Computational Statistics

Course Design

 Interestingly, unlike other material discussed here, computational statistics can be taught *without the involvement* of computers.

"Statistical Computing Theory"

- Procession of algorithms
- Proofs of convergence
- Rates of convergence
- Algorithmic complexity
- etc.

Basic Goals

- Understand what goes on "under the hood"
- Program their own minimizers, samplers, etc.
 - Understand the difficulty in implementing these algorithms well
- Understand how computers work and their limitations
- Make better use of existing "black boxes" (optim, WinBUGS, etc.)

Topics

- Solving nonlinear equations [f(x) = 0]
- General purpose minimization ("how to use optim")
 - Newton's method
 - Quasi-Newton (BFGS, FP)
 - Conjugate gradient
 - Simulated annealing (later)

Topics

- EM algorithm (Monte Carlo EM as an aside)
- Laplace approximation
- Quadrature
- Pseudo-random number generation
- Independent Monte Carlo (integration)
 - Rejection sampling
 - Importance sampling

Topics

- Markov Chain Monte Carlo
 - Metropolis-Hastings
 - Gibbs sampling
 - Variants
 - Diagnostic tools
- Parallel Computing
 - Basic embarassingly parallel computations
 - SNOW

If there's extra time

- Bootstrap
- Smoothing
- Perfect Sampling (as amusement)
- Additional Applications
 - Spatial statistics
 - Time series

Computational Aspects

- Visualize the geometry of optimization problems
 - Likelihoods, profile likelihoods
- Develop efficient implementations of MCMC algorithms
 - Profiling, C programming
 - Geometry of posterior sampling

Ex: Profile Likelihoods

Profile likelihood. Write a function called makeProfLik which takes a numeric vector x and returns a *function* of one argument named sigma2. The prototype for makeProfLik is

```
makeProfLik <- function(x) {
    ## function body
}</pre>
```

The function returned by makeProfLik should be the profile likelihood for the the variance parameter σ^2 of a normal distribution. The profile likelihood function, $\rho(\sigma^2)$, is simply

$$ho(\sigma^2) = \max_{\mu} L(\mu, \sigma^2)$$

where L is the full likelihood function for a normal distribution. That is, for a given value of σ^2 , we fix the value for σ^2 in L and maximize over μ . The function returned by makeProfLik should be a function of a *single argument only*, i.e. sigma2. The returned function should have no other arguments (hint: use lexical scoping).

Ex: Profile Likelihoods

Textbooks

- Numerical Analysis for Statisticians, Ken Lange
- Markov Chain Monte Carlo in Practice, Gilks, Richardson, Spiegelhalter
- Structured Computer Organization, Tanenbaum