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Abstract: There are deep and important philosophical differences between Bayesian and
frequentist approaches to quantifying uncertainty. However, some practitioners choose be-
tween these approaches primarily on the basis of convenience. For instance, the ability to
incorporate parameter constraints is sometimes cited as a reason to use Bayesian methods.
This reflects two misunderstandings: First, frequentist methods can indeed incorporate con-
straints on parameter values. Second, it ignores the crucial question of what the result of the
analysis will mean. Bayesian and frequentist measures of uncertainty have similar sounding
names, but quite different meanings. For instance, Bayesian uncertainties typically involve
expectations with respect to the posterior distribution of the parameter, holding the data
fixed; frequentist uncertainties typically involve expectations with respect to the distribution
of the data, holding the parameter fixed. Bayesian methods, including methods incorporating
parameter constraints, require supplementing the constraints with a prior probability distri-
bution for parameter values. This can cause frequentist and Bayesian estimates and their
nominal uncertainties to differ substantially, even when the prior is “uninformative.” This pa-
per gives simple examples where “uninformative” priors are in fact extremely informative, and
sketches how to measure how much information the prior adds to the constraint. Bayesian
methods can have good frequentist behavior, and a frequentist can use Bayesian methods
and quantify the uncertainty by frequentist means—but absent a meaningful prior, Bayesian
uncertainty measures lack meaning. The paper ends with brief reflections on practice.

Keywords: Frequentist methods, Bayesian methods, uncertainty quantification, con-
straints, priors, risk

1. Introduction. This paper is primarily about philosophy and interpretation rather than
computation. It sketches differences in the assumptions frequentist and Bayesian methods
require, and differences in meaning between frequentist and Bayesian measures of uncertainty,
and recapitulates some well-known (within Statistics) connections between frequentist and
Bayesian methods that are less well known in the wider Uncertainty Quantification community.
It also addresses the misperception that frequentist methods cannot incorporate constraints
on unknown parameters, and flags some circumstances in which frequentists might choose to
use Bayesian methods without using Bayesian interpretations of the results.

This paper focuses on making inferences about a (possibly infinite-dimensional) vector θ
known to be in a the subset Θ of a Hilbert space H, from observations related to that vector.
In examples below, the set Θ is a “ball” in a norm or semi-norm. A one-dimensional special
case is to estimate a single, real-valued parameter that is known to be between 0 and 1. Then,
the Hilbert space H is the real line, the norm is the absolute value, and the set Θ is a ball of
radius 1/2 centered at the point 1/2.
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This one-dimensional problem does arise in practice: The parameter might be a mortality
rate; the fraction of a healthcare invoice that is fraudulent; the percentage by which the margin
of victory of an election is overstated; the fraction of incident energy absorbed by a material;
the ratio of applied load to failure strength for a structure such as a bridge, dam, building, or
engine mount (given that the structure did not fail); the ratio of an individual’s exposure to
a toxic substance to the exposure that would be lethal (given that the individual did not die
of the exposure); or the ratio of the speed of a particle to the velocity of light.

Useful constraints on high-dimensional parameters, even infinite-dimensional parameters
such as functions of time and space, often can be expressed as the assertion that a norm or
semi-norm is bounded by a constant. For example, we might be interested in the electric field
generated by some device, as a function of position in space; we might know a priori that
the energy of that field—a quadratic norm—is less than 1, in suitable units. Or we might be
interested in the spatial variation of ground motion caused by a large earthquake; we might
have an a priori upper bound on the total energy released by the earthquake. Constraints of
this kind can reduce the uncertainty or parameter estimates, sometimes substantially; they
can even render otherwise insoluble problems solvable [1, 2, 3, 4, 5, 6, 7].

The two most common approaches to dealing with problems of statistical estimation and
inference are frequentist and Bayesian. The frequentist approach uses constraints directly:
The estimation or inference problem is restricted to the set of parameters that satisfy the
constraints. In the Bayesian or “subjective” approach, the analyst imposes the constraints by
choosing a prior probability distribution that assigns probability 1 to the set of parameters
that satisfy the constraint. These two approaches result in uncertainty estimates that differ
substantially in definition and interpretation, and that can differ substantially numerical. This
paper recounts some of the philosophical and definitional differences.

2. Notation. The notation follows that in [8]. We want to use measurements Y to learn
about the (unknown) state of the world, denoted by θ, in a mathematical representation of
some physical system. In many interesting cases, θ is a function of position and/or time, which
in principle would require an infinitely many numbers to describe perfectly—it is an element
of an infinite-dimensional space. We shall assume that the possible values of Y are n-vectors
of real numbers, i.e., elements of IRn. Mathematics, physics, or previous experiments tell us
that θ satisfies a constraint like those described in the introduction. The set Θ expresses this
constraint: We know a priori that θ ∈ Θ.

The measurements Y are related to the state of the world θ through a measurement model,
which gives the probability distribution IPη of Y for each possible state of the world η ∈ Θ.
That is, if θ = η, then Y ∼ IPη, where∼means “has probability distribution” or “is distributed
as.” Depending on θ, Y may be more likely to take values in some subsets of IRn than in
others. For any particular set A ⊂ IRn, IPη{Y ∈ A} generally will not be equal to IPη′{Y ∈ A}
unless η = η′. However, it can be the case that η 6= η′ and yet IPη{Y ∈ A} = IPη′{Y ∈ A} for
all (measurable) subsets A ⊂ IRn. (In that case, θ is not identifiable.)

We shall assume that there is a known measure µ that dominates the set of distributions
P ≡ {IPη : η ∈ Θ}, so we can use “densities” even if some members of P have atoms.
This assumption makes it easier to define likelihoods, which are required for the Bayesian
framework; it also implies that all the measures P are defined on a common sigma-algebra A
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of subsets of ℜn, which avoids some potential pathologies.

With respect to µ, the density of IPη at y is

pη(y) ≡ dIPη/dµ|y. (2.1)

For any fixed y, the likelihood of η given Y = y is pη(y), viewed as a function of η alone.

While we might like to know θ, it is often impossible to estimate it with any useful level
of accuracy; in many problems, θ is not even identifiable. But it still may be possible and
scientifically interesting to estimate a parameter λ = λ[θ], a property of θ. The parameter
might be the average of θ over some volume of space or time, a norm or semi norm of θ, or
the number of local maxima θ has, for instance. We shall assume that the possible values of
λ[θ] are also elements of a Hilbert space.

3. The Bayesian Approach. The Bayesian approach starts with a prior probability dis-

tribution π on Θ, and the likelihood function pη(y). To have a prior probability distribution
involves some technical restrictions that will not be considered here.1 Together, π and pη
imply a joint distribution of θ and Y . The marginal distribution or predictive distribution of
Y is

m(y) =

∫

Θ
pη(y)π(dη). (3.1)

On observing that Y = y, we assimilate the information by applying Bayes’ rule to find the
posterior distribution of θ given Y = y:

π(dη|Y = y) =
pη(y) π(dη)

m(y)
. (3.2)

(The marginal density m(y) can vanish, but the probability that it does is zero.) In principle,
this solves the problem: All the information in the prior and the data is now contained in
the posterior distribution. The posterior distribution πλ(dℓ|Y = y) of λ[θ] is the distribution
induced by the posterior distribution of θ: For any (measurable) set A of possible values of λ,

Pr(λ[θ] ∈ A|Y = y) =

∫

ℓ∈A
πλ(dℓ|Y = y) ≡

∫

η:λ[η]∈A
π(dη|Y = y). (3.3)

If we get additional data, we apply Bayes’ rule again, using the current posterior as the new
prior.

3.1. Arguments for the Bayesian approach. There are a number of arguments for the
Bayesian approach. One is that people are in fact Bayesian: that the Bayesian approach
is descriptive. There is considerable evidence that this is false. I do not know of anyone
who uses Bayes’ theorem to combine and update prior beliefs in ordinary life. Extensive
empirical research, starting with the seminal work of [9], shows that even people with training
in probability fail to incorporate Bayes rule in their day-to-day reasoning.

1For instance, Θ must be a measurable subset of a measurable space, and the likelihood function must be
jointly measurable with respect to η and y.
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The second argument is that people should be Bayesian: that the Bayesian approach is
normative. According to the argument, if people are not Bayesians, their probability assign-
ments are “incoherent” and others can make “Dutch book” against them. (“Dutch book” is
a combination of bets such that no matter what the outcome, the bettor loses money.) The
coherence argument depends in part on the assumption that all beliefs can be expressed as
probability distributions, an assumption that many are unwilling to grant. The “Dutch book”
argument depends on the non-Bayesian analyst’s willingness to cover an unlimited number of
bets, and on the assumption that the Bayesian analyst’s prior is proper, that is, that the total
mass of the prior is 1. In practice, improper priors are common; for instance, it is common to
use a uniform prior for parameters on unbounded domains. See [10, 11].

A third argument is that the choice of the prior does not matter (much), because the data
eventually overwhelm the prior: No matter what prior you start with, given enough data,
you end up with essentially the same posterior distribution. This convergence occurs in some
circumstances and not in others [12, 13]: The prior can bite you on the posterior. See [14] for
further discussion of these and related issues.

I think Bayesian methods are popular in UQ in part because (depending on the prior)
they generally make the uncertainty appear smaller than a frequentist analysis would show,
which makes the results more optimistic, and in part because they give a (numerically com-
putable) recipe that can be applied to essentially any problem—if you have a prior, a fast
enough computer, and a good algorithm. (The development of Markov Chain Monte Carlo,
MCMC, made it possible to compute posterior distributions in a far larger class of problems,
greatly increasing the appeal of Bayesian methods.) Of course, the fact that you can compute
something does not automatically make the answer meaningful, relevant, or useful: The world
is full of “quantifauxcation,” which consists of assigning a meaningless number to something,
then concluding that because the result is quantitative, it must be meaningful.

A Bayesian can give a number for the probability of an act of nuclear terrorism in the
year 2025; a frequentist cannot make sense of what “probability” could mean in that context.
A Bayesian can give a number for the probability that there are civilizations of intelligent
beings in other galaxies; a frequentist cannot make sense of the question. A Bayesian can
give a number for the probability that a particular coin in your pocket is fair, sight unseen;
a frequentist cannot make sense of the question. A Bayesian can give a number for the
probability that a particular hypothesis is true; a frequentist thinks hypotheses are either
true or false (evidence often has a random component—noise or measurement error—but a
well-formed hypothesis itself is either true or false). In situations where both frequentist and
Bayesian methods can be applied, probability and uncertainty mean quite different things to
frequentists and to Bayesians, as elaborated below.

3.2. Priors. In the Bayesian approach, all information about θ is expressed as a probabil-
ity distribution, and all probabilities quantify degree of belief. (In the frequentist framework,
probability is defined in terms of long-run relative frequency.) If the analyst is certain that
A is true, A has probability 1. If she is certain that A is false, A has probability 0. If she
believes that A is true (or that A will occur) with the same strength that she believes that
A is false (or that A will not occur), A has probability 1/2. If she believes twice as strongly
that A is true as she believes A is false, A has probability 2/3. More generally, if A and B are
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two statements and the analyst believes r times as strongly that A is true than she believes
that B is true, then the probability of A is r times the probability of B.

To use the Bayesian framework to quantify uncertainty, one must quantify beliefs and
constraints by means of probability distributions. (As discussed below, there can be good rea-
sons to use Bayesian estimators without necessarily using the Bayesian framework to quantify
uncertainty.) The prior probability distribution quantifies the analyst’s beliefs about θ before
data are collected: The constraint θ ∈ Θ means the prior probability distribution π (defined
on a suitable sigma algebra of subsets of Θ) must assign probability 1 to Θ.

Even in the simplest non-degenerate case, there are infinitely many probability distribu-
tions that assign probability 1 to Θ. Which should be the prior? In principle, it is up to
the analyst to introspect to find the unique prior that reflects her beliefs about θ; in turn
those beliefs should be constructed from previous experience and previous beliefs through the
repeated application of Bayes’ theorem.

Although there is a literature on the elicitation of prior probabilities [15], I have never
seen a Bayesian analysis of real data in which the data analyst made a serious attempt to
quantify her beliefs using a prior. (Nor, to my knowledge, have I met anyone who uses Bayes’
theorem in real life to update her beliefs.) Instead, in my experience, priors are generally
taken as given, and appear to be selected or justified in five ways: (i) to make the calculations
simple (e.g., closed form), (ii) because the particular prior is conventional, (iii) so that the prior
satisfies some invariance principle, (iv) with the assertion that the prior is “uninformative,” or
(v) because the prior roughly matches the relative frequencies of values in some population.
Computational tractability has become less of a desideratum as simulation algorithms and
computing power have advanced. Convention wields considerable force: The conventional
tends to be treated as “correct” or “obvious.” See [16, 8] for discussions of (iii) and (iv).

Some researchers use Laplace’s Principle of Insufficient Reason to select an “uninforma-
tive” prior: If there is no reason to believe that outcomes are not equally likely, assume that
they are equally likely. Of course, the outcomes considered may depend on the parametriza-
tion, among other things. Generally, however, the principle generally leads to a prior π that
is uniform on Θ. That is, the probability of any subset of Θ is assumed to be proportional to
its Lebesgue measure.

For instance, the “uninformative” prior for a real parameter known to be in Θ ≡ [−1, 1] is
the uniform distribution on [−1, 1], which has density f(η) = {1/2, η ∈ [−1, 1]; 0, otherwise}.
This prior captures the constraint θ ∈ [−1, 1], but it does far more than that: It assigns
probabilities to all measurable subsets of [−1, 1]. For instance, it says that there is a 50%
chance that θ is positive, a 50% chance that the absolute value of θ is greater than 1/2, and
a 90% chance that the absolute value of θ is greater than 1/10. This is not information that
came from the constraint: It is information added by the prior. The constraint θ ∈ Θ requires
π to assign probability 1 to Θ, but it does not restrict the probabilities π assigns to subsets of
Θ. Any choice of π, “uninformative” or not, says more about θ than the original constraint
did.

This problem—that turning constraints into priors adds information—grows worse as the
dimension of the parameter θ grows. For instance, suppose the unknown θ is a vector in
n-dimensional Euclidean space IRn, and we know that ‖θ‖ ≤ 1—that is, Θ is the unit ball in
IRn. The volume of a spherical shell from radius 1 − ǫ to 1 is a larger and larger fraction of



6 P.B. Stark

the volume of the unit sphere as the dimension n grows. For any α ∈ (0, 1) and ǫ ∈ (0, 1),
there is a dimension n so that the (uniform) probability of {η : ‖η‖ ∈ [1− ǫ, 1]}, the spherical
shell from radius 1− ǫ to 1, is at least α.

What does this mean? Starting with the constraint that ‖θ‖ ≤ 1—and without collecting
any data—we end up with arbitrarily high certainty that in fact ‖θ‖ ≥ 1 − ǫ. It is the prior
that gives us this certainty, not the constraint. The prior is not “uninformative” about the
norm.

Conversely, suppose we put a rotationally invariant prior on the unit ball in such a way
that the marginal distribution of the norm is uniform. Consider the ball of radius 1 − ǫ. It
has probability 1 − ǫ regardless of the dimension of the space, even though its volume is a
negligible fraction of the volume of the unit ball if the dimension of the space is large. This
prior is not “uninformative” with respect to volume: It says that the model is extremely likely
to be in a subset of Θ that has very small volume.

The problem reaches a head in infinite-dimensional spaces. For instance, suppose θ is an
element of an infinite-dimensional separable Hilbert space, and that the constraint set Θ is
rotationally invariant (an example would be Θ ≡ {η : ‖η‖ ≤ 1}). If we want the prior to
respect that rotational invariance, it is a theorem that the prior either assigns probability
1 to the event that θ = 0 or it assigns probability 1 to the event that the norm of θ is
infinite—contradicting the constraint the prior was intended to capture [17].

3.3. Interpretation of Bayesian priors and estimates. Prior probability distributions—
and hence posterior distributions—are quantifications of the analyst’s degree of belief. As
such, they change the subject from the experiment and the external world to the analyst’s
state of mind. Suppose I claim that my prior probability distribution for the load on a
structure as a fraction of its breaking strength is the uniform distribution on [0, 1]. I am right
if that accurately reflects what I believe. I am wrong if it does not accurately reflect what I
believe. The relationship between the prior and the world has no bearing on whether I am
right or wrong. Experiments that could show I am wrong involve checking what I actually
believe—for instance, psychological testing or determining what bets I would take at what
odds—rather than measurements of the structure or similar structures.

Two analysts can have very different priors and both be right, because what makes a prior
right is that it correctly quantifies the analyst’s belief. If I do not share your prior beliefs in
detail, then even if we agree on the likelihood function and the data, we will have different
posterior distributions for θ. Why should your posterior distribution matter to me? If a
Bayesian analysis results in the statement, “there is a 99.9% chance that the applied load
will be less than 10% the breaking strength,” it means that the analyst is quite sure that the
load will be low, but it is not at all clear what it means about safety. For a different prior,
an equally correct analysis might find that there is a 99.9% chance that the applied load will
exceed 90% the breaking strength. If so, a Bayesian analysis might appropriately be viewed
with skepticism. On the other hand, if one could show that no matter what prior is used,
there is at least a 99.9% chance that the applied load will be less than 10% of the breaking
strength, the Bayesian position seems much more persuasive. While the Bayesian approach
has its merits, the utility and persuasiveness of Bayesian analyses may hinge on the sensitivity
of the conclusions to the choice of prior.
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4. The Frequentist approach. The main difference between Bayesian and frequentist
approaches to constraints boils down to the difference between believing that θ is drawn at
random from Θ according to the known distribution π and believing that θ is simply an
unknown element of Θ. (The interpretation of probability also differs substantially between
the two points of view.)

As discussed above, for Bayesians, probability quantifies degree of belief. For frequentists,
probability has to do with long-term regularities in repeated trials. The probability of an
event is defined to be the long-run limiting relative frequency with which the event occurs in
independent trials under ‘essentially identical’ conditions. “Essentially identical” is in inverted
commas because if the conditions were exactly identical, then (within classical physics, at
least), the outcome would be identical. The canonical random experiment, tossing a fair coin,
will give heads every time or tails every time if the coin is tossed with initial conditions that
are similar enough.2 Defining “essentially identical” is a serious problem for the frequentist
approach. Another is the assumption that repeated trials result in relative frequencies that
converge to a limit. This assumption is an assertion about how the world works, an assertion
that cannot be verified empirically, since it does not posit any particular rate of convergence.
As mentioned above, the frequentist approach severely restricts the kinds of things one can
make probability statements about: Only trials that, in principle, can be repeated indefinitely
lead to probabilities. For instance, a conventional frequentist approach cannot make sense of
questions like “what is the chance of an act of nuclear terrorism in the year 2025?” or “what
is the chance of an earthquake with magnitude 8.0 or above in the San Francisco Bay Area in
the next 20 years?,” much less supply numerical values for those chances.

In the frequentist approach, probability generally resides in the measurement process or the
experiment, not in the parameter. There is statistical uncertainty because there is sampling
variability or measurement error or random assignment of subjects to treatments, not because
the underlying parameter is random. Since it is not necessary to assume that θ is random to
use the frequentist approach, it is not necessary to augment the constraint θ ∈ Θ with a prior
probability distribution.

5. Summarizing uncertainty. There are many ways to quantify uncertainty. We shall
consider two, each of which has a Bayesian and a frequentist variant: mean squared error (a
frequentist measure) and posterior mean squared error (the related Bayesian measure); and
confidence sets (a frequentist construct) and credible regions (the related Bayesian construct).

5.1. Mean Squared Error. Recall that we have assumed that λ[θ] takes values in a Hilbert
space. Suppose we choose to estimate λ[θ] by the estimator λ̂(Y ), a (measurable) map from
possible data values y into possible values of λ[η], η ∈ Θ. The mean squared error (MSE) of
λ̂ when θ = η is

MSE(λ̂(Y ), η) ≡ IEη‖λ̂(Y )− λ[η]‖2. (5.1)

The MSE depends on η. The expectation is with respect to IPη, the distribution of the data Y

on the assumption that θ = η. If we get to select the estimator λ̂, we might seek an estimator
that makes MSE(λ̂(Y ), θ) small. But since the true value of θ is unknown, in general we

2For instance, Diaconis [18] notes that he and other magicians can toss a coin to land heads or tails at will
and describes an apparatus built by physicists that tosses a coin reproducibly.
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cannot select the estimator λ̂ to make the actual MSE as small as possible. Instead, we might
choose λ̂ to make the largest MSE as η ranges over Θ as small as possible. That choice is the
minimax MSE estimator.

A related Bayesian measure of uncertainty is the posterior mean squared error (PMSE),

PMSE(λ̂(y), π) ≡ IEπ‖λ̂(y)− λ[η]‖2. (5.2)

The PMSE depends on π and the observed value of y. The expectation is with respect to
the posterior distribution of θ given Y = y. Since π is known, we can select (for each y)
the estimator that has the smallest possible PMSE. That estimator, the Bayes estimator for
PMSE, is the marginal posterior mean, the mean of πλ(dℓ|Y = y), the marginal posterior
distribution of λ[θ] given Y [19, 20]:

λ̂π(y) ≡

∫
ℓπλ(dℓ|Y = y). (5.3)

Even though the MSE and PMSE both involve expectations of the squared norm of the
difference between the parameter estimate and the true value of the parameter, they are
conceptually quite different: The MSE is an expectation with respect to the distribution of
the data Y , holding the parameter θ = η fixed, while the PMSE is an expectation with respect
to the posterior distribution of θ, holding the data Y = y fixed.

5.2. Confidence Sets and Credible Regions. Suppose α ∈ (0, 1). A random set I(Y ) of
possible values of λ is a 1− α confidence set for λ[θ] if

IPη{I(Y ) ∋ λ[η]} ≥ 1− α, ∀η ∈ Θ. (5.4)

The probability on the left is with respect to the distribution of the data Y , holding η fixed.
In the frequentist view, once the data are collected and we know that Y = y, there is no longer
any probability: The set I(y) is some particular set and the value λ[θ] is some particular (but
unknown) vector, so either I(y) contains λ[θ] or it does not. The “coverage probability” of
the rule I is the (smallest) chance that I(Y ) will include λ[η] as η ranges over Θ, with Y
generated from IPη(y).

A related Bayesian construct is a posterior credible region. A set I(y) of possible values
of λ is a 1− α posterior credible region for λ[θ] if

IPπ(dθ|Y=y)(λ[θ] ∈ I(y)) ≡

∫

I(y)
πλ(dℓ|Y = y) ≥ 1− α. (5.5)

The probability on the left is with respect to the marginal posterior distribution of λ[θ],
holding the data fixed: It is is the posterior probability that I(y) contains λ[θ] given that
Y = y. In the Bayesian view, once the data are collected and we know that Y = y, there is
still probability, because the value of θ itself remains random: its value is uncertain, and all
uncertainty is represented as probability.

There are countless ways of constructing confidence sets and credible regions. Since the
volume of the set or region is a measure of precision—the uncertainty after the data have been
collected—it can be desirable to choose confidence sets and credible regions to minimize their
(expected) volumes. See, for instance, [7, 21, 22].
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6. Decision theory. This section gives a brief sketch of decision theory, a framework for
comparing estimators. For a bit more detail, see [8]; for a rigorous treatment, see [23]. Decision
theory treats estimation as a two-player game: Nature versus analyst. The game frequentists
play has slightly different rules from the game Bayesians play. According to both sets of rules,
Nature and the analyst know Θ, IPη for all η ∈ Θ, λ, and the payoff rule (loss function)
loss(ℓ, λ[η]), the amount of money the analyst loses if she guesses that λ[η] = ℓ when in fact
θ = η. Nature selects an element θ of Θ. The analyst selects an estimator λ̂. The analyst
does not know the value of θ and Nature does not know what estimator the analyst plans to
use. Data Y are generated using the value of θ that Nature selected; the data are plugged
into λ̂, and loss(λ̂(Y ), λ[θ]) is calculated. Holding θ constant, a new value of Y is generated,
and loss(λ̂(Y ), λ[θ]) is calculated again. This is repeated many times. The analyst has to pay
the average value of loss(λ̂(Y ), λ[θ]) over all those values of Y , the risk of λ̂ at θ, denoted
ρθ(λ̂, λ[θ]). The analyst’s goal is to lose as little as possible in repeated play.

In the Bayesian version of the game, Nature agrees to select θ at random according to
the prior distribution π, and the analyst knows π. In the frequentist version of the game, the
analyst does not know how Nature will select θ from Θ. This is perhaps the most important
difference between the frequentist and Bayesian viewpoints: Bayesians claim to know more
about how Nature generates the data.

A cautious frequentist might wish to select λ̂ to minimize her worst-case risk, on the
assumption that Nature might play deliberately to win as much as possible. An estimator
that minimizes the worst-case risk over η ∈ Θ (for some specified class of estimators) is called
a minimax estimator ; its maximum risk is the minimax risk. Minimax estimates are not the
only option for frequentists (indeed, in many problems the minimax estimator is not known,
and frequentists rely on estimators that have simple recipes and generally good asymptotic
properties, e.g., maximum likelihood), but minimaxity is a common principle for optimality,
as is minimax regret.

A Bayesian might instead select the estimator that minimizes the average risk on the
assumption that Nature selects θ at random following the prior probability distribution π. An
estimator that minimizes the average risk when θ is selected from π (for some specified class
of estimators) is called a Bayes estimator ; its average risk for prior π is the Bayes risk.

6.1. Duality between Bayes Risk and Minimax Risk. The Bayes risk depends not only
on Θ, the distributions {IPη : η ∈ Θ}, the parameter λ, and the loss function loss: It also
depends on π. Consider allowing π to vary over a (suitably) rich set of possible priors. The
prior π∗ for which the Bayes risk is largest is the least favorable prior. The least favorable prior
typically is not the “uninformative” prior. [21, 22] give numerical methods for approximating
least favorable priors. Under some technical conditions, the Bayes risk for the least favorable
prior is equal to the minimax risk [19, 20]. If the Bayes risk is much smaller than the minimax
risk, it is because the prior added information not present in the constraint itself. When that
occurs, one might reasonably wonder why the analyst believes Nature selected θ from the
prior distribution π, and might ask whether one shares the analyst’s beliefs about θ.

For example, [8] compare the minimax risk and Bayes risk for estimating θ ∈ Θ ≡ [−τ, τ ]
from data Y ∼ N(τ, 1), the bounded normal mean problem, and evaluate the frequentist
coverage probability of Bayes posterior credible regions. They find that when τ = 1/2, the
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Bayes risk for mean squared error is less than half the minimax risk, while for τ = 3, the Bayes
risk is much closer to the minimax risk. When τ = 1/2, the expected length of a 95% Bayes
credible region is at least as big as the expected length of a particular 95% confidence region
(the Truncated Pratt interval) for all η ∈ Θ and values of η for which its expected length is a
couple of percent larger, but the frequentist coverage probability of the Bayes credible region
is as low as 68% for some values of η. In contrast, when τ = 3, there are values of η for which
the expected length of the 95% Bayes credible region is about 33% less than the expected
length of the Truncated Pratt interval and values of η for which it is about 10% longer, while
the coverage probability of a 95% credible region stays above 90% for all η ∈ Θ.

7. Frequentist properties of Bayes Estimates. It may behoove a frequentist analyst to
consider Bayesian estimation methods, but to assess those methods using frequentist criteria.
The frequentist need not believe the prior or even think that the parameter is random. The
point is that the Bayesian approach gives a recipe for calculating an estimate, just like maxi-
mum likelihood gives a recipe for calculating an estimate. The performance of that estimate
can be measured using frequentist constructs without relying on the posterior distribution or
the interpretation of the prior or the posterior.

Indeed, Bayesian estimates may have good frequentist properties. For example, an estima-
tor λ̂ is admissible for a given loss function if no other estimator has a risk that is never larger
than the risk of λ̂, whatever θ ∈ Θ happens to be, and has risk smaller than the risk of λ̂ for
at least one η ∈ Θ. Admissibility is a desirable frequentist property for an estimator: it means
no estimator strictly dominates it. There are typically infinitely many admissible estimators
in a given problem. In general, if an estimator is the Bayes estimator for some proper prior on
Θ and has finite Bayes risk for loss loss, then it is admissible. (Bayes estimators for improper
priors typically are not admissible.)

Similarly, as illustrated in section 6.1, there are problems in which the Bayes estimator
for some particular prior has low MSE, no matter what the true value of θ ∈ Θ happens to
be. The frequentist justification for using a Bayes estimator does not lie in whether the prior
makes sense nor whether the posterior properly measures the uncertainty, but in whether the
frequentist performance of the estimator is adequate. For instance, [21, 22] Bayes estimators
for approximately least-favorable priors because they are approximately minimax estimators.

8. “The difference between theory and practice. . . . is smaller in theory than it is
in practice.” In complex scientific applications, there are very few “orthodox” frequen-
tist or Bayesian analyses. Rather, models and priors tend to be chosen for convenience
or tractability—or to respond to criticisms by adding layers of complexity. To paraphrase
David Freedman, frequentist analyses tend to make up models, and Bayesian analyses tend
to make up priors [14]. I would argue that both camps tend to make up models, by which I
mean the mapping η → Prη and the set Θ. And both groups tend to invent constraints far
more stringent than the constraints that actually come from the underlying scientific problem,
artificially reducing the apparent uncertainty.

If you point out a missing source of uncertainty or variability, a frequentist may model it; a
Bayesian may model it and put a prior on any new parameters. The result—in both camps—is
a tendency towards rococo recursion in which the embellishments have embellishments, and
the weakness of the foundation is obscured by the complexity of the edifice. In the end, one
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still has a model or a prior, but an incomprehensible one that can’t possibly correspond to
anyone’s true beliefs, or to Nature.

The verse by Augustus de Morgan (known for de Morgan’s rules, which both frequentists
and Bayesians rely on) describes multilevel modeling and hierarchical priors well:

Great fleas have little fleas upon their backs to bite ’em,
And little fleas have lesser fleas, and so ad infinitum.
And the great fleas themselves, in turn, have greater fleas to go on,
While these again have greater still, and greater still, and so on.

Frequentist analyses of complex problems often have model-selection phases (e.g., deciding
which variables to use in a regression model) that are not accounted for properly in the
quantification of uncertainty through confidence sets and so on. This problem has been
recognized for decades, but only recently have rigorous methods to deal with it been proposed,
and only in quite limited contexts [24, 25, 26, 27].

The best frequentist analyses tend to be bespoke: tailored to the scientific details of
the problem. That requires substantive and statistical knowledge. Calculating frequentist
estimates may require solving difficult—and sometimes numerically intractable—constrained
numerical optimization problems. The set of tractable problems will grow over time, as
algorithms improve and computational power increases.

The advent of fast MCMC codes makes it possible to compute Bayesian estimates in a
broad variety of applications, sometimes without much scientific thought: insert a prior, a
likelihood, and data, run MCMC to sample the posterior, and out comes an estimate and
an uncertainty appraisal. What that appraisal means is generally not examined, much less
questioned. The warning “if all you have is a hammer, everything everything looks like a nail”
is apropos. This is especially true if you love your hammer; it is especially pernicious if true
nails are rare.

In much the same way, frequentists often hurry to apply the latest modeling technique to
every set of data with the right “signature,” with little regard to how the data were collected
or the underlying science. The result is unlikely to advance scientific knowledge: current
popularity is not a reliable measure of validity, and cpu cycles, while useful, are not a good
substitute for thought.

9. Conclusion. In many applications, prior information often comes in the form of con-
straints. For instance, masses and energies are nonnegative and finite, velocities do not exceed
the speed of light, and the fraudulent portion of a healthcare invoice does not exceed the total
amount of the invoice. Frequentist methods can use such constraints directly. Bayesian meth-
ods require augmenting the constraints with prior probability distributions. The difference
between the frequentist and Bayesian viewpoints is that Bayesians claim to know more about
how the data are generated: Frequentists claim to know that the parameter θ ∈ Θ, but not
how θ is to be selected from Θ. Bayesians claim to know that the parameter θ is selected at
random from Θ according to a prior probability distribution π known to them. Both claim to
know IPη, the probability distribution that the data would have if the value of θ is η, for each
η ∈ Θ.

In Bayesian analysis, the prior probability distribution captures the analyst’s beliefs about
the parameter before the data are collected. The prior is updated using the data to construct



12 P.B. Stark

the posterior distribution via Bayes’ rule. The posterior combines the analyst’s prior beliefs
with information from the data. An analyst with different prior beliefs will in general arrive
at a different posterior distribution.

The Bayesian framework changes the subject in a subtle way. To measure a probability in
the Bayesian framework is to discover what the analyst thinks, while to measure a probability
in the frequentist framework is to discover empirical regularities in the system under study.
Because of the difference in interpretations of probability, the Bayesian framework allows
probability statements to be made about a much larger range of phenomena. However, the
relevance of an analyst’s statements for others may be limited, since it hinges on the analyst’s
prior, which is claimed to quantify her degree of belief—but perhaps no one else’s.

Bayesian and frequentist measures of uncertainty differ. For instance, mean squared error
and posterior mean squared error are expectations of the same quantity, but with respect to
different distributions: MSE is an expectation with respect to the distribution of the data,
holding the parameter fixed; while PMSE is an expectation with respect to the posterior
distribution of the parameter, holding the data fixed. Similarly, coverage probability and
credible level are the chance that a set contains the parameter, but coverage probability
is computed with respect to the distribution of the data, holding the parameter fixed and
allowing the set to vary randomly; while credible level is computed with respect to posterior
distribution of the parameter, holding the data and the set fixed and allowing the parameter
to vary randomly.

When choosing between Bayesian and frequentist approaches, an analyst is advised to
consider more than computational convenience: the interpretation and intended use of the re-
sults matter, and these may depend on the application. Is the parameter in question actually
random? If so, is its prior distribution known? Which is the more interesting question: what
would happen if Nature generated a new value of the parameter and the data happened to re-
main the same, or what would happen for the same value of the parameter if the measurement
were repeated?

Under relatively mild conditions, the largest Bayes risk as the prior is allowed to vary
is equal to smallest maximum risk (the minimax risk) of any estimator as the parameter is
allowed to vary. When the Bayes risk for a given prior is less than the minimax risk, the choice
of the prior added information not present in the constraint, thereby reducing the apparent
uncertainty of the Bayes estimate. When the difference between the Bayes and minimax risk
is large, one is advised to pay particularly close attention to the prior to check whether her
prior beliefs closely match the analyst’s prior beliefs.
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