first through the fifth
cut -d” “ -f1 select just the first

Sending output to a file with “>”

With this form of redirection, we take a stream of processed data and
store it in a file

Example

• cut -d” “ -f1 access_log.txt > ips.txt

Taking input from a file with “<”

With this form of redirection, we create an input stream from a file

Example

wc < access_log.txt

The pipeline

As the name might imply, you can connect pipes and have data stream
from process to process

Example

• cut -d” “ -f1 access_log.txt | sort | uniq -c | sort -rn

• cut -d” “ -f9 access_log.txt | sort | uniq -c

• cut -d” “ -f1 access_log.txt | sort | uniq | wc

% cut -d “ “ -f1 access_log.txt | sort | uniq | wc

17128 17128 238213

% cut -d” “ -f9 access_log.txt | sort | uniq -c | sort -rn

158760 200
 16161 304
 9690 206
 6794 404
 6043 301
 1652 403
 836 302
 25 401
 19 405
 12 500
 4 400
 3 501
 1 416

What are these numbers?

• A fast Google search gives us a list of possible
errors

• Note that Error 200 actually means a success

• Error 206 means that only part of the file was
delivered; the user cancelled the request before
it could be delivered

• Error 304 is “not modified”; sometimes clients
perform conditional GET requests

HTTP Error 101
Switching Protocols. Again, not really an "error", this HTTP Status
Code means everything is working fine.

HTTP Error 200
Success. This HTTP Status Code means everything is working fine.
However, if you receive this message on screen, obviously something
is not right... Please contact the server's administrator if this problem
persists. Typically, this status code (as well as most other 200 Range
codes) will only be written to your server logs.

HTTP Error 201
Created. A new resource has been created successfully on the
server.

HTTP Error 202
Accepted. Request accepted but not completed yet, it will continue
asynchronously.

HTTP Error 203
Non-Authoritative Information. Request probably completed
successfully but can't tell from original server.

HTTP Error 204
No Content. The requested completed successfully but the resource
requested is empty (has zero length).

HTTP Error 205
Reset Content. The requested completed successfully but the client
should clear down any cached information as it may now be invalid.

HTTP Error 206
Partial Content. The request was canceled before it could be fulfilled.
Typically the user gave up waiting for data and went to another page.
Some download accelerator programs produce this error as they
submit multiple requests to download a file at the same time.

HTTP Error 300
Multiple Choices. The request is ambiguous and needs clarification
as to which resource was requested.

HTTP Error 301
Moved Permanently. The resource has permanently moved
elsewhere, the response indicates where it has gone to.

HTTP Error 302
Moved Temporarily. The resource has temporarily moved elsewhere,
the response indicates where it is at present.

HTTP Error 303
See Other/Redirect. A preferred alternative source should be used at
present.

% cut -d” “ -f1 access_log.txt | sort | uniq -c | sort -rn | more

13050 70.184.223.117
 8086 164.67.132.219
 4227 164.67.132.220
 2304 128.97.86.248
 1661 128.97.55.194
 1360 66.249.73.99
 1161 128.97.55.208
 1081 208.68.136.250
 1064 207.46.98.57
 956 76.167.214.187
 808 207.46.98.56
 763 87.237.114.11
 757 207.46.98.58
 720 63.241.61.68
 668 61.149.63.50
 569 164.67.134.26
 548 69.12.181.75
 518 196.1.114.240
 513 65.55.209.79
 505 76.167.183.169
 503 65.55.209.83
 497 217.212.224.159
 496 76.168.72.146
 487 65.55.209.82
 478 65.55.209.78
 473 65.55.209.80

The pipeline

• In 1972, pipes appear in Unix, and with them a philosophy, albeit after
some struggle for the syntax; should it be

• more(sort(cut)))

• [Remember this; S/R has this kind of functional syntax]

• The development of pipes led to the concept of tools -- software
programs that would be in a tool box, available when you need them

“And that’s, I think, when we started to think consciously
about tools, because then you could compose things
together... compose them at the keyboard and get them
right every time.”
 from an interview with Doug McIlroy

Read the man pages!

If the command uniq is unfamiliar, you can look up its usage

Example

man uniq
man host

% host 70.184.223.117
117.223.184.70.in-addr.arpa domain name pointer
wsip-70-184-223-117.om.om.cox.net.

% host 164.67.132.219
219.132.67.164.in-addr.arpa domain name pointer
gsa1.ais.ucla.edu.

% host 66.249.73.99
99.73.249.66.in-addr.arpa domain name pointer
crawl-66-249-73-99.googlebot.com..

whois 70.184.223.117
Cox Communications Inc. NETBLK-COX-ATLANTA-10 (NET-70-160-0-0-1)
 70.160.0.0 - 70.191.255.255
Cox Communications NETBLK-OM-CBS-70-184-208-0 (NET-70-184-208-0-1)
 70.184.208.0 - 70.184.223.255

ARIN WHOIS database, last updated 2007-09-26 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.
blowtorch:~ cocteau$ whois 66.249.73.99

OrgName: Google Inc.
OrgID: GOGL
Address: 1600 Amphitheatre Parkway
City: Mountain View
StateProv: CA
PostalCode: 94043
Country: US

NetRange: 66.249.64.0 - 66.249.95.255
CIDR: 66.249.64.0/19
NetName: GOOGLE
NetHandle: NET-66-249-64-0-1
Parent: NET-66-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.GOOGLE.COM
NameServer: NS2.GOOGLE.COM
NameServer: NS3.GOOGLE.COM
NameServer: NS4.GOOGLE.COM
Comment:
RegDate: 2004-03-05
Updated: 2007-04-10

OrgTechHandle: ZG39-ARIN
OrgTechName: Google Inc.
OrgTechPhone: +1-650-318-0200
OrgTechEmail: arin-contact@google.com

ARIN WHOIS database, last updated 2007-09-26 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

But what are we really after?

• Rather than splitting up the data in access_log.txt by day, we might
consider dividing it by IP

• Once we have such a thing, we can use the command wc to tell us
about the number of accesses from each user

• We can also start to “fit” user-level models that can be used to predict
navigation

Rudimentary pattern matching

grep can be used to skim lines from a file that have (or don’t have) a
particular pattern

Patterns are specified via regular expressions, something we will learn
more about later

The name comes from an editing operation on Unix: g/re/p

Example

grep 85.249.135.15 access_log.txt
grep /~dinov access_log.txt

% grep 70.184.223.117 access_log.txt| more

70.184.223.117 - - [20/Sep/2007:13:10:16 -0700] "GET / HTTP/1.1" 200 16974 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:20 -0700] "GET /graphics/rss20.gif HTTP/1.1" 200 219 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:21 -0700] "GET /index.css HTTP/1.1" 200 5869 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:21 -0700] "GET /css/uclastat/site.css HTTP/1.1" 200 4822 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:22 -0700] "GET /rss/feed.php?unit=uclastat HTTP/1.1" 200 1751 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:23 -0700] "GET /centers HTTP/1.1" 301 323 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:24 -0700] "GET /centers/ HTTP/1.1" 200 6509 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:27 -0700] "GET /program/faq.php HTTP/1.1" 200 18662 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:27 -0700] "GET /graphics/point.gif HTTP/1.1" 200 2397 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:27 -0700] "GET /research HTTP/1.1" 301 324 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:28 -0700] "GET /research/ HTTP/1.1" 200 552 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:28 -0700] "GET /research/index_head.php HTTP/1.1" 200 690 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:29 -0700] "GET /research/index_body.php HTTP/1.1" 200 3712 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:30 -0700] "GET /visitors HTTP/1.1" 301 324 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:30 -0700] "GET /visitors/ HTTP/1.1" 200 2016 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:31 -0700] "GET /library HTTP/1.1" 301 323 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:31 -0700] "GET /library/ HTTP/1.1" 200 550 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:31 -0700] "GET /library/index_head.php HTTP/1.1" 200 927 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:32 -0700] "GET /library/index_body.php HTTP/1.1" 200 3261 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:33 -0700] "GET /noteworthy HTTP/1.1" 301 326 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:33 -0700] "GET /noteworthy/ HTTP/1.1" 200 556 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:33 -0700] "GET /noteworthy/index_head.php HTTP/1.1" 200 659 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:34 -0700] "GET /noteworthy/index_body.php HTTP/1.1" 200 3336 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:35 -0700] "GET /alumni HTTP/1.1" 301 322 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:35 -0700] "GET /alumni/ HTTP/1.1" 200 548 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:35 -0700] "GET /alumni/index_head.php HTTP/1.1" 200 870 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:36 -0700] "GET /alumni/index_body.php HTTP/1.1" 200 2369 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:37 -0700] "GET /cases HTTP/1.1" 301 321 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:37 -0700] "GET /cases/ HTTP/1.1" 200 546 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:37 -0700] "GET /cases/index_head.php HTTP/1.1" 200 639 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:38 -0700] "GET /cases/index_body.php HTTP/1.1" 200 4366 "-" "Mozilla/4.0 (compatible)"
70.184.223.117 - - [20/Sep/2007:13:10:39 -0700] "GET /data HTTP/1.1" 301 320 "-" "Mozilla/4.0 (compatible)"

% grep 70.184.223.117 access_log.txt | grep -v library

Quien es mas macho?

• In online marketing, hits rule the roost;
the more raw traffic you attract, the
greater your opportunities for making a
sale

• Alright, so it’s not as simple as that, but
let’s see what we can learn about
centers of activity on our website

Quien es mas macho?

• Compute the number of hits to the portions of the site owned by
Song-Chun Zhu, Vivian Lew, Brian Kriegler, Debbie Barrera and
Ivo Dinov

• Who received the most hits last week?

• What can you say about the kinds of files that were
downloaded?

• What was the most popular portion of each site?

Then...

• Pull back a little and tell me about the site and the habits of its visitors;
specifically, think about

• When is the site active? When is it quiet?

• Do the visitors stay for very long? Do they download any of our
papers or software? What applications do they run?

• On the balance, is our traffic “real” or mostly the result of robots or
automated processes?

A second data set

• We have assembled a list of all the bylines associated with articles
appearing in the New York Times in 1950

• Some of this was entered by hand when the archive was scanned into
digital form, but that doesn’t mean the data are clean!

• We have a simple task: Provide me with a list of journalists and the
number of items they wrote in 1950

% head 1950.txt

By PAUL CROWELL
The New York Times (by Edward Hausner)
By LEE E.COOPER
By JOHN D. MORRIS Special to THE NEW YORK TIMES.
By KALMAN SEIGEL
By HAROLD FABER
The New York Times
By FELIX BELAIR Jr. Special to THE NEW YORK TIMES.
By LINDESAY PARROTT Special to THE NEW YORK TIMES.
Special to THE NEW YORK TIMES.

% wc 1950.txt

53203 317055 1703966 1950.txt

% sort 1950.txt | uniq -c | sort -rn | head

26194 Special to THE NEW YORK TIMES.
 1452 The New York Times
 392 By The Associated Press.
 369 Special to THE NEW YORK TIMES
 263 By THOMAS F. BRADY Special to THE NEW YORK TIMES.
 258 By ARTHUR DALEY
 223 Bradford Bachrach
 203 By LINDESAY PARROTT Special to THE NEW YORK TIMES.
 202 The New York Times Studio
 199 The New York Times (Washington Bureau)
 188 By RAYMOND R. CAMP
 188 By ORVILLE PRESCOTT
 187 By ARTHUR KROCK
 183 By WILLIAM S. WHITE Special to THE NEW YORK TIMES.
 178 By BOSLEY CROWTHER
 172 By DREW MIDDLETON Special to THE NEW YORK TIMES.
 169 By HAROLD CALLENDER Special to THE NEW YORK TIMES.

NYT Data set

• We have a simple task: Provide me with a list of journalists and the
number of items they wrote in 1950

• For this week, simply have a look at the data and anticipate
complications that you might encounter when taking on the somewhat
simply-stated accounting operation

From machine to machine

• Before we get on with today’s lecture, there are a couple dangling
topics we should mention

• In your other courses (and in the bootcamp a week ago) you will run/
ran R on the computer on your desk

• The Statistics Department has a number of computers available to you
that are more powerful (memory, speed) than those on your desk

• You can navigate between machines by invoking ssh and move files
using scp (example shortly)

% ssh otter.berkeley.edu

Running jobs

• Last time we discussed some basic facts about operating systems; a
large part of their functioning is devoted to managing jobs (or
programs) run by different users

• We used the top command to give a dynamic display of what was
running, how much of the computer’s resources it was using up, etc.

Running top on lab-compute.stat.ucla.edu

 How many processes are running?

 How much RAM is available?

Running top on taia.stat.ucla.edu

 How many processes are running?

 How much RAM is available?

 What do you reckon this computer does?

Another way to get at processes

• While top gives you a dynamic, um constantly updating, view of what
the processor is doing, you can use the command ps to give you a
snapshot

• The command ps has lots and lots of options; it lets you look at all
users, just a specific user and control the format of the output

• Just typing ps will give you the processes that you started (or were
started on your behalf); we can also see what others are up to (ah, the
joys of a multi-user system)

Running “ps -aux” on login.stat.ucla.edu

What can we see?

Who are the users?

* the option -a gives you information on all users, -u gives you a popular view (fields)
 of the processes, and -x gives you processes that aren’t necessarily associated
 with a terminal -- this output has been edited slightly with some “grep -v”’s

Job control

• Unix allows you to run several processes at once; each process is
given a number which you can use to change the status of the process

• Because many jobs are running on the computer, the amount of
“attention” they get from the central processing unit is controlled by
their priorities (-20 to 20, with the higher the number meaning the
lower the priority)

• nice and renice lets you lower the priority on a job that you know
will run for a long time, freeing system resources for others; kill can
be used to end processes (politely or with a greater sense of urgency)

Job control

• C-z stops jobs, C-c kills them, and C-d kills your shell

• You can also set jobs to run in the background (which means your
prompt returns)

• The command jobs lets you see what jobs you have running

• If you stop a job, you can restart it or restart it in the background using
the commands bg and fg

Cntl-z hit here

In response, Unix stops
the job and gives you a
list of other jobs you
have stopped or are
running in the
background

GAP

• We get to running R on a file of commands, running R in batch
mode and so on later in the quarter...

•

Back to your “assignments” from last time

• Who had the most hits and how did you compute it?

• What about the open-ended questions... What are the active periods of
the day? What did you learn?

• Take about a half an hour to discuss what you found

Also...

• I might not have emphasized enough that each of the commands we
worked with can either take input from a file as in

• sort access_log.txt

• or from a pipe (so-called standard input), as in

• grep dinov access_log.txt | sort

New data

• We are now going to look at a series of log files containing data from
chat sessions recorded last year; in a two-hour recording session last
year we captured 46,000 lines from 4,500 people

• The data are stored on lab-compute.stat.ucla.edu and you can
bring them to your desktop with the command

• scp -r lab-compute.stat.ucla.edu:/Data/chat .

copy recursively (a directory
and all its contents)

copy the directory /Data/chat from the
computer lab-compute.stat.ucla.edu

copy it to a directory of the same name (in
this case “chat”) on your local machine

Rudimentary pattern matching

• We have already seen some basic pattern matching notions; recall the
command “wc *.txt”

• In this expression “*” acts as a wildcard and matches anything

• The files now.1159914021.txt, now.1159927582.txt,
now.1160410547.txt, now.1159917841.txt, now.
1159992088.txt, now.1160413861.txt,
now.1159920765.txt, now.1159995531.txt, now.
1160416555.txt, now.1159924151.txt, and now.
1159998154.txt will all be returned by this command

Rudimentary pattern matching

• In the expression “*.txt” we can name two kinds of characters

The “.txt” is made up of literal or normal text characters

The “*” is a metacharacter

GAP

• We get to running R on a file of commands, running R in batch
mode and so on later in the quarter...

•

Before the break...

• We discussed your experiments with the Web server data

• How would we get a time series of hits per day?
• Who had the largest number of hits?
• What can you say about the files being accessed?

• The command grep let us extract lines from a file that contained a
string of characters; as we started digging into the data, we wanted a
more expressive tool for defining patterns

• Before the break, we discussed so-called regular expressions, a
language for describing patterns in text data

And in this session...

• Sidestepping the issue of a text corpus somewhat, we are now in a
good position to start looking at the Enron email data set

• Initially, we have to understand the structure of these data before we
dig a bit into the social networking “analysis” that is to come

• It will also give us an opportunity to consider simple shell scripts; a
mechanism by which we collect commands into reusable programs

Enron

• Today we are going to start our work on a set of data related to the
Enron corporation

• Some relevant links are

• http://www.chron.com/news/specials/enron/timeline.html

• http://www.cs.cmu.edu/~enron/

• http://www.stat.ucla.edu/~cocteau/klimt-ecml04-1.pdf

• http://www.stat.ucla.edu/~cocteau/Enron_Employee_Status.htm

Enron emails

• As part of its investigation into
Enron, the Federal Energy
Regulatory Commission
released the emails of about 150
of its top executives

• These data were then cleaned
up by groups at MIT and SRI
and are now publicly available
through the CMU CS
Department

• To respect the privacy of the
individuals involved, I have
replaced the body of each email
with x’s; our interest is not in
what was said but who sent
email to whom

Organization of the data

• The data itself is organized into a series of directories, each named
after an executive

• Under each directory, you will find possibly more directories, each
representing a different mail folder

• At the lowest level, you have a series of email messages, one per file;
the files in each directory are named 1., 2., 3., etc.

• The files we will work with are in /Data/mailfiles on lab-
compute

An example

• Here we select the ex-Vice
President for Regulatory
Affairs, Shelley Corman

• We see the 11 mail folders;
selecting the calendar folder,
we exhibit the content of mail
2.

• Note again, that all textual
content has been replaced by
x’s; we are only interested in
(at best) the pattern of
communication

Some questions

• What is the distribution of numbers of emails per user?

• Are the users organizing their email into folders?

• Are certain folders common to all users?

• What is the distribution of emails per folder?

Hint: One more helpful command

• The Unix command find traverses a directory tree and returns the
files and directories it finds; you can limit the search with various
options

• For example:

• Consider only those email messages numbered 404.

• find corman-s -name 404.

• Consider only those entries that don’t end in a period (.)

• find corman-s regex ‘[^.]$’

Putting this to work

• We can now answer some of the questions about folder usage with
calls to find, cut and sort; first, emails per user and folders per
user

Counts per user

• As was the case for hit counts per IP
address, we see a very skewed distribution
(what Malcolm Gladwell would call a
“hockey stick” distribution)

• In the bottom figures
we present a histogram
and a Q-Q plot for the
logarithm of the counts

Identifying common folders

• The email from 150 executives are included in this file; some folders
have similar structures

Looking inside

• In a previous version of these slides, we considered a unique message
ID tag; instead, let’s consider a time series of the number of emails by
day

• If we look at the structure of the email header we see that a message’s
date is kept in a field called Date:

Timing is everything

• The dates in Corman’s inbox folder can be extracted with a simple
call to grep

Shell programs

• There are over 150 different directories and it will be hard to extract all
the information we are after by hand

• Technically, we can use the find command to execute a program on
each file or directory it encounters*; for the moment, we will ignore this
and use date extraction as an application of shell scripting

• You can collect a series of Unix commands into a shell program; this
allows you to repeat commands over different inputs

 * The command would look something like
 find maildir -type f -exec egrep '^Date:' {} ';'

 Consult the web site below for more information on find
 http://www.gnu.org/software/findutils/manual/html_mono/find.html

Not really a gap, but a good time
to split...

• From here, I teach a bit about
shell programming; I do this
because I want the students to
see that the commands they’ve
been using can be assembled into
programs that can repeat their
operations

• This will be, of course, a theme in
the class; moving from exploratory
computing to program-writing; it
also lets me talk a bit about
permission bits and some trailing
filesystem facts

A simple shell program

• At the right we have a short program
contained in a file dates.sh

• OK, it isn’t much of a program, but it’s a
reasonably good place to start

• The $1 here refers to the first argument
we use to call the program

egrep '^Date:' $1

Running a shell script

• There are two ways to run a shell script; you can either execute it
within a new shell (recall that the shell sh is just another command)

• % sh dates.sh

• This should explain the funny suffix we used for our filename; this kind
of naming convention will help you (and others) recognize this file as a
shell script (program)

• The second way to run this script is to make the file executable; that is,
it becomes just like any command Unix knows about

• Let’s see how this is done; it requires looking a little into how the
filesystem specifies permissions, who can do what to a file

Permission bits

• Unix can support many users on a single system and each user can
belong to one or more groups

• Every file in a Unix filesystem is owned by some user and one of that
user’s groups; each file also has a set of permissions specifying which
users can

• r: read
• w: write (modify) or
• x: execute

• the file; these are specified with three “bits” and we need three sets of
bits to define what the user can do, what their group (that owns the
file) can do and what others can do

An example

• [fad-gadget marketingaffiliate] ls -al
total 72
drwxr-xr-x 9 cocteau staff 306 11 Oct 13:33 .
drwxr-xr-x 14 cocteau staff 476 11 Oct 13:33 ..
-rw-r--r-- 1 cocteau staff 2191 11 Oct 14:14 1.
-rw-r--r-- 1 cocteau staff 4587 11 Oct 14:14 2.
-rw-r--r-- 1 cocteau staff 1061 11 Oct 14:14 3.
-rw-r--r-- 1 cocteau staff 1845 11 Oct 14:14 4.
-rw-r--r-- 1 cocteau staff 2220 11 Oct 14:14 5.
-rw-r--r-- 1 cocteau staff 4163 11 Oct 14:14 6.
-rw-r--r-- 1 cocteau staff 2101 11 Oct 14:14 7.

Your user name

The group you belong to
that owns the file

The file’s size
in bytes

The file’s creation date

The file’s name

Shorthand for your present
working directory (where
you’re at)

Shorthand for the directory
one level above

What you can
do to the file

What the owning
group can do

What others can do

The type of fileAn example

• drwxr-xr-x 9 cocteau staff
 drwxr-xr-x 14 cocteau staff
 -rw-r--r-- 1 cocteau staff
 -rw-r--r-- 1 cocteau staff
 -rw-r--r-- 1 cocteau staff
 -rw-r--r-- 1 cocteau staff

In general...

• The command chmod changes the permissions on a file; here are
some examples

• % chomd g+x dates.sh

• % chmod ug-x dates.sh

• % chmod a+w dates.sh

• % chmod go-w dates.sh

• You can also use binary to express the permissions; so if we think of
bits ordered as rwx, then

• and we can specify permissions with these values

• % chmod 755 dates.sh

r-x 1 × 22 + 0 × 21 + 1 × 20 = 5

rwx 1 × 22 + 1 × 21 + 1 × 20 = 7

r-- 1 × 22 + 0 × 21 + 0 × 20 = 4

A simple shell program

• In addition to making our program
executable, we need to give the
operating some help in figuring out what
interpreter to use

• That is, we need to tell Unix that the
following lines are to be executed in the
shell

• We start the file with the location of the
shell command; if we were working in
Python (we’ll see this next time), we’d
have usr/bin/python

#!/bin/sh

egrep '^Date:' $1

A simple shell program

• After that long detour, we could do the following; note that to call the
program, we have to tell Unix where to find it

A simple shell program

• Arguably, we haven’t done much in
terms of easing our workload

• Instead, we could consider looping over
all the files in a directory; the slight
elaboration of our original program is
given at the right

• Here we see our basic command to find
dates, but it’s in the body of a for loop

#!/bin/sh

for i in `ls`; do

 egrep '^Date:' $i
done

For loops

• The basic structure of this
construction is given at the right

• If you have done any programming,
this loop will function as you expect;
each pass through the loop assigns
one value in list to var

• This is one of several constructions
that control the operation or flow of
your running program

• In our script, the variable i takes the
output from the command ls; note
that when we want the value of i we
use $i

for var in list; do
 commands
done

ttp://www.ooblick.com/text/sh/

#!/bin/sh

for i in `ls`; do

 egrep '^Date:' $i
done

A simple shell program

• In our script, the symbol i is a variable; it
takes the output from the command ls

• When we want the value of i in our script
we refer to $i

• Variables are used by the shell to
remember information; for example, when
you start a shell, a number of variables get
set by default

#!/bin/sh

for i in `ls`; do

 echo "file: $i"
done

#!/bin/sh

for i in `ls`; do

 egrep '^Date:' $i
done

Your home directory
The path your shell searches for
programs; remember which?

A simple shell program

• In this short program, we see two different
kinds of quotation marks; there are, in
fact, three different such constructions

1. `command` : Backquotes execute
the enclosed command and catch
the output; here it is assigned in turn
to i

2. “string“ : Double quotes allow us to
slip in special characters that are
expanded; so “echo $1” would print
the first argument

3. ‘string’ : Single quotes aren’t very
fancy; everything inside is as it
appears

#!/bin/sh

for i in `ls`; do

 egrep '^Date:' $i
done

A simple shell program

• Running this program generates a single date line for every file in the
directory; it scrolls by rather quickly and then...

A simple shell program

• ...we find a series of errors; what do these mean?

Conditional execution

• The problem is that we cannot call egrep
on a directory

• Therefore, we’d like to assess what kind of
file we are dealing with, and only execute
the command where we should

• Unix provides a conditional evaluation
utility called test; in addition to
performing simple numerical comparisons,
it also provides facilities for interrogating
files

• Here the flag -f returns true if $i is a
regular file

if condition ; then
 commands
[elif condition; then
 commands]
[else
 commands]
fi

ttp://www.ooblick.com/text/sh/

#!/bin/sh

for i in `ls`; do

 if test -f $i; then

 egrep '^Date:' $i
 fi
done

Conditional execution

• Often, rather than explicitly using the
test function, programmers will use a
shorthand construction

• The []’s are an implicit call to test; to be
precise, there’s a command called /bin/
[

if condition ; then
 commands
[elif condition; then
 commands]
[else
 commands]
fi

ttp://www.ooblick.com/text/sh/

#!/bin/sh

for i in `ls`; do

 if [-f $i]; then

 egrep '^Date:' $i
 fi
done

#!/bin/sh

for i in `find $1`; do

 if [-f $i]; then

 egrep '^Date:' $i
 fi
done

Finally...

• So far, all we’ve done is execute a
egrep command in the directory
where we call our program

• The commands at the right recurse
through the directory provided as
an argument to the program

A simple shell program

• Now we can call the program from any directory; here we call it from /
Data (note the ./ telling Unix where to find the file)

Overview

• My goal here is to have you realize that
the commands we have been working
with can be collected into programs or
scripts; along the way, we learned
something about file permissions

• The scripting facilities in Unix let you do
standard things like loop over values,
execute commands conditionally, and so
on

• There are other structures like while loops
and case statements that further redirect
the control of your program

while condition; do
 commands
done

ttp://www.ooblick.com/text/sh/

case expression in

 pattern)
 commands
 ;;

esac

Overview

• Again, much of the recursion over directories can be done with the
find command

• This presentation was meant to walk you through the structure of a
shell script, illustrating what programming tools are at your disposal

• This material will come up again as we consider distributing code, say
through an R package

Oh, and what were we after?

• Here we have a plot of the total number of emails recorded during this
period; what patterns do we see?

The gist

• I teach the shell for both practical
as well as pedagogical reasons; it
is structurally similar to other
“shells” they will encounter
(Python, R), but the vocabulary is
fairly limited

• With a few commands they can do
some pretty powerful analysis,
whether or not you want to call
that statistics is another question,
and you can quickly motivate the
need for making programs...

• What do y’all think?

