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Mini-Minimax Uncertainty Quantification for Emulators∗

Jeffrey C. Regier† and Philip B. Stark†

Abstract. Consider approximating a “black box” function f by an emulator f̂ based on n noiseless observations
of f . Let w be a point in the domain of f . How big might the error |f̂(w) − f(w)| be? If f could
be arbitrarily rough, this error could be arbitrarily large: we need some constraint on f besides
the data. Suppose f is Lipschitz with a known constant. We find a lower bound on the number of
observations required to ensure that for the best emulator f̂ based on the n data, |f̂(w)− f(w)| ≤ ϵ.
But in general, we will not know whether f is Lipschitz, much less know its Lipschitz constant.
Assume optimistically that f is Lipschitz-continuous with the smallest constant consistent with the
n data. We find the maximum (over such regular f) of |f̂(w)− f(w)| for the best possible emulator
f̂ ; we call this the “mini-minimax uncertainty” at w. In reality, f might not be Lipschitz or—if it
is—it might not attain its Lipschitz constant on the data. Hence, the mini-minimax uncertainty at
w could be much smaller than |f̂(w)− f(w)|. But if the mini-minimax uncertainty is large, then—
even if f satisfies the optimistic regularity assumption—|f̂(w) − f(w)| could be large, no matter
how cleverly we choose f̂ . For the Community Atmosphere Model, the maximum (over w) of the
mini-minimax uncertainty based on a set of 1154 observations of f is no smaller than it would be for
a single observation of f at the centroid of the 21-dimensional parameter space. We also find lower
confidence bounds for quantiles of the mini-minimax uncertainty and its mean over the domain of f .
For the Community Atmosphere Model, these lower confidence bounds are an appreciable fraction
of the maximum. To know that the emulator estimates f accurately would require evidence that f
is typically more regular than it is across the n sample values.
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1. Introduction. This paper studies the accuracy of emulators, also known as surrogate
functions and metamodels. Emulators are important tools for approximating functions that
have been observed only partially. Kriging, multivariate adaptive regression splines (MARS),
projection pursuit regression, polynomial chaos (PC) expansions, Gaussian process (GP) mod-
els, and other Bayesian modeling techniques are common methods for constructing emula-
tors [1, 2, 3]. We find error bounds for emulators in general—including the “best possible”
method—rather than focusing on any particular emulation method.1

Emulators are frequently used to approximate expensive computer models, which are
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often deterministic functions.2 Resources limit the number of times the computer model can
be run, though typically an intractable number of inputs is possible—for instance if any input
parameter is a floating point number. By fitting an emulator to the output of a tractable
number of runs for different inputs, one can approximate the computer model inexpensively;
the issue is the accuracy of that approximation.

Computer models known as HEB [4] may be particularly difficult to emulate: They de-
pend on H igh-dimensional inputs; they are Expensive to run; and they are effectively B lack
boxes that are not amenable to closed-form, analytic study. Because such models have high-
dimensional inputs, it takes prohibitively many runs to explore their domains: to attain a
given sample density, the number grows exponentially in the dimension. Because the models
are expensive, performing many runs is impractical or impossible. And because the models
are black boxes, there are few (if any) constraints to ensure that the error in extrapolating
from inputs actually tried to inputs not sampled is small.

HEB problems arise often in practice, for instance in the following:
• Climate models: [5] (21–28-dimensional domains; 1154 simulations; Kriging andMARS).
• Automobile crashes: [6] (15-dimensional domain; 55 simulations; polynomial response

surfaces and artificial neural networks).
• Chemical reactions: [7] (30–50-dimensional domains; boosted surrogate models) and [8]

(46-dimensional domain; seconds per simulation).
• Aircraft design: [9] (25-dimensional domain; 500 simulations; response surfaces and

Kriging), [10] (22-dimensional domain; minutes per simulation; response surfaces and
Kriging), and [11] (31-dimensional domain; 20 minutes to several days per simulation;
Kriging).

• Electric circuits: [12] (60-dimensional domain; 216 simulations; Kriging).
How accurately can a function f be emulated from a given set of data? How many evaluations
of f are required to guarantee that f can be emulated to a given level of accuracy?

Since f is a “black box,” we do not know how rough it might be: extrapolating beyond the
data could entail arbitrarily large errors. We assume that f is regular and find the resulting
uncertainty in emulating f . If the regularity assumption fails, the uncertainty would be
larger. We measure the regularity of f by its absolute condition number or Lipschitz constant
K. Similar results could be derived for other measures of regularity, but Lipschitz bounds are
particularly amenable to analysis.

The observations impose a lower bound K̂ on K. Suppose, optimistically, that the true
Lipschitz constant of f is equal to this lower bound. Then f might be any member of the set
FK̂ of functions that agree with the observations and have Lipschitz constant no greater than

K̂. If an emulator is guaranteed to do well no matter which member of FK̂ f happens to be,
then the uncertainty of that emulator is low. On the other hand, if there are elements of FK̂

2They might not be entirely deterministic; for instance, they could involve Monte Carlo simulations. More-
over, in distributed parallel computations, numerical results can depend on the order in which subproblems
happen to complete. These cases can be thought of as observing the function with noise. We do not address
noise here; however, uncertainty in the observations makes accurate approximation more difficult. Because we
focus on lower bounds on the difficulty of approximating the function accurately, our results generally remain
lower bounds when the observations are not only incomplete but also noisy. To extend our methods to include
noise would involve finding a lower confidence bound on the regularity of the function.
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that an emulator cannot approximate well, the uncertainty is large.
Consider all emulators that can be computed from the observations alone, without addi-

tional knowledge of f ; this collection includes emulators constructed using GP, PC, MARS,
and all the other methods mentioned above. Viewed as a function of w in the domain of f ,
the minimax error among such emulation methods over the set FK̂ of functions that agree

with the observations and have Lipschitz constant no greater than K̂ is the mini-minimax
uncertainty EK̂(w) in the title of this paper.

The first “mini” refers to the regularity condition: since K is not smaller than K̂, EK̂(w)
is a lower bound on the minimax uncertainty for functions that are as regular as f . The
second “mini” refers to emulators: this is the uncertainty for the best emulator—including
all the standard ones. The “max” is over functions that agree with f at the observations and
satisfy the optimistic regularity condition. That is, EK̂(w) is the smallest that the uncertainty
at w could be, for the best emulator, over the set of functions that have the highest degree
of regularity consistent with the observations and that agree with the observations. The
maximum of EK̂(w) over w in the domain of f is an attainable lower bound on the maximum

uncertainty of any emulator f̂ of f .
If K were known, this would be a standard problem in information-based complexity

[13, 14, 15]. We derive bounds on the uncertainty using the lower bound K̂ computed from
the observed variation of f . Section 3 derives a lower bound on the number of additional
observations that might be necessary to learn f . Section 4 derives two lower bounds on the
maximum uncertainty for approximating f from a fixed set of observations: a purely empirical
bound and a bound expressed as a fraction of the unknown Lipschitz constant. The latter
yields conditions under which emulating f by a constant function, equal to the value of f at
the centroid of its domain, has smaller maximum uncertainty than any emulator based on the
n actual observations.

Section 5 applies these bounds to two closed-form functions (a high-dimensional cone
and the borehole function [16]) and to a black box function (the Community Atmosphere
Model [5]). Section 6 extends the results for the maximum error to quantiles of the error and
the mean of the error over the domain of f . Section 7 gives our conclusions.

2. Notation and problem formulation. We summarize key notation in Table 1. The
function f is a fixed unknown real-valued function on [0, 1]p, the p-dimensional unit cube.
The space of real-valued continuous functions on [0, 1]p is C[0, 1]p. The Roman letters i, j, p,
q, and Mϵ denote integers. Lowercase Greek letters denote real scalars, with the exception
of µ, which denotes Lebesgue measure. Uppercase Roman letters such as X and D denote
subsets of [0, 1]p; X is a fixed finite subset of [0, 1]p. Lowercase Roman letters from the end of
the alphabet, such as v, w, x, y, and z, denote points in [0, 1]p. The lowercase Roman letters
e, f , g, and h denote real-valued functions on (subsets of) [0, 1]p. The domain of a function g
is dom(g). The restriction of a function g to D ⊂ dom(g) is denoted by g|D. The observations
from which f is to be emulated are f |X ; that is, we observe f on the set X. An emulator f̂ is
a real-valued function on [0, 1]p. Let ∥h∥∞ ≡ supw∈dom(h) |h(w)|, the infinity-norm of h. This

paper studies how large |f̂(w) − f(w)| and ∥f̂ − f∥∞ could be for the best f̂ chosen on the
basis of the data—without other information about f .
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Table 1
Summary of key notation.

Symbol Meaning

f ................ unknown function on [0, 1]p to be emulated
f̂ ............... an emulator
X ............... finite subset of [0, 1]p where f is observed
g|Y ............. the restriction of the function g to the set Y ⊂ [0, 1]p

f |X ............ the data: the restriction of f to X

K .............. Lipschitz constant of the function f
K̂ .............. smallest Lipschitz constant of any function that interpolates the data
Fκ,Y ........... all functions that interpolate f |Y and have Lipschitz constant no larger

than κ
Fκ ............. Fκ,X

e+κ (w) ......... maximum value at w among functions in Fκ

e−κ (w) ......... minimum value at w among functions in Fκ

f̂κ(w) .......... mean of e+κ (w) and e−κ (w); the minimax emulator at the point w over
functions in Fκ

Eκ,Y (w; f̂) ....maximum uncertainty of f̂ at w: uncertainty of f̂ at the point w over
functions in Fκ,Y

Eκ,Y (w) .......minimax uncertainty at w: uncertainty of the best possible emulator at
the point w over functions in Fκ,Y

Eκ,Y (f̂) ....... maximum uncertainty of f̂ : maximum (over w ∈ [0, 1]p) uncertainty
of f̂ over functions in Fκ,Y

Eκ,Y ........... minimax uncertainty : maximum (over w ∈ [0, 1]p) uncertainty of
the best possible emulator over functions in Fκ,Y

Eκ(· · · ) ........ when Y = X, we generally suppress X from the subscript, viz., Eκ(w; f̂),
Eκ(w), Eκ(f̂), and Eκ

Mϵ ............. minimum computational burden: a lower bound on the number of
additional observations needed to guarantee that the minimax
uncertainty is no larger than ϵ

Let d be a metric on dom(g). The (best) Lipschitz constant for g is

(2.1) Lip(g) ≡ sup

{
g(v) − g(w)

d(v,w)
: v,w ∈ dom(g) and v ̸= w

}
.

If f /∈ C[0, 1]p, then Lip(f) ≡ ∞. Define

Fκ(g) ≡ {(h : [0, 1]p → ℜ) : Lip(h) ≤ κ and h|dom(g) = g}.

Then F∞(f |X) is the space of (possibly discontinuous) functions that fit the n data. Some of
our results involve values of f at points other than the points X at which f was observed; Y
denotes a generic set of points in the domain of f . To simplify notation, we set

Fκ,Y ≡ Fκ(f |Y ).

When Y = X, we generally write Fκ in place of Fκ,X .
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f

Figure 1. Illustration of the difference between the true Lipschitz constant K and the empirical lower bound
K̂ for K. The dotted line is tangent to f where f attains its Lipschitz constant: it has slope K. The dashed
line is the steepest line that intersects any pair of observations: it has slope K̂ ≤ K.

Definition. The uncertainty at w of f̂ : [0, 1]p → ℜ over the set of functions Fκ,Y is

Eκ,Y (w; f̂) ≡ sup
g∈Fκ,Y

|f̂(w) − g(w)|.

The minimax uncertainty at w over the set of functions Fκ,Y is

Eκ,Y (w) ≡ inf
f̂ :[0,1]p→ℜ

Eκ,Y (w; f̂ ).

The maximum uncertainty of f̂ : [0, 1]p → ℜ over the set of functions Fκ,Y is

Eκ,Y (f̂) ≡ sup
w∈[0,1]p

Eκ,Y (w; f̂ ) = sup
g∈Fκ,Y

∥f̂ − g∥∞.

The minimax maximum uncertainty over the set of functions Fκ,Y is

Eκ,Y ≡ inf
f̂ :[0,1]p→ℜ

Eκ,Y (f̂).

The emulator f̂ approximates f within E∞(w; f̂ ) at the point w if f is in F∞, the set of
functions that agree with the observations. However, E∞(w; f̂) is infinite for every f̂ unless
w ∈ X, even if f is guaranteed to be continuous.3 To guarantee that the uncertainty is finite
requires stronger regularity than mere continuity.

Let K ≡ Lip(f) and K̂ ≡ Lip(f |X). Because X ⊂ [0, 1]p, K̂ ≤ K, as illustrated in
Figure 1. (There and in subsequent figures, p = 1 and the bold black dots represent f |X , the
observations of f at x ∈ X.)

Define
e+κ (w) ≡ min

x∈X
[f(x) + κd(x,w)]

3The set X is not dense in [0, 1]p, so for any c > 0, there exists some function g ∈ F∞(f |X ) satisfying
∥f − g∥∞ > c.
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e+κ
e−κ
f

e+κ
e−κ
f

Figure 2. Illustration of the upper and lower envelope functions e−κ and e+κ . In the left panel, κ = K; in
the right, κ < K. If κ ≥ K, then e−κ ≤ f ≤ e+κ , and, equivalently, f ∈ Fκ.

e+κ
e−κ
f̂κ

e+κ
e−κ
f̂κ

e+κ
e−κ
f̂κ

Figure 3. Illustration of how the pointwise uncertainty depends on the observed variation of f : the un-
certainty is smaller where the data require f to vary rapidly. The vertical distance between the blue and red
curves is twice the uncertainty at the corresponding abscissa. The black error bars are at some points where
the uncertainty is largest. The succession of panels shows that as the slope between observations approaches κ,
Eκ(w) approaches 0 for points w between observations, and the maximum uncertainty decreases.

and

e−κ (w) ≡ max
x∈X

[f(x)− κd(x,w)] .

The mean of the two is

f̂κ(w) ≡ f̂κ(w;X,κ) ≡ e−κ (w) + e+κ (w)

2
.

Figures 2 and 3 illustrate these definitions. The proof of Proposition 1 shows that the function
f̂κ(w) is the minimax emulator for pointwise error over the class Fκ of functions that agree
with the data and have Lipschitz constant no greater than κ. The minimax emulator f̂κ(w)
interpolates (rather than smooths) the data.
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3. Bounds on the number of observations needed to approximate f well. In this
section we construct a function f̄ that agrees with the data f |X , has Lipschitz constant K̂
(the smallest Lipschitz constant consistent with the data), and yet would require a large
number Mϵ of additional observations f |Y to estimate f within ϵ on [0, 1]p.4 The function f̄ is
not intended to be an emulator—it is a technical device. Since f could in fact be f̄ , this gives
a lower bound on the number of additional observations that might be required to estimate f
well, even if f is no rougher than the original data f |X reveal it to be.

Let B(x, δ) denote the open ball in Rp centered at x with radius δ. Since f has Lipschitz
constant K, f(y) is guaranteed to be within ϵ of f(x) if y ∈ B(x, ϵ/K). But depending on f
and X, it can happen that f̂K̂ is guaranteed to be within ±ϵ of every g ∈ FK for parts of the
domain not contained in ∪x∈XB(x, ϵ/K). To see this, consider p = 1, f(x) = x, and let X be
the two-element set {0, 1}. Then K = K̂ = 1. In this case, the observations f |X determine
f exactly: the only function in FK is f . In this example, for a function g to agree with the
observations requires it to attain the Lipschitz constant K everywhere. A function cannot
agree with the observations and “run away” from f very far.

More generally, if f varies on X, then for a function g to agree with f at the observations,
g must vary too. That required variation “spends” some of g’s Lipschitz constant, preventing
g from running as far away from f as it could if fX were constant. We now quantify this
intuition to construct a function f̄ that requires many additional observations to estimate well.
The function f̄ is constant “as much as possible” subject to the constraint that it interpolates
the data and has Lipschitz constant K̂. Since estimating f̄ where it is constant is hard (as
illustrated in Figure 3), the size of the set where f̄ could be constant gives a lower bound on
the number of additional observations that might be required.

Define γ̄ ≡ argminγ∈R
∑

x∈X |f(x)− γ|p. Computing γ̄ is straightforward because the
objective function is univariate and convex.5 Let X+ ≡ {x ∈ X : f(x) ≥ γ̄}, and let
X− ≡ {x ∈ X : f(x) < γ̄}. Let

Q+ ≡
⋃

x∈X+

{
B

(
x,

f(x)− γ̄

K̂

)⋂
[0, 1]p

}

and

Q− ≡
⋃

x∈X−

{
B

(
x,

γ̄ − f(x)

K̂

)⋂
[0, 1]p

}
.

Then Q+ ∩Q− = ∅.6

4We do not discuss the choice of ϵ > 0 in detail: scientific context should inform the choice. In examples
below, we set ϵ to be an absolute tolerance, a fraction of K̂, and a fraction of K. One might also consider
relating ϵ to the “typical value” of f (e.g., the mean of f or of f |X).

5Alternatively, we could set γ̄ ≡ 1
#X

∑
x∈X f(x), where #X is the size of X. The resulting lower bound

may not be as tight.
6Fix x+ ∈ X+ and x− ∈ X−. Then

∣∣f(x+)− f(x−)
∣∣ /d(x+, x−) ≤ K̂. Equivalently, d(x+, x−) ≥∣∣f(x+)− f(x−)

∣∣ /K̂. Let B+ = B
(
x+, [f(x)− γ̄] K̂

)
and B− = B

(
x−, [γ̄ − f(x)] /K̂

)
. Let a be the sum of the

radii of B+ and B−. Then a =
(
f(x+)− γ̄

)
/K̂ +

(
γ̄ − f(x−)

)
/K̂ =

(
f(x+)− f(x−)

)
/K̂, and a ≤ d(x+, x−).

Therefore, B+ ∩B− = ∅. Because our selection of x+ ∈ X+ and x− ∈ X− was arbitrary, Q+ ∩Q− = ∅.
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f̄

γ̄

e+
K̂
e−
K̂
γ̄

Figure 4. A function that agrees with the data, has Lipschitz constant K̂, and is hard to estimate because it
is often constant. The function f̄ (shown in the left panel) is comprised of segments of e+

K̂
, e−

K̂
and the constant

function γ̄ (all shown in the right panel). It is constant over roughly half of the domain. No function between
e−
K̂

and e+
K̂

(inclusive) is constant over a larger fraction of the domain.

Define

f̄ : [0, 1]p → R,

w /→

⎧
⎨

⎩

e−
K̂
(w), w ∈ Q+,

e+
K̂
(w), w ∈ Q−,

γ̄ otherwise.

Figure 4 illustrates this definition. If we know f |X , we know f̄ . By construction, f̄ ∈ FK̂ ⊂
FK .

Let Q̄ ≡ [0, 1]p \ (Q+ ∪ Q−). Let µ be Lebesgue measure. By the union bound, because
µ([0, 1]p) = 1,

µ(Q̄) ≥ 1−
∑

x∈X
µ
(
B
(
x, |f(x)− γ̄|/K̂

))
.

Let C2 ≡ πp/2

Γ(p/2+1) and C∞ ≡ 2p, where Γ is the gamma function. Then, for q ∈ {2,∞},

µ(Q̄) ≥ 1− Cq

∑

x∈X

(
|f(x)− γ̄|/K̂

)p
.

If there is some x ∈ X for which for all g ∈ FK̂,{x}, |g(y) − f(x)| < ϵ for all y ∈ A ⊂ Q̄, then

µ(A) ≤µ(B(0, ϵ/K̂)). Hence, because f̄ ∈ FK ,

Mϵ ≥
⌈

µ(Q̄)

µ(B(0, ϵ/K̂))

⌉

≥
⌈

ϵ−p

[
K̂p

Cq
−
∑

x∈X
|f(x)− γ̄|p

]⌉

.(3.1)

Section 5 shows that this lower bound, the minimum computational burden, can be extremely
large for even modest problem dimensions p.
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4. Bounds on the maximum uncertainty for a fixed experimental design. The previous
section gave lower bounds on the number of additional observations of f required to attain a
desired maximum uncertainty ϵ. This section gives two lower bounds on the maximum un-
certainty EK(f̂) for a fixed experimental design X: an absolute bound and a bound expressed
as a fraction of K. The bound as a fraction of K can yield a strong negative result: when
a statistic—calculable from the observations—exceeds a calculable threshold, the maximum
uncertainty is not less than the maximum uncertainty of the best emulator based on a single
observation at the centroid of the domain. If the goal is to minimize the maximum uncertainty,
we could have just approximated f as constant and saved #X − 1 observations.

4.1. Lower bounds. Consider the set Fκ of functions g that agree with the observations
f |X and have Lipschitz constant no larger than κ. Consider all possible emulators f̂ . Proposi-
tion 1 states that the smallest (across emulators f̂) maximum (across functions g) error at the
point w ∈ [0, 1]p is [e+κ (w)− e−κ (w)]/2, and the emulator f̂κ(w) attains this bound at every w.

Proposition 1. If κ ≥ K̂, then

Eκ(w) = Eκ(w; f̂κ) =
e+κ (w)− e−κ (w)

2
.

Proofs, including the proof of Proposition 1, are in Appendix A.
Corollary 2. For any emulator f̂ ,

(4.1) EK(w, f̂) ≥ EK(w) ≥ EK̂(w; f̂K̂).

Corollary 2 follows from Proposition 1 and the fact that, since K̂ ≤ K,

FK̂ ⊂ FK .

Corollary 2 is one of our principal results: EK̂ , a statistic calculable solely from the observa-

tions f |X , is a lower bound on the maximum uncertainty for any emulator f̂ based on the
observations f |X . Theorem 3 gives a stronger lower bound in terms of the unknown value
of K.

Theorem 3. For any λ ∈ ℜ+, if EK̂ ≥ λK̂, then EK(f̂) ≥ λK.

4.2. Maximum uncertainty for an emulator based on one observation. In this section
we work in ℓ∞: d(v,w) = ∥v − w∥∞. This simplifies the calculations and gives a particularly
strong result.

Let z ≡ (1/2, . . . , 1/2), the centroid of [0, 1]p, and let Z ≡ {z}. Let ĝ ∈ F∞,Z be the
constant function ĝ(w) ≡ f(z) for all w ∈ [0, 1]p. The ℓ∞ distance from z to any point on the
boundary of [0, 1]p is 1/2, so

EK,Z(ĝ) =
K

2
.

That is, the maximum uncertainty of the emulator that is constant throughout [0, 1]p and
equal to the value of f at the centroid of the cube is K/2. Let W ⊂ [0, 1]p be finite, and let
c ∈ R. Suppose f is constant on the set W and that W contains fewer than 2p points. Let
ĥ ∈ F∞,W . By examining the corners of the domain, it follows that

EK,W (ĥ) ≥ K

2
.
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Making 2p observations of f is intractable for the Community Atmosphere Model and for
many other applications. If f is nearly constant, the situation may still be hopeless.

How do we know whether f |X is too close to constant to benefit from observing it more
than once but fewer than 2p times?

Corollary 4. If EK̂ ≥ K̂/2, then

EK(f̂) ≥ K

2
≥ EK,Z(ĝ).

That is, if EK̂ ≥ K̂/2, no emulator based on observing f |X has smaller maximum uncer-
tainty than the constant emulator based on a single observation—f is too nearly constant.
Corollary 4 follows directly from Theorem 3, taking λ = K̂/2.

5. Applications. This section presents three examples of increasing complexity: two in
which f is known analytically, and one in which f is HEB arising from a numerical model of
climate. In this section the distance metric is d(v,w) = ∥v − w∥∞, except where noted.

5.1. High-dimensional ℓ∞ cone. Consider a emulating a function defined on the 21-
dimensional hypercube [0, 1]21; z ≡ (0.5, . . . , 0.5) denotes the center of that hypercube. Sup-
pose

f(x) ≡ ∥x− z∥∞.

We observe f at z and, for i = 1, . . . , 21, at both points satisfying xi ∈ {0, 1} and xj = 0.5 for
j ̸= i. (This is a “one-at-a-time” sampling design, where one component at a time is shifted
from a typical value to a more extreme value.) These 43 points constitute X. Then

K̂ = K = 1.

Because every point w ∈ [0, 1]21 is within 0.5 of x ∈ X satisfying f(x) = 0.5,

e−
K̂

≥ 0.

Because every point w ∈ [0, 1]21 is within 0.5 of z, and f(z) = 0,

e+
K̂

≤ 0.5.

Hence, by Corollary 2,
EK̂ ≤ 0.25.

Had we only observed f at z but fixed K̂ = 1 (or observed f at another point in addition to
z and computed K̂ from those two points),

EK̂ = 0.5.

In this example, despite the high dimension of dom(f), emulating f using a modest number
of observations (43) has smaller maximum uncertainty than emulating f using just a single
observation of f at z: a small number of observations may constrain a high-dimensional
function globally. High-dimensional problems with small numbers of data do not necessarily
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Table 2
Borehole function domain.

Variable Range Description
Hu [990, 1110] potentiometric head of upper aquifer (m)
Hℓ [700, 820] potentiometric head of lower aquifer (m)
Tu [63070, 115600] transmissivity of upper aquifer (m2/yr)
Tℓ [63.1, 116] transmissivity of lower aquifer (m2/yr)
r [100, 50000] radius of influence (m)
rw [0.05, 0.15] radius of borehole (m)
L [1120, 1680] length of borehole (m)
Kw [9855, 12045] hydraulic conductivity of borehole (m/yr)

have large uncertainties, as “the curse of dimensionality” would suggest. The dimension
matters, but so does f itself.

To connect our results to a common emulation method, we fit a GP to f |X by maximum
likelihood using the R package mlegp [17]. For 100,000 points selected uniformly at random
from [0, 1]p, the mean error is 0.02, 2% of K. The maximum error at these 100,000 points is
0.23, but the error at (0.6, . . . , 0.6)—which is not in the sample—is 0.38.7 Because the error
of f̂K̂ is no greater than EK̂ = 0.25, for this f , the minimax emulator f̂K̂ outperforms this GP
emulator both in minimax uncertainty and in actual maximum error.

5.2. Borehole function. The commonly used test function

f0(Hu,Hℓ, Tu, Tℓ, r, rw, L,Kw) ≡
2πTu (Hu −Hl)

log (r/rw)
(
1 + 2LTu

log(r/rw)r2wKw
+ Tu

Tℓ

)

models water flow through a borehole [16]. Its input variables are described in Table 2, which
also lists the ranges of those variables. The output is water flow rate in cubic meters per
year. We rescale f0 so that its inputs range over the 8-dimensional unit hypercube [0, 1]8; the
resulting function is denoted by f .

Reasoning about the functional form of f (Appendix B) shows that

944 ≤ K ≤ 1200.

Of course, if f really were a black box, such reasoning would be impossible. We estimated K̂
from 1000 sample points selected in two different ways:

1. Select 1000 points by Latin hypercube sampling. This yields K̂ = 367.
2. Select 100 points by Latin hypercube sampling. For each of these points, draw an

additional nine points a small distance (10−5) from it in each coordinate in a random
direction. This yields K̂ = 576.

We fix K̂ = 576 for the remainder of this example; note that this is roughly half the true
value of K.

Now let X contain the following 273 points: all 28 = 256 corners of [0, 1]8, the center of
the domain (0.5, . . . , 0.5), and, for i = 1, . . . , 8, each of the two points satisfying xi ∈ {0, 1}

7This point was found by searching the ray c(1, . . . , 1); there might be points with even larger errors.
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and xj = 0.5 for j ̸= i. (The empirical Lipschitz constant of f on this set is less than 576.)
By branch-and-bound we find

E576 < 207,

which is less than 576/2. Hence, by Corollary 2, the best emulator f̂576 based on f |X has
lower maximum uncertainty than the best emulator based on f |{z} alone.

HoldingX fixed, we now lower-boundMϵ, the minimum computational burden (section 3).
Convex programming finds γ̄ = 134.7. The union bound implies that the proportion of the
domain where f could be constant is µ

(
Q̄
)
≥ 0.76. Then for ϵ = 100 (about 20% of K̂ or 10%

ofK), M100 ≥ 3598 additional observations might be needed. But for ϵ = 10, M10 ≥ 3.59×1011

additional observations might be required.
For comparison, we emulate f by a GP, again estimating the parameters using the R

package mlegp [17] from the same set X of 273 points. For 100,000 points selected at random
uniformly from [0, 1]8, the mean error is 37.3, approximately 3% of K. The maximum error
at these points is 207.9, approximately 20% of K.

5.3. Climate modeling. The Uncertainty Quantification Initiative at Lawrence Livermore
National Laboratory8 provided results from 1154 climate simulations using the Community
Atmosphere Model (CAM) with p = 21 parameters. Each parameter was scaled so that the
interval [0, 1] contained all values considered physically reasonable. The output of interest
was a scalar, the simulated global average upwelling longwave flux (FLUT) averaged over the
third through twelfth years of the simulation (a 10-year average after a 2-year burn-in). Each
such average is deterministic: repeating a run with the same input parameters should produce
the same output. The simulator amounts to a function f that maps [0, 1]p → R. Running
the simulator was computationally expensive; each run took several days on a supercomputer.
The Lawrence Livermore National Laboratory team used several approaches to choose the
points X ⊂ [0, 1]p at which to run simulations, including Latin hypercube, one-at-a-time, and
random-walk multiple-one-at-a-time [5]. The 1154 simulations include all points selected by
any of those approaches.

For these observations, we find γ̄ = 232.77, K̂ = 14.20 for q = 2, and K̂ = 34.68 for
q = ∞.

5.3.1. Computational burden. By (3.1),

Mϵ ≥
⌈
ϵ−21

[
1.57× 1024

0.014
− 6.81 × 1024

]⌉
> ϵ−21 × 1025

for q = 2. For example, if ϵ is 1% of K̂, then Mϵ ≥ 1043. Even if ϵ is 50% of K̂, Mϵ > 108.
For q = ∞,

Mϵ ≥
⌈
ϵ−21

[
2.19 × 1032

221
− 6.81 × 1024

]⌉
> ϵ−21 × 1025.

These lower bounds on the minimum computational burden are extreme for a wide range
of values of ϵ: there are functions that fit the 1154 observations and are as regular as the

8This dataset was provided by the Institutional Science and Technology Office at Lawrence Livermore
National Laboratory under the Uncertainty Quantification Strategic Initiative Laboratory-Directed Research
and Development Project 10-SI-013.
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observations allow but that cannot be approximated with useful uncertainty from any tractable
number of observations. The function f̄ , which is simple to construct, attains these lower
bounds on minimum computational burden. Note the contrast with the cone example, which
was also 21-dimensional: the dimension of dom(f) does not by itself determine how hard it is
to emulate f accurately.

5.3.2. Uncertainty. Is the maximum uncertainty of the best emulator based on observing
f at the 1154 points in X lower than the maximum uncertainty of the constant emulator
based on one observation of f at the centroid of [0, 1]p? We cannot simply compute these two
maximum uncertainties because K is unknown. But Corollary 4 applies if we can determine
whether EK̂ ≥ K̂/2. Unfortunately, determining EK̂ is difficult. In ℓ∞, if f |X is constant,
finding EK̂ amounts to finding a maximal empty hypercube, a problem recently shown to be
NP-hard in p [18]. It is generally no easier if f varies on X. Fortunately, it suffices to bound
EK̂ . By working in ℓ∞, we can bound EK̂ above and below by considering just the corners of
[0, 1]p; we take d(v,w) = ∥v − w∥∞ throughout this section.

Proposition 5. Let 0 ≡ (0, . . . , 0), 1 ≡ (1, . . . , 1), and d̃(v) ≡ max (d(v,0), d(v,1)). Then

EK̂ ≤ 1

2

{
min
x∈X

[
f(x) + K̂d̃(x)

]
−max

x∈X

[
f(x)− K̂d̃(x)

]}
.

Using this proposition, we calculate EK̂ ≤ 20.95 for the CAM dataset. On the other hand,
the maximum over all [0, 1]p is at least as large as the maximum over the corners of [0, 1]p:

EK̂ ≥ max
{
EK̂(w) : ∀w ∈ {0, 1}p

}
.

Perhaps surprisingly, this lower bound is essentially sharp for the CAM dataset. The domain
[0, 1]p contains 2p corners {ri}2

p

i=1. Divide [0, 1]p into 2p hypercubes {Ri}2
p

i=1 with edge-length
1/2, disjoint interiors, each containing a different corner of [0, 1]p (e.g., one such hypercube
is [0, 1/2]p). Then the Ri are disjoint ℓ∞-balls of radius 1/4. Because X contains only 1154
points, the vast majority of {Ri}2

p

i=1 do not contain any element of X. Because EK̂(w) tends
to increase with distance from points in X, these unoccupied hypercubes are good regions to
look for points with large values of EK̂(w). Within an unoccupied hypercube Ri, no point is
farther in ℓ∞ from any point in X than the corner ri. So, the corners {ri}2

p

1 are good places
to observe EK̂(w) to find a tight lower bound on EK̂ .

For the CAM dataset, one corner rj attains EK̂(rj) = 20.95. Since this is also the numerical
upper bound, EK̂ = 20.95.

Because EK̂ ≥ K̂/2 = 17.34, Theorem 3 says that EK(f̂) ≥ K/2 for any emulator f̂ . In
other words, by the discussion in section 4.2, our maximum uncertainty would have been no
greater had we just observed f once, at z, and predicted f̂(w) = f(z) for all w ∈ [0, 1]p.

In some sense, this result is not surprising: if we had fixed K̂ but replaced f with a
constant function, and #X < 2p, then EK̂ ≥ K̂/2, with equality holding if and only if z ∈ X.

By repeating the bounding procedures from the previous two sections with K̂/2 = 17.34 fixed
but f replaced with constant function c, we find Ec,X,K̂ = 26.95. The increase in maximum
uncertainty from 20.95 to 26.95 that results from replacing f with a constant shows that
the observed variation in f reduces the maximum uncertainty considerably—although the
maximum uncertainty remains quite large.
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Table 3
Confidence bounds for quantiles and the mean of the uncertainty of the minimax emulator f̂K̂ for CAM.

95% lower confidence bound
Norm Units Lower quartile Median Upper quartile Average

Euclidean K̂/2 1.462 1.599 1.732 1.599
Supremum K̂/2 0.648 0.716 0.781 0.715
Euclidean γ̂ 0.044 0.049 0.053 0.049
Supremum γ̂ 0.048 0.053 0.058 0.053

Column 1: distance metric d used for the Lipschitz constant.
Columns 3–5: binomial lower 95% confidence bounds for quartiles of
the uncertainty, obtained by inverting binomial tests. Column 6: 95%
lower 95% confidence bound for the integral of the uncertainty over the
entire domain [0, 1]p, based on inverting z-tests. Columns 3–6 are ex-
pressed as a fraction of the quantity in column 2. Results are based on
10,000 uniform random samples from [0, 1]p.

To connect these theoretical results to common emulation methods, we fit a GP model [17]
and multivariate adaptive regression splines (MARS) [19] to the 110 CAM observations from
a Latin hypercube design, leaving 1043 observations for testing. On the test set, the mean
error of the Gaussian process model is 1.03 (3% of K̂) and the maximum error is 6.73 (20% of
K̂). For MARS, the mean error on the test set is 1.59 and the maximum error is 6.21. Since
the 1043 test points are all distant from many corners of [0, 1]p, the error of these methods
over [0, 1]p might be far larger; it would take many more evaluations of f to tell. Absent such
data, there is no evidence that those methods have maximum error less than EK̂ = 20.95.

6. Extensions.

6.1. Distribution of the uncertainty. By drawing independent pointsW ∼ Uniform([0, 1]p)
and evaluating EK̂(W ), we construct lower confidence bounds for quantiles of the uncertainty
and the mean uncertainty over [0, 1]p. Table 3 shows the results for the CAM simulations
based on 10,000 random samples from [0, 1]p. Even the lower quartiles are a large fraction of
K̂. For instance, at confidence level 95%, the uncertainty under the sup-norm metric exceeds
71.7% of K̂/2 on at least 50% of the domain.

6.2. Uncertainty relative to typical values. We have focused on taking ϵ to be a frac-
tion of K or K̂. When ϵ is chosen that way, sections 3 and 4 establish conditions under
which no emulator can be guaranteed to replicate the variation of f . Emulators are generally
constructed to capture the complexity of the model: tracking its variability. That suggests
approximating f to within a fraction of its variation, which is why we have calibrated ϵ to
K̂. If the goal were to approximate f to within a fraction of its mean, and its mean is large
compared to its variation, approximating f globally by its sample mean might suffice. Then
it might make sense to set ϵ to be a fraction of a typical value of f , for instance, γ̄ or the
sample mean

γ̂ =
1

#X

∑

x∈X
f(x).
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Table 4
Minimum computational burden for the CAM model.

Norm ϵ/γ̂ Lower bound on Mϵ

Euclidean 0.02 3.6× 1012

0.04 1,720,354

0.06 345

0.08 1

Supremum 0.02 8.6× 1010

0.04 413,595

0.06 83

0.08 1

The last two rows of Table 3 list confidence bounds for percentiles of the uncertainty as a
fraction of γ̂.

Similarly, for ϵ chosen suitably, inequality (3.1) gives a lower bound on Mϵ for approxi-
mating f within a fraction of its typical value, rather than within a fraction of its observed
variation. (Of course, the resulting bounds can be made arbitrarily small by adding a suf-
ficiently large constant to f . One reason we think it is more interesting to calibrate ϵ as a
fraction of K or K̂ is that the results are invariant under affine transformations of f .)

For the CAM model, this lower bound on Mϵ is trivial when ϵ is a large fraction of the
typical value of f but grows rapidly as the fraction decreases (Table 4).

6.3. Other uses for e−κ and e+κ . We have primarily used e+κ and e−κ to construct the
minimax emulator and find its uncertainty. But if f is no less regular than it was observed to
be, e+

K̂
is a pointwise upper bound on f and e−

K̂
is a pointwise lower bound on f . Moreover, if

f is no less regular than the data require it to be, maxw∈[0,1]p e
+
K̂
(w) is a global upper bound

on f and minw∈[0,1]p e
−
K̂
(w) is a global lower bound on f .

Maximizing e+
K̂

or minimizing e−
K̂

exactly may not be tractable. For sup-norm, we can use
the techniques from section 5.3 to bound these extrema from above and below: for the CAM
model, those upper and lower bounds on e+

K̂
are equal, as they are for e−

K̂
. The maximum of

e+
K̂

is 253.78, and the minimum of e−
K̂

is 211.88.

7. Conclusions. We find a lower bound on the minimum (over emulators) maximum (over
functions that agree with the data and are as regular as the data allow) error of emulators of
a function f based on n observations. This “mini-minimax” uncertainty is optimistic because
it assumes that f has the smallest Lipschitz constant consistent with the data. The mini-
minimax uncertainty is an attainable bound on the error of the best emulator of f at w: for
any emulator f̂ , there is a function g that is at least as regular as f , that agrees with f at the
n observations, and for which |f̂(w) − g(w)| is at least this mini-minimax value.

In some problems, every emulator based on any tractable number of observations of f has
large maximum uncertainty (and the uncertainty is large over much of the domain), even if f
is as regular as the data allow. That is, there are functions g and h that agree perfectly with
the observations, are as regular as the observations permit, and yet differ by a large amount
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at some point in the domain of f .
We give sufficient conditions under which even the best possible emulator has large uncer-

tainty. The conditions depend only on the observed values of f ; they can be computed from
the same observations used to train an emulator, at a cost that typically is small compared
with the cost of generating those observations. The conditions are sufficient but not necessary
because f could be less regular than any finite set of observations reveals it to be. It is not
possible to give necessary conditions that depend only on the observed values of f ; a priori
bounds on the regularity of f would be needed.

The conditions seem likely to hold for many high-consequence applications. Indeed, we
show quantitatively that the conditions hold for a large climate-modeling dataset. When the
maximum uncertainty in approximating f everywhere by a constant—the value of f at the
center of the domain—is no larger than the maximum uncertainty in approximating f from
any tractable number of observations, emulators may not be useful. No emulator can then
reliably model f as a function of its input w ∈ [0, 1]p.

Common techniques for assessing the accuracy of emulators (e.g., posterior variance or
performance on hold-out data) understate the true uncertainty because they make strong
assumptions about f that are based neither on the observations nor on known properties of
f or because they focus on average error rather than worst-case error. However, as section 6
shows, even the average uncertainty and quartiles of the uncertainty for the CAM model are
quite large.

The mini-minimax uncertainty is a one-sided tool: if this uncertainty is large, the data
do not constrain f well, while if it is small, the data constrain f only if it is no less regular
than the data collected so far show it must be. That said, if the mini-minimax uncertainty is
uncomfortably large, there might be ways to reduce it. For instance, if the lower bound (3.1)
on the computation burden required to reduce the uncertainty to a useful level ϵ is afford-
able, one might collect more data. Provided the new data do not increase K̂ substantially,
the mini-minimax uncertainty can be reduced at will. But when p is large, the lower bound
is likely to be large because it grows exponentially with p. If observing f requires a real-
world experiment, new technology might be required to make a useful number of additional
observations affordable. When observing f involves running a simulator, collecting enough
additional data to reduce the uncertainty to a reassuring value might require not only re-
cruiting additional computational resources but also reducing the computational cost of each
simulation—substantially.

In some cases, clever strategies can reduce the cost of computing f , at least to some known
degree of approximation, but that is not always so. Cost reductions of orders of magnitude
might require reducing the complexity of f . Reducing the dimension p of the domain of f
is especially helpful because reducing p pays exponential dividends. But it requires scientific
justification: In general, eliminating parameters from a model entails bias in the model with
no a priori limit. It is hard to calibrate the tradeoff between fitting a model that is constrained
by the data but is known or suspected to be overly simplistic—and therefore biased—and a
model that has lower bias but cannot be estimated reliably from an affordable number of data.
Subject-matter knowledge is key.

Without increasing the number of observations or revising the model, reducing the un-
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certainty of emulators requires either more information about f9 or changing the measure
of uncertainty—changing the scientific question. Finally, approximating f pointwise is not
usually the ultimate scientific goal. More important questions about f might be answered
more directly.10 These tactics are application-specific: the underlying science dictates the
conditions that actually hold for f and the questions about f that matter.

Appendix A. Proofs. For real χ and ρ, define the interval

I(χ, ρ) ≡
{
[χ− ρ,χ+ ρ] , ρ ≥ 0,

∅ otherwise.

If I is an interval, µ(I) denotes its length; for instance, µ(I(χ, ρ)) = max(0, 2ρ).
Lemma 6. Fix α ∈ [0, 1], ρ1, . . . , ρn ∈ [0,∞), and χ1, . . . ,χn ∈ R. Let I1 ≡

⋂n
i=1 I(χi, ρi)

and Iα ≡
⋂n

i=1 I(χi,αρi). Then αµ (I1) ≥ µ (Iα).
Proof. Because the intersection of intervals is itself an interval, there exist χ0 and ρ0

satisfying
Iα = I(χ0, ρ0).

Fix i ∈ 1, . . . , n. Then
I(χ0, ρ0) ⊂ I(χi,αρi).

It follows that
χ0 − ρ0 ≥ χi − αρi.

Then
α
(
ρi −

ρ0
α

)
≥ χi − χ0.

Because α ≤ 1 and ρi ≥ 0,

ρi −
ρ0
α

≥ χi − χ0.

Finally,

χ0 −
ρ0
α

≥ χi − ρi.

By symmetric reasoning we also have

χ0 +
ρ0
α

≤ χi + ρi.

Therefore,

I
(
χ0,

ρ0
α

)
⊂ I(χi, ρi).

9Common additional conditions include the following: parameters have only low-order interactions; the
second derivative has an upper bound; the third derivative has a limited number of knots; the integral of the
squared derivative of the model is bounded [20]. There are problems in which conditions like these may reflect
actual knowledge about f . However, such conditions tend to be difficult to verify: simulation is perhaps most
valuable when the underlying equations are not amenable to mathematical analysis.

10For example, for global optimization—finding maxima or minima—a form of adaptive sampling known as
multistart methods yields good results [21].
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Because i was arbitrary,

I
(
χ0,

ρ0
α

)
⊂ I1.

Hence,

µ (I1) ≥ µ
(
I
(
χ0,

ρ0
α

))
=

2ρ0
α

=
µ (Iα)

α
.

Lemma 6 is used in the proof of Theorem 3, below.
Proposition 1. If κ ≥ K̂, then

Eκ(w) = Eκ(w; f̂κ) =
e+κ (w)− e−κ (w)

2
.

Proof.
Step 1: e+κ and e−κ are Lipschitz continuous with constant κ. For v,w ∈ [0, 1]p, there exist

x, y ∈ X satisfying

e+κ (v) = f(x) + κd(x, v) and e+κ (w) = f(y) + κd(y,w).

Suppose without loss of generality that e+κ (v) ≥ e+κ (w). By construction, e+κ (v) ≤ f(y) +
κd(y, v). Hence

0 ≤ e+κ (v) − e+κ (w) ≤ f(y) + κd(y, v) − e+κ (w)

= f(y) + κd(y, v) − f(y)− κd(y,w)

≤ κ(d(y, v) − d(y,w))

≤ κd(v, y)

by the triangle inequality. Hence e+κ has Lipschitz constant κ. An analogous argument shows
that e−κ also has Lipschitz constant κ.

Step 2: e+κ and e−κ agree with f on X. (Hence, f̂κ = (e+κ + e−κ )/2 agrees with f on X.)
We have

κ ≥ K̂ ≡ max
x,y∈X:x ̸=y

|f(x)− f(y)|
d(x, y)

,

and hence |f(x)− f(y)| ≤ κd(x, y) for all x, y ∈ X. Thus

min
x∈X

[f(x) + κd(x, y)] = min

{
f(y), min

x∈X,x ̸=y
[f(x) + κd(x, y)]

}
= f(y).

Similarly, maxx∈X [f(x)−κd(x, y)] = f(y) for y ∈ X. Hence, e+κ (y) = e−κ (y) = f(y) for y ∈ X.
Since, as shown in Step 1, e+κ and e−κ are Lipschitz with constant κ, e+κ and e−κ ∈ Fκ.

Step 3: e−κ is the pointwise infimum of Fκ, and e+κ is the pointwise supremum of Fκ.
Suppose to the contrary that there exist w ∈ [0, 1]p, x ∈ X, and g ∈ Fκ for which

g(w) > f(x) + κd(x,w).

Recall that g ∈ Fκ implies that g(x) = f(x) for all x ∈ X. Hence

g(w) − g(x) > f(x) + κd(x,w) − f(x) = κd(x,w).
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That is, g has a Lipschitz constant greater than κ, a contradiction. Hence, e+κ (w) = sup{g(w) :
g ∈ Fκ} for all w ∈ [0, 1]p. The same argument, mutatis mutandi, shows that

e−κ (w) = inf{g(w) : g ∈ Fκ} ∀w ∈ [0, 1]p.

Step 4: The maximum uncertainty of f̂κ at w, Eκ(w; f̂κ), equals [e+κ (w) − e−κ (w)]/2.

Eκ(w; f̂κ) ≡ sup
g∈Fκ(w)

∣∣∣f̂κ(w) − g(w)
∣∣∣

= max

{

sup
g∈Fκ(w)

g(w) − f̂κ(w), f̂κ(w) − inf
g∈Fκ(w)

g(w)

}

= max
{
e+κ (w)− f̂κ(w), f̂κ(w) − e−κ (w)

}
(A.1)

= max

{
e+κ (w) −

e+κ (w) + e−κ (w)

2
,
e+κ (w) + e−κ (w)

2
− e−κ (w)

}

=
e+κ (w)− e−κ (w)

2
.

Equality (A.1) follows from Step 3.
Step 5: The minimax uncertainty at w, Eκ(w), equals [e+κ (w)−e−κ (w)]/2. Suppose f̂(w) >

f̂κ(w). Then

|f̂(w) − e−κ (w)| >
e+κ (w)− e−κ (w)

2
= Eκ(w; f̂κ).

Suppose f̂(w) < f̂κ(w). Then

|f̂(w) − e+κ (w)| >
e+κ (w)− e−κ (w)

2
= Eκ(w; f̂κ).

Hence, f̂κ(w) is minimax, and Eκ(w) = Eκ(w, f̂κ) = [e+κ (w) − e−κ (w)]/2.
Lemma 7. For κ ≥ 0,

Eκ(w) =
1

2
µ

(
⋂

x∈X
I (f(x),κd(x,w))

)

.

Proof.

Eκ(w) =
1

2

[
e+κ (w) − e−κ (w)

]

=
1

2

{
min
x∈X

{f(x) + κd(x,w)} −max
x∈X

{f(x)− κd(x,w)}
}

=
1

2
µ

([
max
x∈X

{f(x)− κd(x,w)} ,min
x∈X

{f(x) + κd(x,w)}
])

=
1

2
µ

(
⋂

x∈X
I (f(x),κd(x,w))

)

.



UNCERTAINTY QUANTIFICATION FOR EMULATORS 705

The first equality follows from Proposition 1.
Theorem 3. For any λ ∈ ℜ+, if EK̂ ≥ λK̂, then EK(f̂) ≥ λK.
Proof. Let w⋆ ≡ argmaxw EK̂(w). Then

EK(f̂) ≥ EK(f̂K)

= EK(w⋆)

≥ K

K̂
· EK̂(w⋆)(A.2)

≥ K

K̂
· λK̂(A.3)

= λK.

Inequality (A.3) follows from (A.2) by hypothesis. Inequality (A.2) is a consequence of
Lemma 6: Let α = K̂/K ≤ 1. For i = 1, . . . ,#X, let ρi = f(xi) and χi = Kd(x,w).
Then, by Lemma 7, µ(I1)/2 = EK and µ(Iα)/2 = EK̂ .

Proposition 5. Let 0 ≡ (0, . . . , 0), 1 ≡ (1, . . . , 1), and d̃(v) ≡ max (d(v,0), d(v,1)). Then

EK̂ ≤ 1

2

{
min
x∈X

[
f(x) + K̂d̃(x)

]
−max

x∈X

[
f(x)− K̂d̃(x)

]}
.

Proof. Fix w ∈ [0, 1]p. Let w(i) denote the ith component of w. Then

d(v,w) = max
i∈{1,...,p}

∣∣v(i) − w(i)

∣∣

≤ max
i∈{1,...,p}

max
δ∈{0,1}

∣∣v(i) − δ
∣∣

= max
i∈{1,...,p}

max
y∈{0,1}

∣∣v(i) − y(i)
∣∣

= max
y∈{0,1}

max
i∈{1,...,p}

∣∣v(i) − y(i)
∣∣

= max
y∈{0,1}

d(v, y)

= max(d(v,0), d(v,1)).

Hence,

EK̂(w) =
1

2
µ

(
⋂

x∈X
I
(
f(x), K̂d(x,w)

))
(A.4)

≤ 1

2
µ

(
⋂

x∈X
I
(
f(x), K̂d̃(x)

))

(A.5)

=
1

2

{
min
x∈X

[
f(x) + K̂d̃(x)

]
−max

x∈X

[
f(x)− K̂d̃(x)

]}
,

where (A.4) follows from Lemma 7. Because the right-hand side of this inequality does not
depend on w, the proposition follows by taking suprema.
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Appendix B. The Lipschitz constant K for the borehole function. The borehole function
is

f0(Hu,Hℓ, Tu, Tℓ, r, rw, L,Kw) =
2πTu (Hu −Hl)

log (r/rw)
(
1 + 2LTu

log(r/rw)r2wKw
+ Tu

Tℓ

) .

The variables are restricted to the ranges in Table 2. We rescale f0 so that its inputs range
over the 8-dimensional unit hypercube [0, 1]8; the resulting function is denoted by f .

In ℓ∞, because f is differentiable and dom(f) is convex,

K = sup
w∈dom(f)

∥Df(w)∥∞ = sup
w∈dom(f)

8∑

i=1

∣∣∣∣
∂

∂wi
f(w)

∣∣∣∣ .

Let

H = 2π(Hu −Hℓ),

R = log(r/rw),

M = 2L/Kw,

t = T−1
ℓ + T−1

u ,

and
S = M +Rr2wt.

Now

f0(Hu,Hℓ, Tu, Tℓ, r, rw, L,Kw) =
Hr2w
S

.

We bound each partial derivative of f using the ranges of the input variables:
∣∣∣∣
∂f0
∂Hℓ

∣∣∣∣ =
∣∣∣∣
∂f0
∂Hu

∣∣∣∣ =
2πr2w
S

≤ 0.76 =⇒
∣∣∣∣
∂f

∂Hℓ

∣∣∣∣ =
∣∣∣∣
∂f

∂Hu

∣∣∣∣ ≤ 91.2,

∣∣∣∣
∂f0
∂Tu

∣∣∣∣ =
HRr4w
S2T 2

u
≤ 0.01 =⇒

∣∣∣∣
∂f

∂Tu

∣∣∣∣ ≤ 0.01,

∣∣∣∣
∂f0
∂Tl

∣∣∣∣ =
HRr4w
S2T 2

ℓ

≤ 0.13 =⇒
∣∣∣∣
∂f

∂Tl

∣∣∣∣ ≤ 6.8,

∣∣∣∣
∂f0
∂r

∣∣∣∣ =
Hr4wt

S2r
≤ 0.01 =⇒

∣∣∣∣
∂f

∂r

∣∣∣∣ ≤ 290.8,

∣∣∣∣
∂f0
∂rw

∣∣∣∣ =
Hr3wt

S2
+

2H

S(1/rw +Rrwt/M)
≤ 4050.2 =⇒

∣∣∣∣
∂f

∂rw

∣∣∣∣ ≤ 405.0,

∣∣∣∣
∂f0
∂L

∣∣∣∣ =
2Hr2w
S2Kw

≤ 0.34 =⇒
∣∣∣∣
∂f

∂L

∣∣∣∣ ≤ 190.4,

∣∣∣∣
∂f0
∂Kw

∣∣∣∣ =
2LHr2w
S2K2

w
≤ 0.06 =⇒

∣∣∣∣
∂f

∂Kw

∣∣∣∣ ≤ 123.7.

Summing these upper bounds for the partial derivatives of f yields

sup
w∈dom(f)

∥Df(w)∥∞ < 1200.
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Moreover, for w0 = (1100, 700, 115547, 116, 100, 0.15, 1120, 12045),

∥Df(w0)∥∞ = 944.

Hence, for the rescaled borehole function f ,

944 ≤ K ≤ 1200.

Acknowledgments. We thank the associate editor and both referees for their helpful
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