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Ref. for basic Prob&Stat

Online intro text with self-test exercises, dynamic ex-
amples, applets to illustrate key concepts, etc.:

www.stat.berkeley.edu/∼stark/SticiGui

More detail on some of the topics Dr. Malinverno dis-
cussed.
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Part I:
Comparing two Groups

Prof. Young compared heights of statisticians and geo-
physicists, based on a (presumed random) sample.

Tested the hypothesis that the average height of statis-
ticians and the average height of geophysicists are
equal, using a confidence interval based on Student’s
t distribution.

The assumptions of the test are hard to justify: null
hypothesis says populations of heights have normal
distributions with same mean and same variance.

What would an anal-retentive statistican do?
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Part I:
Comparing two Groups, contd

Data

Yesterday’s data:

sort no. mean height (in) sd(height)
Geophysicist 20 69.716 2.447
Math/Stat 9 68.562 3.416
Pooled 29 69.358 2.774

Idea: if there is no difference in heights of the two
groups, it is as if labeling someone as a mathemati-
cian/statistician or geophysicist is determined by toss-
ing a coin—as if we decided who is a geophysicist
by drawing 20 people at random from the 29 in the
pooled group. Equivalently, as if the 29 heights were
assigned at random to the 29 people.
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Part I:
Comparing two Groups, contd

Permutation Test & t-test

Null hypothesis for permutation test: height indepen-
dent of occupation, as if height or occupation assigned
at random among people in sample.

Null hypothesis for t-test: groups are independent ran-
dom samples from normal distributions with same mean
µ and same variance σ2.

When do the tests reject?
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MATLAB code

For permutation test, in principle, calculate diff. of

sample means for all
(

29
9

)

= 10,015,005 assign-

ments. Can approximate by simulation.

geo = [ 72 71 70 68 1.75 1.8 1.61 1.73 73 1.8 ...

1.79 1.69 1.83 66 1.8 1.8 1.74 1.75 73 71 ]’;

math = [ 1.86 71 69 68 1.85 1.7 1.65 1.73 1.6 ]’;

geo(geo <= 4) = geo(geo <= 4) * 100/2.54;

math(math <= 4) = math(math <= 4) * 100/2.54;

allSorts = [geo; math];

nGeo = length(geo);

nMath = length(math);

N = nGeo + nMath;

gBar = mean(geo)

mBar = mean(math)
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MATLAB code, contd

% Student’s t-test

sHat = std(allSorts);

seHat = sHat* sqrt(1/nMath + 1/nGeo);

t = (gBar - mBar)/seHat;

tPval = 2*(1-tcdf(abs(t),nMath+nGeo-1))

% Permutation test

iter = 1000;

sims = zeros(iter,1);

for j=1:iter,

dat = allSorts(randperm(N));

sims(j) = abs(mean(dat(1:nGeo)) - ...

mean(dat(nGeo+1:N)));

end;

pPval = sum(sims >= abs(gBar - mBar))/iter
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Results

P -value for t-test: 0.3088

P -value for permutation test: 0.3020.

In this case, not much difference.

General case: differ, but distribution of permutation
test when null is true is asymptotically Student’s t as
both groups grow (in number, not height!).
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Aside: sampling distributions

Applet time!
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Part II:
What’s the Chance of an Earthquake?
(Joint work with D.A. Freedman)

USGS Forecast (1999):
What’s the chance that an earthquake of magnitude
6.7 or greater will occur by the year 2030 in the San
Francisco Bay Area?

USGS says 0.7 ± 0.1.

What does that mean?

Very hard to make sense of the number.
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Ingredients of USGS Forecast

• geological maps

• rules of thumb

• expert opinion

• physical models

• stochastic models

• numerical simulations

• geodetic, seismic, and paleoseismic data.

Probability hard to define in this context.
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Interpreting Probability

Two aspects:

Formal mathematical theory, axiomatized by Kolmogorov
(1956).

Informal theory connects math to the world—defines
what ‘probability’ means for real events.

Simple example: tossing a coin.
What does P(heads) = 1/2 mean?

3 common interpretations: symmetry, relative frequency,
and strength of belief. (Others, too.)
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Symmetry Theory

Earliest interpretation of probability: ‘equally likely out-
comes,’ from the study of gambling.

If the n possible outcomes of a chance experiment
are judged equally likely—for instance, on the basis of
symmetry—each must have probability 1/n.

For example, for a coin toss, n = 2, so chance of
heads is 1/2

Difficulties
Tossing 2 coins: total number of heads can be 0, 1 or
2—not equally likely (for purposes of gambling).

Earthquake forecasting (like many problems) has no
obvious symmetry.
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Frequency Theory

P(A) is limit of the relative frequency with which A

occurs, in repeated trials under the same conditions.

If we toss a coin repeatedly under the same condi-
tions, the fraction of tosses that result in heads will
converge to 1/2: that’s why the chance of heads is
1/2.

Difficulties
To interpret USGS forecast, need to imagine repeat-
ing the years 2000–2030 over and over again. ????
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Bayesian approach

Probability is degree of belief, on scale from 0 to 1.

P(impossible event) = 0; P(certain event) = 1.

Different observers need not have the same beliefs;
differences don’t imply that anyone is wrong.

Difficulties
Changes the topic: probability is a summary of an
opinion, not something inherent in the system being
studied.

‘There is chance 0.7 of at least one earthquake with
magnitude 6.7 or greater in the Bay Area between
2000 and 2030’ is just the USGS reporting its corpo-
rate state of mind, and may not mean anything about
tectonics and seismicity.

Not clear why one observer should care about the
opinion of another.
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Principle of Insufficient Reason

Bayesians—and some frequentists—often make prob-
ability assignments using Laplace’s principle of insuf-
ficient reason:

If there is no reason to believe that out-
comes are not equally likely, take them to be
equally likely.

Difficulties
Not believed to be unequal is one thing; known to be
equal is another. Moreover, all outcomes cannot be
equally likely, so Laplace’s prescription is ambiguous.
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Principle of Insufficient Reason, contd

Example: Thermodynamics

Gas of n particles, each of which can be in any of r

quantum states.

State of the gas defined by a ‘state vector’.

Three conventional models for such a gas; different
definitions of the state vector.

In each model, all possible values of the state vector
equally likely.
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Principle of Insufficient Reason, contd

1. Maxwell-Boltzman. State vector specifies state of
each particle; there are

rn

possible values of the state vector.

2. Bose-Einstein. State vector specifies #particles in
each state. There are

(n + r − 1

n

)

possible values of the state vector.

3. Fermi-Dirac. State vector specifies #particles in
each state—but at most one perticle in each state.
There are

(r

n

)

possible values of the state vector.

17



Principle of Insufficient Reason, contd

Maxwell-Boltzman stats model coins, but not gas.

Bose-Einstein stats model bosons—particles with spin
angular momentum integer multiple of ~. (E.g., pho-
tons and He4 atoms.)

Fermi-Dirac stats model fermions, particles with spin
angular momentum a half-integer multiple of ~. (E.g.,
electrons and He3 atoms.)

Bose-Einstein condensates, low temperature gases
with all atoms in 1 quantum state, observed at CU
Boulder by Anderson et al. (1995). Occur for bosons,
not fermions.

Outcomes of an experiment can be defined in quite
different ways. Seldom clear a priori which—if any—
are equally likely.
Principle of Insufficient Reason is insufficient.
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Earthquake & Weather Forecasts

Earthquake forecasts look similar to weather forecasts.

How do meteorologists interpret ‘the chance of rain
tomorrow is 0.7’?

Standard interpretation applies frequentist ideas to fore-
casts: the chance of rain tomorrow is 0.7 means 70%
of such forecasts are followed by rain the next day.

Meteorology not like earthquake prediction:

Large regional earthquakes recur on scale of centuries.

Weather forecasters have a much shorter time hori-
zon.

Weather prediction not good analogue for earthquake
prediction.
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Kolmogorov’s Axioms of Probability

For most statisticians, Kolmogorov’s axioms are the
basis for probability theory—no matter the interpreta-
tion.

Σ a σ-algebra of subsets of a set S.

P a real-valued function on Σ. P is a probability if

• P(A) ≥ 0 for every A ∈ Σ (nonnegative);

• P(S) = 1 (scale);

• if Aj ∈ Σ for j = 1,2, . . . , and Aj ∩ Ak = ∅
whenever j 6= k, then

P





∞
⋃

j=1

Aj



 =
∞
∑

j=1

P(Aj) (additivity). (1)
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Model-based interpretation

Another interpretation of probability: probability is just
a property of a mathematical model intended to de-
scribe features of the world.

To be useful, the model must be shown to correspond
well with the system it describes.

That’s where the statistics meets the science.
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Probability models, contd

Illustration: A coin will be tossed n times.

2n possible sequences of heads and tails.

Model: all 2n sequences are equally likely. Each has
probability 1/2n (probability 1/2 of heads on each
toss and independence of tosses).

Observational consequences can be used to test model
validity.

For example, model says the distribution of total num-
ber X of heads in n tosses is binomial:

P(X = k) =
(n

k

) 1

2n
.

If model is right, when n is large should see around
n/2 heads, with an error on the order of

√
n.
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Probability models, contd

Model also gives probability distributions for number
of runs, lengths of runs, etc., which can be checked
against data.

The model is good, but imperfect: with many thou-
sands of tosses, the difference between a real coin
and the model coin is likely to be detectable.

The probability of heads will not be exactly 1/2, and
there may be some correlation between successive
tosses.
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Probability models, contd

Probability Model interpretation—that probability is a
property of a mathematical model and has meaning
for the world only by analogy—seems best for earth-
quake forecasts.

To apply the interpretation, posit stochastic model for
earthquakes; interpret a number calculated from the
model to be the probability of an earthquake in some
time interval.

Problem: models in forecasts not tested against rele-
vant data.

Models can’t be tested on human time scale.

Little reason to believe the probability estimates.
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The USGS Forecast

USGS Forecast (1999):
2 stages. Stage 1 major steps:

1. Determine regional constraints on aggregate fault
motions from geodetic measurements.

2. Map faults and fault segments; identify fault seg-
ments with slip rates ≥ 1 mm/y. Estimate slip on
each fault segment principally from paleoseismic
data, occasionally augmented by geodetic and other
data. Determine (by expert opinion) for each seg-
ment a ‘slip factor’, the extent to which long-term
slip is accommodated aseismically. Represent un-
certainty in fault segment lengths, widths, and slip
factors as independent Gaussian random variables
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with mean 0 (and sometimes variance 0). Draw a
set of fault segment dimensions and slip factors
at random from that probability distribution.

3. Identify (by expert opinion) ways segments of each
fault can rupture separately and together. Each
such combination of segments is a ‘seismic source’.

4. Determine (by expert opinion) how much long-
term fault slip is accommodated by rupture of each
combination of segments for each fault.

5. Choose at random (with probabilities of 0.2, 0.2,
and 0.6 respectively) one of three generic rela-
tionships between fault area and moment release
to characterize magnitudes of events that each



combination of fault segments supports. Repre-
sent uncertainty in the generic relationship as Gaus-
sian with zero mean and standard deviation 0.12,
independent of fault area.

6. Using the chosen relationship and the assumed
probability distribution for its parameters, deter-
mine mean event magnitude for each source by
Monte Carlo simulation.

7. Combine seismic sources along each fault ‘in such
a way as to honor their relative likelihood as spec-
ified by the expert groups’; adjust the relative fre-
quencies of events on each source so that every
fault segment matches its geologic slip rate—as
estimated from paleoseismic and geodetic data.
Discard the combination of sources if it violates a
regional slip constraint.



8. Repeat the previous steps until 2,000 regional mod-
els meet the slip constraint. Treat the 2,000 mod-
els as equally likely to estimate magnitudes, rates,
and uncertainties.

9. Steps 1-8 model events on seven identified fault
systems, but there are background events not as-
sociated with those faults. Estimate the background
rate of seismicity as follows. Use an (unspeci-
fied) Bayesian procedure to categorize historical
events from three catalogs either as associated or
not associated with the seven fault systems. Fit a
generic Gutenberg-Richter magnitude-frequency
relation N(M) = 10a−bM to the events deemed
not to be associated with the seven fault systems.
Model this background seismicity as a marked Pois-
son process. Extrapolate the Poisson model to
M ≥ 6.7, which gives a probability of 0.09 of at
least one event.



2nd Stage of USGS Forecast

First stage gives 2,000 models & estimates long-term
seismicity rates as a function of magnitude for each
source.

Second stage fits 3 types of stochastic models for
earthquake recurrence—Poisson, Brownian passage
time and ‘time-predictable’—to long-term seismicity rates
estimated in 1st stage. Stochastic models combined
to estimate probability of large earthquake. Fitting
models requires more assumptions; data are noisy
and scarce (e.g., estimating fault loading over time).

Outputs of the 3 stochastic models for each segment
weighted according to opinions of panel of 15 experts.
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The USGS Forecast

∃ no straightforward interpretation of USGS probabil-
ity forecast.

Many steps involve models that are largely untestable;
modeling choices often arbitrary.

Frequencies are equated with probabilities, fiducial dis-
tributions are used, outcomes are assumed to be equally
likely, and subjective probabilities are used in ways
that violate Bayes’ rule.
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USGS Uncertainty Estimate

USGS forecast is 0.7 ± 0.1, where 0.1 is an uncer-
tainty estimate.

The 2,000 regional models produced in stage 1 give
estimate of long-term seismicity rate for each source
(linked fault segments), and estimate of uncertainty in
each rate.

Those uncertainties propagated through stage 2 to
estimate uncertainty of estimated probability of a large
earthquake.

0.1 is a gross underestimate . . .
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USGS Uncertainty Estimate, contd

Overlooked errors include:

1. Errors in fault maps and identification of fault seg-
ments.

2. Errors in geodetic measurements, paleoseismic
data, and viscoelastic models used to estimate
fault loading and sub-surface slip from surface data.

3. Errors in estimated fraction of stress relieved aseis-
mically through creep in each fault segment and
errors in relative amount of slip assumed to be
accommodated by each source.
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4. Errors in estimated magnitudes, moments, and
locations of historical earthquakes.

5. Errors in relationships between fault area and seis-
mic moment.

6. Errors in models for fault loading.

7. Errors in models for fault interactions.

8. Errors in generic Gutenberg-Richter relationships,
not only in parameter values but also in functional
form.

9. Errors in estimated probability of an earthquake
not associated with any of fault in model.



10. Errors in form of probability models for earthquake
recurrence and in estimated parameters of those
models.



A Mathematician’s View from the Past

Littlewood (1953) wrote:

Mathematics (by which I shall mean pure mathemat-
ics) has no grip on the real world; if probability is to
deal with the real world it must contain elements out-
side mathematics; the meaning of ‘probability’ must
relate to the real world, and there must be one or
more ‘primitive’ propositions about the real world, from
which we can then proceed deductively (i.e. mathe-
matically). We will suppose (as we may by lumping
several primitive propositions together) that there is
just one primitive proposition, the ‘probability axiom,’
and we will call it A for short. Although it has got to be
true, A is by the nature of the case incapable of de-
ductive proof, for the sufficient reason that it is about
the real world . . . .
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Littlewood, contd

There are 2 schools. One, which I will call mathemat-
ical, stays inside mathematics, with results that I shall
consider later. We will begin with the other school,
which I will call philosophical. This attacks directly the
‘real’ probability problem; what are the axiom A and
the meaning of ‘probability’ to be, and how can we
justify A? It will be instructive to consider the attempt
called the ‘frequency theory’. It is natural to believe
that if (with the natural reservations) an act like throw-
ing a die is repeated n times the proportion of 6’s will,
with certainty , tend to a limit, p say, as n → ∞. (At-
tempts are made to sublimate the limit into some Pick-
wickian sense—‘limit’ in inverted commas. But either
you mean the ordinary limit, or else you have the prob-
lem of explaining how ‘limit’ behaves, and you are no
further. You do not make an illegitimate conception
legitimate by putting it into inverted commas.)
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Littlewood, contd

If we take this proposition as ‘A’ we can at least settle
off-hand the other problem, of the meaning of proba-
bility; we define its measure for the event in question
to be the number p. But for the rest this A takes us
nowhere. Suppose we throw 1000 times and wish to
know what to expect. Is 1000 large enough for the
convergence to have got under way, and how far? A

does not say. We have, then, to add to it something
about the rate of convergence. Now an A cannot as-
sert a certainty about a particular number n of throws,
such as ‘the proportion of 6’s will certainly be within
p ± ǫ for large enough n (the largeness depending
on ǫ)’. It can only say ‘the proportion will lie between
p ± ǫ with at least such and such probability (depend-
ing on ǫ and n0) whenever n > n0’. The vicious
circle is apparent. We have not merely failed to jus-
tify a workable A; we have failed even to state one
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which would work if its truth were granted. It is gener-
ally agreed that the frequency theory won’t work. But
whatever the theory it is clear that the vicious circle is
very deep-seated: certainty being impossible, what-
ever A is made to state can be stated only in terms of
‘probability’.



Summary

Making sense of earthquake forecasts is hard: stan-
dard interpretations of probability fail.

A model-based interpretation is better, but lacks em-
pirical justification.

Probability models are only part of forecasting ma-
chinery.

USGS San Francisco Bay Area forecast for 2000–2030
involves geological mapping, geodetic mapping, vis-
coelastic loading calculations, paleoseismic observa-
tions, extrapolating rules of thumb across geography
and magnitude, simulation, and many appeals to ex-
pert opinion.

The numerical probability values seem rather arbitrary.
Uncertainty estimates are shaky, too.
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Part II: Reducing Uncertainty using Phys-
ical Constraints
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Examples of Physical Constraints

Nonnegativity:
Counts, energies, densities; monotonicity
seismic velocity in Earth’s core (w/ R.L. Parker et al.)
aftershock probability density (w/ N. Hengartner)

Bounds on functionals:
Energy in geomagnetic field,
rotation rate in solar interior (w/ C. Genovese)

Parametrizations:
Power law for CMB spectrum (w/ L. Tenorio, C. Lineweaver)

How can we use such constraints to reduce uncer-
tainty?

Most texts don’t treat constraints.
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Examples.
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Models and Parameters

Model specifies prob. distribution of data X.
Models indexed by θ; call θ and Pθ “the model.”

Physical Constraint: Know a priori that θ ∈ Θ

Parameter: image f(θ) of θ under a mapping f .

Building block: Bounded Normal Mean
Model X ∼ N(θ,1), with θ ∈ Θ = [−τ, τ ]

Seek to estimate f(θ) = θ.
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Confidence Sets and Coverage

Confidence Set:
Random set S of parameter values: depends on X

Coverage probability (1 − α):
Minimum chance S(X) contains true f(θ).

Pθ{S(X) ∋ f(θ)} ≥ 1 − α, ∀θ ∈ Θ. (2)

Duality between testing and confidence sets:
Invert family of level α tests ⇒ 1 − α conf. set–
all θ′ ∈ Θ that aren’t rejected.

Standard 95% conf. interval for normal mean:
I = [X − 1.96, X + 1.96].
Doesn’t use the constraint θ ∈ [−τ, τ ].

Procrustean (truncated) interval:
IT = [X − 1.96, X + 1.96] ∩ [−τ, τ ].
Uses constraint, but is it best?
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Common ways to add constraints

Ignore them.

Ad hoc; procrustean: Make unconstrained estimate;
force it to be in the constraint set.

Bayesian: Use prior π that assigns probability 1 to the
constraint set.

Pπ{θ ∈ Θ} = 1. (3)

Frequentist minimax: Use estimator that (within some
class) is minimax for some loss over the constraint set
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Shortcomings

Ad hoc; procrustean: Can do “better.”

Bayesian: Where does the prior come from? No such
thing as uninformative prior
Sensitive to loss and assumptions
Usual approach doesn’t have frequentist coverage (should
we care?)

Frequentist minimax: Driven by worst case
Sensitive to loss and assumptions

40



Defining “best:” small expected size

Want a precise answer:
Minimize expected size of the confidence set.
Expected size depends on true value of θ: tradeoff.

Bayesian: minimize average (for prior π) expected size

Frequentist Minimax: minimize max expected size for
θ ∈ Θ

Bayes/Minimax duality:
Minimax is Bayes for least favorable prior
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Minimax expected size CI for BNM

standard truncated Best meas. Opt.
standard fixed-widtha meas.b

τ I I ∩ [−τ, τ ] IN IOPT
1.75 3.9 49% 2.9 10% 3.3 25% 2.6
2.00 3.9 38% 3.2 11% 3.3 16% 2.8
2.25 3.9 31% 3.4 13% 3.3 10% 3.0
2.50 3.9 26% 3.6 14% 3.3 6% 3.1
2.75 3.9 22% 3.7 15% 3.3 3% 3.2
3.00 3.9 21% 3.8 16% 3.3 1% 3.3
3.25 3.9 19% 3.8 16% 3.3 0% 3.3
3.50 3.9 18% 3.9 16% 3.5 5% 3.3 c

3.75 3.9 16% 3.9 15% 3.6 6% 3.4
4.00 3.9 14% 3.9 13% 3.6 5% 3.4

aThese have form [θ̂(X)− e, θ̂(X)+ e], with θ̂(·) measur-
able and e constant.

bThese have form {θ ∈ Θ : (θ, X) ∈ S}, where S ⊆ Θ×X
is product-measurable.

cTruncated Pratt interval ITP is optimal for τ ≤ 3.29. The
entries in the rightmost column for τ = 3.50,3.75, and
4.00 are approximated numerically.

42



Size isn’t everything: how you use it
matters.

Cost of including θ′ 6= θ can depend on θ:
E.g., might sacrifice length to include values with one
sign only.

Curvature of the universe?

Can allow size measure to depend on θ.

Numerics:
Approximate least-favorable π by Monte Carlo
Well suited to distributed/parallel computing.
Uses importance sampling.
Don’t need closed-form likelihood.
Solve 2-player matrix game iteratively.
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Example: Microwave cosmology–
relic of the Big Bang

Model for Power Spectrum

X ∼ N



0, N +
∞
∑

ℓ=1

(

2ℓ + 1

4π

)

Cℓ(θ)B
2
ℓ Pℓ





Pℓ: the ℓth Legendre polynomial matrix

N: data noise covariance matrix

{Cℓ(θ)}: power spectrum for the set of cosmological
parameters θ

Bℓ: transfer function of the observing filter.

Complicated relationship between cosmological “pa-
rameters” and spectrum {Cℓ}: nonlinear PDE.
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Constraints on Parameters of Cosmo-
logical Model

Parameter Lower Upper
Total Matter† Ωm 0.05 1.00
Baryonic Matter† Ωb 0.005 0.15
Cosmological Constant† ΩΛ 0.0 1.0
Hubble Constant (km s−1 Mpc−1) H0 40.0 90.0
Scalar Spectral Index ns 0.6 1.5
Optical Depth τ 0.0 0.5

† Relative to critical density.

Monte-Carlo chooses model uniformly, subject to

Ωb ≤ Ωm and 0.6 ≤ Ωm + ΩΛ ≤ 1.4. (4)
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MAXIMA-1 Data
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Data reduction/compression

Form 20,000 linear combinations of 5972 pixel temps.

Select 5972 linear combinations–eigenvectors of co-
variance matrix for reference model.

Select 2000 of those using estimated Kullbach-Leibler
divergence to approximate false coverage prob.
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Results
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35 of 1000 models not rejected.
Spectra of 300 rejected models shown.
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Results
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Results (contd)

Location of main peak (ℓ): (175,235).
Height of main peak (µK): (59.7,75.5).

Location of first valley (ℓ): (348,468).
Height of first valley (µK): (22.3,35.6).
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Results (contd)

Some Accepted Models:

Ωb Ωm ΩΛ τ H0 ns Ω

0.042 0.674 0.241 0.317 77.00 1.117 0.915
0.091 0.620 0.319 0.346 65.93 1.095 0.939
0.104 0.684 0.316 0.152 53.00 0.960 1.000
0.081 0.540 0.526 0.000 77.15 0.809 1.066
0.072 0.754 0.328 0.116 86.55 0.970 1.082
0.134 0.940 0.161 0.466 66.83 1.038 1.101
0.085 0.301 0.815 0.058 62.21 0.729 1.116
0.096 0.479 0.730 0.428 87.64 1.043 1.209
0.096 0.555 0.693 0.260 81.28 0.923 1.248
0.093 0.708 0.551 0.000 76.96 0.855 1.259
0.139 0.667 0.623 0.269 61.15 0.954 1.290
0.133 0.692 0.642 0.068 41.47 0.846 1.334

Min incl 0.011 0.058 0.082 0.000 41.47 0.729 0.915
Max incl 0.139 0.994 0.988 0.466 89.24 1.151 1.334
Min poss 0.005 0.000 0.000 0.000 40.00 0.600 0.600
Max poss 0.150 1.000 1.000 0.500 90.00 1.500 1.400
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