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Abstract

An election audit trail can reflect an electoral outcome that dif-

fers from the semi-official outcome. If so, the winner should be de-

termined by a hand count of all the votes as recorded in the audit

trail. CAST is a statistical method for deciding whether to certify

the outcome of a contest, or to count the entire audit trail by hand.

It has a known, pre-specified chance of requiring a full hand count

whenever that count would show an outcome different from the semi-
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official outcome. This limits the risk of certifying an incorrect outcome

erroneously. CAST also allows some ballots to be selected for audit de-

liberately rather than randomly, “targeted” auditing. CAST requires:

(i) the desired minimum chance (e.g., 90%) that if the preliminary

outcome is wrong—i.e., disagrees with the audit trail—CAST will re-

quire a full manual count; (ii) the maximum number of audit stages

permitted before a full manual count; (iii) the semi-official results by

precinct or “batch;” (iv) limits on the number of valid votes for any

candidate that could have been cast in each batch. CAST collects

data incrementally: if the the semi-official results overstate the mar-

gin by a sufficiently small amount in a sufficiently large sample, CAST

says “certify.” Otherwise, CAST says “audit more batches and check

again.” Eventually, either CAST says “certify,” or there has been

a full hand count. CAST is a refinement and simplification of the

method of Stark [4, 5].

1 Introduction

Election systems are incredibly complex: they can involve voting machines,

central tabulators, optical scanners, memory card readers, software, design-

ers, printers, programmers, operators and pollworkers, elaborate chains of

custody—and human voters. Errors in counting votes are inevitable. Do

those errors affect the electoral outcome? Are they material?

If there is a reliable paper audit trail, that question can be answered1 by a

1 “Statistics means never having to say you’re certain,” so in this context answers are
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post election audit: a hand count of the paper audit trail in a random sample

of batches of ballots. Well designed and executed post election audits can

limit the risk of certifying a preliminary official outcome that disagrees with

the paper trail: no matter how the errors in the vote counts arose—whether

at random, because of human error, or through malice or fraud—the audit

can have a pre-determined chance of requiring a full manual count whenever

that would show a different outcome.

An increasing number of jurisdictions have laws or regulations mandating

post election audits. Some—New Jersey for instance2—require audits that

limit the chance of certifying an outcome that is incorrect. There is so far

only one basic method for conducting a post election audit guaranteed to

have a high chance of requiring a full manual count when the paper trail

would show a different outcome [4, 5].3 That method has been used to audit

a ballot measure in Marin County in February 2008 [2]. This paper presents

a step-by-step recipe called CAST (Canvass Audit by Sampling and Testing)

for a risk-limiting post-election audit.4 CAST is not optimal (it is possible

of the form, “either the outcome agrees with what a full manual count of the audit record

would show, or a very unlikely event has occurred.”
2 See http://www.njleg.state.nj.us/2006/Bills/S1000/507_R1.PDF and http://

www.njleg.state.nj.us/2006/Bills/A3000/2730_R1.PDF
3 There are of course trivial methods, such as performing a full manual count of every

contest, or performing a full manual count of a large fraction of contests selected at random.

Such methods do not use audit data to try to confirm the outcome without a full manual

count. The point of the present method is to hand count as few votes as possible when a

full hand count would not change the outcome.
4 CAST is similar to the method of [4, 5] but differs in important ways (see section 4.3).
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to derive methods that require less auditing when the outcome is correct,

although none currently exists), but it is conservative in that it guarantees a

pre-specified chance of a full manual count whenever that would change the

outcome.

CAST is a refinement and simplification a method introduced by [4, 5] for

determining—by auditing a random sample of batches of ballots—whether

to certify the semi-official outcome of an election. CAST has a large chance

of requiring a full hand count whenever the semi-official outcome is wrong.5

When a full hand count would not change the outcome, CAST tries to min-

imize the amount of auditing effort before declaring “certify.”

CAST is performed in stages. At each stage, the semi-official vote counts

5 “Semi-official” results are sometimes called “preliminary official results,” the results

once the election officials represent that all votes have been counted and the outcome

could be certified, but for the possibility that the audit says otherwise. ‘Wrong” means

that the semi-official outcome disagrees with the outcome a full manual count would

show. Of course, even a full manual count might not identify the rightful winner. For

example, the audit record could be incomplete or inaccurate: paper ballots can be lost

before they are counted, ballot boxes can be “stuffed,” etc. Moreover, it is impossible

to audit direct recording electronic (DRE) voting machines that do not produce voter

verifiable paper audit trails (VVPATs) without relying on electronic records. And agree-

ment between hand counts of audit batches and semi-official results does not ensure that

the batch-level results were aggregated correctly across the contest; viz. the recently

discovered Diebold/Premier software “glitch” that prematurely aborts the download-

ing of data from memory cartridges (http://voices.washingtonpost.com/the-trail/

2008/08/21/ohio_voting_machines_contained.html, http://www.informationweek.

com/news/management/legal/showArticle.jhtml?articleID=210000402).
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in a random sample of batches of votes6 are compared with hand counts of

the paper audit trail for those batches, for each contest under audit. Addi-

tional batches may be selected for audit deliberately rather than randomly,

either before the random selection begins, or between stages of random selec-

tion.7 For each audited batch, errors that resulted in overstating the margin

between any winner and any loser in a given contest are expressed as a per-

centage of the semi-official margin between those candidates, adjusted for

any errors discovered at previous stages. A calculation is performed to see

whether error observed in the current stage sample is small enough to give

confidence that the total error in the semi-official count did not change the

outcome, given the errors observed at previous stages.8 If it is sufficiently

likely that the audit would have uncovered more error at the current stage

if the outcome were wrong, the audit stops and the semi-official result is

certified. Otherwise, the semi-official margin is adjusted to take into account

the net error observed in the audit sample, a new sample is drawn from the

batches not yet audited, and the calculation is performed again using the

6 A batch could comprise all the votes cast in a precinct, the votes cast on a particular

machine, or other convenient group for which a semi-official subtotal is available.
7 The vote counts in any batches already audited, whether at random or deliberately,

are treated as known perfectly. The reported margin is adjusted to reflect the manual

counts in those batches, and those batches are excluded from future samples.
8 The calculation answers the question, “If the semi-official outcome disagrees with

what a full manual count would show, what is the minimum chance that the current stage

of audit would have found at least one batch that overstated the margin by more than it

actually did?”
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adjusted margin. After a pre-determined number of steps, either the semi-

official outcome has been certified, or there has been a complete manual

count of the audit trail, and the correct outcome is known.9

CAST ensures that the chance of a full manual count is large whenever

the audit trail contradicts the semi-official outcome. That controls the risk

of erroneously certifying and incorrect outcome: Let β denote the minimum

chance of a full manual count when a full manual count would show a different

outcome. Then if an outcome is incorrect, the chance that it will be certified

anyway is at most (100%− β).

The next section presents the method, step by step. Section 3 illustrates

the calculations using a cartoon of a U.S. House of Representatives contest

and explores how the initial audit sample size depends on the margin, the

desired confidence level and the allocation of error across audit stages. Sec-

tion 4 discusses some technical details. Section B gives R code to reproduce

the examples.

2 CAST Step-by-step

This section gives the steps in CAST. It assumes that semi-official results

are available for all batches of ballots before the audit starts. Batches can

be grouped into strata10 for convenience, with random samples of batches

9 “Correct” means what the audit trail would show. This does not take into account

the fact that a full manual count is only as good as the audit trail it counts.
10Strata must be mutually exclusive (no ballot can be in more than one stratum) and

exhaustive (every ballot must be in some stratum).
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drawn independently from different strata.11 For example, one stratum might

comprise ballots cast in-precinct on election day; another might comprise

vote-by-mail (VBM) ballots; and a third might comprise provisional ballots.

Batches might be stratified by county, if a contest crosses county lines.

Batches should never be selected from a stratum before the semi-official

counts have been announced for all batches in that stratum. To do otherwise

is to invite fraud.

Some batches might be selected for audit deliberately rather than ran-

domly. For example, laws and regulations might permit the candidates in

a contest each to select for audit a few batches they find suspicious; this is

sometimes called a targeted audit in distinction to a random audit . There

can be rules such as “if the targeted audit of a batch reveals a discrepancy

of more than X votes, count all votes by hand.” A rule of that form can

only increase the chance of a full manual count when such a count would

show a different outcome from the semi-official outcome, so it can be used

with CAST without compromising the guaranteed minimum chance of a full

manual count when the semi-official outcome is wrong.

The following subsections list the steps in CAST.

11 [4] gives two methods for dealing with stratification in the probability calculations.

Many others are possible; current research seeks optimal approaches.
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Step 1: pick the chance β of catching an incorrect semi-

official result

The first step is to pick the minimum chance (e.g., 90%) of a full manual

count when the semi-official outcome is wrong—that is, when the semi-official

outcome differs from the outcome a full manual count would show. Typically,

this is a matter of legislation or administrative rule. To limit auditing burden,

it can be desirable to choose β smaller for small contests than for countywide

or statewide contests.12

Step 2: pick the maximum number of stages S and the

“escalation probabilities” β1, β2, . . . , βS

The second step is to pick the maximum number of sampling stages before

counting all votes by hand. If the audit cannot confirm the semi-official

outcome after the first stage of sampling, a second sample will be drawn,

and so on. If the audit cannot confirm the semi-official outcome at stage S

(because the audit has found too much error at every stage), every vote will

be counted by hand.

Choose a set of S numbers, β1, β2, . . . , βS between 0 and 1 whose product

is β. For example, one could take β1 = β2 = · · · = βS = β1/S, the Sth root

of the desired probability of a full manual count when that would change

12 If β is large, it will often be necessary to hand count most of the ballots in small

contests, even when the semi-official outcome is correct.
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the outcome.13 The value βs will be the minimum chance that the audit

progresses from stage s to stage s+1 if the outcome is wrong. The larger the

number of stages, generally the larger the individual values of βs need to be

to keep the overall chance of certifying an erroneous outcome under control:

13 Suppose we want an overall chance β that there will be a complete manual count

if the semi-official results are wrong. We contemplate performing at most S audit stages

before conducting a full manual count—if the outcome has not been certified by one of

those stages. Suppose that at each stage, we test in such a way that, if the semi-official

outcome is incorrect, the chance that the audit goes from stage s to stage s+ 1 is at least

βs, given the results observed at all previous stages. Then the overall chance that the

audit progresses to a full manual count is

β1 × β2 × · · · × βS . (1)

So, if we pick the values β1, . . . , βS so that their product is β, the chance that the audit will

lead to a complete manual count when the outcome is incorrect is at least β. For example,

suppose we want a 90% chance (β = 90%) of conducting a full manual count whenever it

would show that the semi-official outcome is wrong, and we contemplate drawing an initial

sample, a second sample if necessary, and then proceeding to a full manual count if we have

not yet certified the outcome. Then S = 2 and we could choose β1 = β2 =
√

90% = 94.9%.

We could instead take β1 = 91% and β2 = 98.9%, since 0.91 × 0.989 = 0.9. Taking

βs smaller for early audit stages and larger for later stages may reduce the overall audit

burden when the semi-official outcome is correct, because that makes it less likely that the

audit will progress beyond the first stage.

The same argument shows that it is fine to allow targeted auditing before and between

stages of random audit, provided that at stage s the test that is used guarantees that

the conditional probability is at least βs that the audit will not certify the outcome if the

outcome is wrong, given everything the targeted and random audit has discovered prior

to stage s.
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each additional stage introduces another possibility of certifying an erroneous

outcome. This is one reason to keep the number of stages relatively small.

Another is that each stage entails administrative and logistical burdens. And

the larger the number of stages, the more difficult it is for the public to

observe the audit and verify that it has been carried out correctly.

Step 3: select the subtotals that comprise batches and

the strata

The third step is to define the batches of votes from which the audit sample

will be drawn, and to partition those batches into strata for convenience.

Generally, the fewer votes each auditable batch contains, the smaller the

audit effort required to confirm the semi-official outcome if that outcome

is correct. Batches must satisfy two requirements, though: (i) semi-official

counts for each batch in a stratum must be published prior to drawing the

sample from that stratum. (So, if a jurisdiction does not publish semi-official

totals by machine within a precinct, but only for precincts as a whole, batches

must comprise at least entire precincts.) (ii) There must be an upper bound

on the number of valid votes in the batch for any candidate or position in

the contest. (Generally, such bounds are available only at the precinct level

and above; see section 2.)

The strata must be defined so that every batch is in one and only one

stratum. Generally, strata should not cross jurisdictional boundaries, so that

a single jurisdiction can carry out the audit of all the batches selected from
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a given stratum. Let P denote the total number of batches of ballots across

all strata; let C denote the total number of strata; and let Bc denote the

number of batches in stratum c, for c = 1, . . . , C. Then

B1 +B2 + · · ·+BC = P. (2)

Step 4: find upper bounds on the number of votes per

candidate per batch

To establish a limit on the extent to which error in each batch could possibly

overstate the semi-official margin (see section 2), one needs to know the

maximum number of votes any candidate or position could possibly get, batch

by batch. Upper bounds on the number of votes a candidate or position could

get in any precinct can be derived from voter registrations, pollbooks, or an

accounting of ballots.14 For example, if an accounting of ballots confirms

that bp ballots were voted in precinct p, then any candidate or position could

receive at most bp votes in that precinct. See [4].

14 An accounting of ballots compares the number of ballots sent to a precinct with

the number returned voted, unvoted and spoiled to account for each piece of paper. An

accounting of ballots is generally impossible for DRE voting machines, because paper

ballots are not sent to polling places for DREs, even if voter-verifiable paper audit trails

(VVPATS) are sent back from the polling places, so there is no way to tell whether the

number of voted ballots balances. An accounting of ballots should be performed whenever

possible, to ensure that ballots have neither disappeared nor materialized. Using the

number of registered voters as a bound is extremely conservative and tends to require

inordinately large samples unless voter turnout is extremely high.
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Step 5: set initial values of the variables

Set s = 1; s represents the current stage of the audit. Let Ps be the number

of as-yet-unaudited batches at stage s. If there has been no targeted auditing

so far, then P1 = P .

Step 6: calculate all pairwise margins

The sixth step is to find the all margins of victory for the contest, according

to the semi-official results and what the audit has discovered so far.

For each semi-official winner w and each semi-official loser ` in the contest,

calculate the margin of victory in votes:

Vw` = (votes for winner w) − (votes for loser `). (3)

In this calculation, use the semi-official results for the Ps batches that have

not yet been audited, and the audit results for the P −Ps batches that have

already been counted by hand.

If any of these margins Vw` is now zero or negative, the audit has already

found so much error that the list of winners has changed. If that occurs,

abort the audit and count all the votes by hand.

In a winner-take-all contest with K candidates in all, there are K−1 such

margins of victory: the apparent winner is paired with each of the remaining

candidates in turn. Some contests, such as city council races, can have several

winners. For example, suppose a contest allows each voter to vote for up to

3 of 7 candidates, and the three candidates receiving the largest number of
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votes are the winners. Then the 3 semi-official winners each have a margin

of victory over each of the 4 semi-official losers, and there are 3 × 4 = 12

margins of victory Vw`.

Step 7: find upper bounds on the maximum overstate-

ment of pairwise margins

In each batch not yet audited, the semi-official counts in each batch, together

with the bounds on the number of valid votes per candidate in each batch

(section 2), limit the amount that error in a given batch could have overstated

the margin between any semi-official winner and any semi-official loser.

Let candidate w be one of the semi-official winners of the contest and let

candidate ` be one of the semi-official losers of the contest, as above. For

each batch p that has not been audited, compute

uw`p =
(votes for candidate w in batch p) − (votes for candidate ` in batch p) +bp

Vw`

,

(4)

according to the semi-official results for batch p. Compute the largest value

of uw`p for all pairs (w, `) of semi-official winners and losers. Call that number

up. Then up is the most by which error in counting the votes in batch p could

have overstated the margin between any apparent winner and any apparent

loser, expressed as a fraction of the margin of victory between those two

candidates, adjusted for any errors that were discovered in batches already

audited. See [5].
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Step 8: targeted audits

At this point, if there are a few un-audited batches p for which up is much

larger than the rest, auditing those batches deliberately can reduce substan-

tially the sample size required in the random audit to follow. If additional

batches are selected for targeted audit, count them and return to step 6.

Step 9: select the desired threshold for “escalation”

The next step is to set the tolerable level of error, t, a number between 0

and 1. If any margin is overstated by t or more, the audit will progress to

the next stage. Generally, the larger the value of t, the larger the sample size

will need to be. If t is chosen so large that the sum over all as-yet-unaudited

batches of the smaller of up and t is 1 or larger, a full manual count will be

required to confirm the election. The smaller t is, the smaller the sample size

at each stage, but when t is small there is also generally a greater chance

that the audit will progress to the next stage. For example, if t = 0, the

audit will have to go to the next stage if the current stage finds even one

discrepancy that overstates any margin. One way to select t is to start with

a tolerance for the number of votes by which any margin can be overstated,

then express that as a fraction of the smallest margin. For example, section 3

considers a threshold overstatement of 3 votes, expressed as a fraction of the

margin of victory. The value of t can be changed at each stage of the audit,

provided the sample size for stage s is calculated using the value of t for stage

s. (Again, see section 3.)
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Step 10: find sample sizes for the next random sample

The next step is to calculate the incremental number of batches to be se-

lected at random from each stratum. First the total additional sample size is

calculated; then that number is allocated across strata in proportion to the

number of batches in each stratum. Other choices are possible; see [4]. We

shall assume that the semi-official counts are available for all batches in all

strata.15

To find the overall sample size, we define a new list of numbers. For the

Ps batches p not yet audited, let tp be the smaller of t and up, let T be the

sum of those values tp, and let ũp = up − tp.

1. Starting with the largest value of ũp, add successively smaller values of

ũp just until the sum of those values is 1− T or greater. Let q denote

the number of terms in the sum.

2. Find the smallest whole number n such that(
Ps − q
Ps

)n

≤ 1− βs. (5)

3. For c = 1, . . . , C, the sample size nc for stratum c is

n× #unaudited batches in stratum c

Ps

, (6)

15If counts are available only for some strata when the audit starts, the overall margins

will not be known. It is possible to proceed with some reasonable but arbitrary initial

choice of sample sizes for the strata for which semi-official counts are known, although the

decision of whether to certify requires semi-official counts for all batches. Step 13 then

needs to be modified. If the initial sample size is too small, the audit will proceed to the

next stage even if the first stage finds no error whatsoever. See [4] for more discussion.
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rounded up to the nearest whole number. Thus,

n∗ = n1 + n2 + · · ·+ nC ≥ n. (7)

[4] proves that these sample sizes guarantee that the chance of certifying

erroneously at stage s is at most 1− βs.

Step 11: draw the next sample and count votes

The next step is to draw the samples of batches for audit. Select batches using

a transparent, mechanical, verifiable source of randomness, such as fair 10-

sided dice. Computer-generated “pseudo-random” numbers are not appro-

priate, because it is essentially impossible for the public to verify whether the

algorithm is fair or has been tampered with. For each stratum c = 1, . . . , C,

draw a random sample of nc batches from the as-yet-unaudited batches in

stratum c, and count the votes for each candidate in each batch in the sample

by hand.

Step 12: calculate the maximum pairwise overstatement

For each of the n∗ batches p just audited in this stage, calculate

ew`p =
(reported votes for w in batch p) − (reported votes for ` in batch p)

Vw`

−(audited votes for w in batch p) − (audited votes for ` in batch p)

Vw`

for all pairs (w, `) of semi-official winners w and losers `. There are n∗×w×`

of those values. Call the largest of them ts.
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Step 13: certify, perform a full count, or proceed to the

next step

If ts ≤ t certify the election and stop.16 If ts > t and we are at the final stage

s = S, count all the votes by hand. Otherwise, add one to s; perform any

additional desired targeted auditing; set Ps to be the number of batches not

yet audited; and return to step 6.

3 Numerical Example: Cartoon of a U.S. House

Race

This section works through an approximation of a U.S. House of Represen-

tatives contest with a semi-official margin of about 5%. The batches are all

the same size and the reported votes in all the batches are the same so that

all the calculations can be done by hand. If the contest is not certified within

the first two stages, there will be a complete manual count.

3.1 Stage 1

Step 1.

We require probability at least β = 90% of a full manual count whenever

that would show a different outcome.

16This can be refined slightly; it can be the case that ts > t but that the chance of

observing a pairwise margin overstatement even larger is at least βs if the outcome is

wrong.
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Step 2.

We take the maximum number of stages of auditing to be S = 2. We

balance the chance of error between the two stages by taking β1 = β2 =

β1/2 =
√

0.9 = 94.9%.17

Step 3.

There are 400 precincts, of which 300 are in one county and 100 are in

another. Votes cast in each precinct are divided into batches of ballots cast in-

precinct on election day (IP) and cast by mail (VBM). We stratify on county

and mode of voting, IP versus VBM, so C = 4. Strata 1 and 2 correspond

to IP and VBM ballots in the first county, respectively, and strata 3 and 4

correspond to IP and VBM ballots in the second county. ThusB1 = B2 = 300

and B3 = B4 = 100.

Step 4.

Each precinct has 255 ballots cast in-precinct and 255 ballots cast by mail.

There has been an accounting of ballots so that the number of ballots in

batch p, bp = 255, can be considered to be known with certainty.

17 When the outcome of the contest is in fact correct and very few precincts have more

than a few errors that overstate the margin, it can be more efficient to allocate more of

the error to the first stage, for example, 91% chance of passing from stage 1 to stage 2 if

the outcome is wrong, and 98.9% chance of passing from stage 2 to a full manual count if

the outcome is wrong. See table 2 below.
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Step 5.

We set s = 1, P1 = 800.

Step 6.

To keep the example simple, we suppose that the semi-official count in each

of the 800 batches is the same: 125 votes for candidate 1, 112 votes for

candidate 2, 13 votes for candidate 3, 2 overvoted ballots and 3 undervoted

ballots. The semi-official totals are given in table 1.

125× 800 = 100, 000 votes for candidate 1

112× 800 = 89, 600 votes for candidate 2

13× 800 = 10, 400 votes for candidate 3

200× 800 = 200, 000 total votes cast

1,600 overvotes

2,400 undervotes

255× 800 = 204, 000 total ballots

Table 1: Hypothetical semi-official election results.

The semi-official margin of candidate 1 over candidate 2 in votes is

V12 = 100, 000− 89, 600 = 10, 400 votes. (8)

The semi-official margin of candidate 1 over candidate 3 is

V13 = 100, 000− 10, 400 = 89, 600 votes. (9)
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As a percentage of votes cast, the margin of victory is

100, 000− 89, 600

200, 000
× 100% = 5.2%. (10)

Step 7.

In each batch p, the largest percentage by which error could have overstated

the margin of candidate 1 over candidate 2 is

up12 =
125− 112 + 255

10, 400
= 0.02577 (11)

Similarly, the largest percentage by which error could have overstated the

margin of candidate 1 over candidate 3 is

up13 =
125− 13 + 255

89, 600
= 0.00410. (12)

Thus, in each precinct p, the most by which error could have overstated the

margin of candidate 1 over either of the other candidates is

up = max(0.02577, 0.00410) = 0.02577. (13)

Step 8.

We will not perform any targeted audits.

Step 9.

We set the threshold for escalation, t, as follows: we would like to be able to

certify the election even if the margin has been overstated by up to 3 votes

in every precinct. (The larger we pick this number, the larger the initial

20



sample size needs to be, but the smaller the chance of proceeding to the

next stage if the election outcome is correct.) Note that 3 votes amounts

to 3/10400 = 0.00029 of the (smaller) margin of victory. We will proceed

to the second stage if in any batch p in the first-stage sample, either ep12 or

ep13 is greater than t = 0.00029. If that happens, we will adjust the margins

to account for the errors the first stage found, take a new sample, and test

again; see below.

Step 10.

Since up = 0.02577 and t = 0.00029, tp = t = 0.00029 in every batch p, and

ũp = up − t = 0.02548 (14)

in every batch p. Since these are all equal, there is no sorting to do. We have

not audited any batches yet, so T = 0.00029× 800 = 0.23077. The smallest

number of batches for which the sum of ũp ≥ 1−T is thus the smallest whole

number q so that q × 0.02548 ≥ 1− 0.23077:

1− 0.23077

0.02548
= 30.2, (15)

so q = 31.

Now we find the smallest whole number n so that

(
800− 31

800

)n

≤ 1− β1 = 0.051. (16)

If we take the logarithm of both sides, we find

n log((800− 31)/800) ≤ log(0.051)
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n× (−0.03952) ≤ −2.9759

n ≥ 75.3, (17)

so n = 76.

We allocate the sample across the strata in proportion to the number of

batches in each stratum, rounding up to the nearest whole number: 76 ×

300/800 = 28.5, so

n1 = n2 = 29, (18)

and 76× 100/800 = 9.5, so

n3 = n4 = 10, (19)

giving a total first-stage sample size n∗ = 29 + 29 + 10 + 10 = 78, 9.75% of

the 800 batches.

Step 11.

Draw independent random samples of 29 batches of IP ballots from county 1,

29 VBM batches from county 1, 10 batches of IP ballots from county 2, and

10 batches of VBM ballots from county 2. Count the votes in every batch in

the sample by hand.

Step 12.

For each audited batch p, compute ep12 and ep13. Let t1 be the largest of

those 78× 2 = 156 numbers.
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Step 13.

If t1 ≤ 0.00029, certify the election. Otherwise, set s = 2 and go to the next

section.

3.2 Stage 2

If a full manual count would show that candidate 1 is not the winner, there

is at least a 94.9% chance that the audit will proceed to the second stage,

and then at least a 94.9% chance that the audit will proceed to a full manual

count, giving an overall chance of at least 94.9%×94.9% = 90% that the audit

will lead to a full manual count. Of course, if none of the audit batches has

errors that overstate any margin by more than t, the audit has no chance of

finding t1 > 0.00029 and proceeding to stage 2: the outcome will be certified

at stage 1.

What if some audit batches have errors that overstate the margin of

candidate 1 over candidate 2 by more than 3 votes? In this section we

imagine two scenarios and look at the consequences. In the first, the semi-

official outcome is wrong in a particular way. In the second, the election

outcome is correct, but 8 audit batches have errors that overstate the margin

by more than t, and 8 have compensating errors that understate the margin.
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3.2.1 The outcome is wrong

We now consider a scenario in which the outcome of the election is wrong.

Suppose that in 100 of the batches, the true vote was:

80 votes for candidate 1,

160 votes for candidate 2,

13 votes for candidate 3,

1 overvote, and

1 undervote,

so there are still 255 ballots in each batch. In each of the remaining 700

batches, the true vote was

124 votes for candidate 1,

113 votes for candidate 2,

15 votes for candidate 3,

2 overvotes, and

1 undervote.

Then the true total vote is

100× 80 + 700× 124 = 94, 800 votes for candidate 1,

100× 160 + 700× 113 = 95, 100 votes for candidate 2, and

100× 13 + 700× 15 = 11, 800 votes for candidate 3.

The semi-official outcome is wrong: candidate 2 is the rightful winner. The

overstatement of the margin of candidate 1 over candidate 2 in the 100 batches
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with large errors is

(125− 112)− (80− 160)

10, 400
= 0.00894, (20)

and in the 700 batches with smaller errors it is

(125− 112)− (124− 113)

10, 400
= 0.00019. (21)

The overstatement of the margin of candidate 1 over candidate 3 in the

100 batches with large errors is

(125− 13)− (80− 13)

89, 600
= 0.00050, (22)

and in the 700 batches with smaller errors it is

(125− 13)− (120− 15)

89, 600
= 0.00008. (23)

The first and third of these four overstatements are bigger than t = 0.00029;

they occur in the same batches. In this scenario, the chance that the first

stage of the audit would find one or more batches with margin overstatements

ep greater than 0.00029 (so that the audit would progress to the second stage)

is at least

1−
(

800− 100

800

)76

= 99.996%, (24)

rather greater than the guaranteed minimum of 94.9%.

If the sample were not stratified, the expected number of batches in the

sample with large errors would be

78× 100

800
= 9.75. (25)
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Suppose that the sample found 10 of the batches with large errors and 68 of

the batches with small errors. We would return to step 6, but with s = 2

and P2 = 800− 78 = 722 as-yet-unaudited precincts.

Step 6.

The vote counts, adjusted for the error observed in the first-stage sample,

are

10× 80 + 68× 124 + 722× 125 = 99, 482 votes for candidate 1

10× 160 + 68× 113 + 722× 112 = 90, 148 votes for candidate 2

10× 13 + 68× 15 + 722× 13 = 10, 536 votes for candidate 3.

The margins, adjusted for the error found at stage 1, are

V12 = 99, 482− 90, 148 = 9, 334 (a reduction of 1,066 votes)

V13 = 99, 482− 10, 536 = 88, 946 (a reduction of 654 votes). (26)

Step 7.

The revised values of uw`p, taking into account the adjusted margins, are

up12 =
125− 112 + 255

9, 334
= 0.02871

up13 =
125− 13 + 255

88, 946
= 0.00412. (27)

Thus, in each precinct p, the most by which error could have overstated the

margin of candidate 1 over either of the other candidates is

up = max(0.02871, 0.00412) = 0.02871. (28)
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Step 8.

We will not perform any targeted audits.

Step 9.

We adjust the threshold to correspond to a 3 vote overstatement of the margin

of victory: t = 3/9334 = 0.00032.

Step 10.

As before, β2 = 94.9%. Since up = 0.02871 and t = 0.00032, tp = t = 0.00032

in every batch p, and

ũp = up − tp = 0.02839 (29)

in every batch p. Since these are all equal, there is no sorting to do. We have

722 batches not yet audited, so T = 722 × 3/9334 = 0.23205. The smallest

number of batches for which the sum of ũp ≥ 1−T is thus the smallest whole

number q so that q × 0.02839 ≥ 1− 0.23205:

1− 0.23205

0.02839
= 27.05, (30)

so q = 28.

Now we find the smallest whole number n so that

(
722− 28

722

)n

≤ 1− β2 = 0.051. (31)

If we take the logarithm of both sides, we find

n log((722− 28)/722) ≤ log(0.051)
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n× (−0.03955) ≤ −2.9759

n ≥ 75.1, (32)

so n = 76, as before (coincidentally).

As before, we allocate the sample across the strata in proportion to the

number of batches in each stratum, rounding up to the nearest whole number.

There are 722 unaudited precincts, 271 in strata 1 and 2, and 90 in strata 3

and 4: 76× 271/722 = 28.5, so

n1 = n2 = 29, (33)

and 76× 90/722 = 9.5, so

n3 = n4 = 10, (34)

giving a total sample size n∗ = 29 + 29 + 10 + 10 = 78, as before. Thus the

second stage will audit 78/722 = 10.8% of the remaining 722 batches.

Step 11.

Draw independent random samples of 29 batches of IP ballots from county 1,

29 VBM batches from county 1, 10 batches of IP ballots from county 2, and

10 batches of VBM ballots from county 2. Count the votes in each batch in

the sample by hand.

Step 12.

For each audited batch p, compute ep12 and ep13. Let t2 be the largest of

those 78× 2 = 156 numbers.
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Step 13.

If t2 ≤ 0.00032, certify the election. Otherwise, perform a full manual count.

In this hypothetical example, we found 10 of the 100 batches with large

errors in stage 1, so 90 of those batches remained among the 722 that were

not audited at stage 1. The chance that the second-stage sample contains at

least one of them—so that

t2 =
(125− 112)− (80− 160)

9, 334
= 0.00996 (35)

and a full manual count occurs—is at least

1−
(

722− 90

722

)76

= 99.996%, (36)

again rather larger than the guarantee of 94.9%.

3.2.2 The outcome is correct

Suppose that 8 audit batches (1%) have errors that overstate the margin

between candidate 1 and candidate 2 by more than t, and 8 audit batches

have compensating errors that understate the margin. The outcome of the

contest is correct. Nonetheless, there is a chance that sample will contain

one or more of the 8 batches with large overstatements, triggering the audit

to progress to stage 2. What is the chance that will occur? The answer

depends on how the 8 audit batches with large errors are spread across the

4 strata. If all 8 are in one of the small strata, that maximizes the chance

that the audit will go to stage 2. The chance is then

1−

(
92
10

)
(

100
10

) = 58.3%. (37)
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If the 8 batches with large overstatements are spread proportionately across

the strata, 3 in each of the two large strata and 1 in each of the two small

strata, the chance that the audit will go to stage 2 is a bit smaller:

1−


(

297
29

)
(

300
29

)
2

×


(

99
10

)
(

100
10

)
2

= 56.1%. (38)

The chance that the audit will progress from stage 2 to a full manual count

depends on the number and location of the audit batches with large over-

statement or understatement errors are uncovered at stage 1. Generally, the

larger the fraction of the 8 large overstatement errors discovered in the first

stage and the smaller those errors are, the smaller the chance the audit will

progress to a full manual count.

To get a feel for the probability of a full manual count, suppose that

there are 8 overstatement errors and 8 understatement errors distributed in

the strata as follows: in each of the two large strata, there are 3 audit batches

with errors that overstate the margin between candidate 1 and candidate 2

(V12) by 10 votes and 3 audit batches with errors that understate V12 by

10 votes, and that in each of the two small strata, there is 1 audit unit with

errors that overstate V12 by 10 votes and one with errors that understate V12

by 10 votes. In the first-stage sample, the expected number of audit batches

with 10 vote overstatements of V12 is

3× 29

300
+ 3× 29

300
+ 1× 10

100
+ 1× 10

100
= 0.78. (39)

The expected number with 10 vote understatements of V12 is the same. Sup-

pose that the first stage sample finds 1 batch with a 10 vote overstatement
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of V12 in one of the large strata, and 1 batch with a 10 vote understatement

of V12 in some stratum. Then t1 > t, so the audit will go to the second stage

at step 6.

Step 6

The net error found in the first stage is zero, so the adjusted margins remain

equal to the semi-official margins:

V12 = 100, 000− 89, 600 = 10, 400 votes (40)

and

V13 = 100, 000− 10, 400 = 89, 600 votes. (41)

Step 7.

Since the margins have not changed, we still find

up = max(0.02577, 0.00410) = 0.02577. (42)

Step 8.

We will not perform any targeted audits.

Step 9.

Again, because the margins have not changed, a 3 vote overstatement of V12,

the smaller margin, corresponds to t = 3/10400 = 0.00029.

31



Step 10.

Since up = 0.02577 and t = 0.00029, tp = t = 0.00029 in every batch p, and

ũp = up − t = 0.02548 (43)

in every batch p. Since these are all equal, there is no sorting to do. There

are 722 unaudited batches, so T = 0.00029 × 722 = 0.20938. The smallest

number of batches for which the sum of ũp ≥ 1−T is thus the smallest whole

number q so that q × 0.02548 ≥ 1− 0.20938:

1− 0.20938

0.02548
= 31.03, (44)

so q = 32.

Now we find the smallest whole number n so that

(
722− 32

722

)n

≤ 1− β1 = 0.051, (45)

namely, n = 66.

There are 722 unaudited precincts, 271 in strata 1 and 2, and 90 in strata 3

and 4: 66× 271/722 = 24.8, so

n1 = n2 = 25, (46)

and 66× 90/722 = 8.2, so

n3 = n4 = 9, (47)

giving a total sample size n∗ = 25 + 25 + 9 + 9 = 68, Thus the second stage

would audit 68/722 = 9.4% of the remaining 722 batches in this scenario.
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Step 11.

Draw independent random samples of 25 batches of IP ballots from county 1,

25 VBM batches from county 1, 9 batches of IP ballots from county 2, and

9 batches of VBM ballots from county 2. Count the votes in every batch in

the sample by hand.

Step 12.

For each audited batch p, compute ep12 and ep13. Let t2 be the largest of

those 68× 2 = 136 numbers.

Step 13.

If t2 ≤ 0.00029, certify the election. Otherwise, count the remaining 800 −

78− 68 = 654 ballots manually.

In this scenario, the chance that the second stage sample has one or more

of the audit batches with a 10 vote overstatement of V12 is

1−

(
269
25

)
(

271
25

) ×
(

268
25

)
(

271
25

) ×

(

89
9

)
(

90
9

)
2

= 50.2%. (48)

The overall chance that the audit would progress to a full manual count is

thus

56.1%× 50.2% = 28.1% (49)

If there were fewer audit batches with large errors, the chance of a full manual

count would be smaller.
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For example, if there is only one audit batch that overstates the margin

by more than t, the chance of proceeding to the second stage is at most 10%,

and the chance of a full manual count is zero. If there are two audit batches

that overstate the margin by more than t, the chance of proceeding to the

second stage is at most 19.1%. If the first stage finds both errors, there is no

chance of proceeding to a full manual count; if not, the chance of proceeding

to a full manual count is on the order of 10%. The overall chance of a full

manual count would be at most 1.8%, neglecting any adjustments to the

margin. Table 2 presents the maximum probability of an unnecessary full

manual count in a variety of scenarios.

3.3 Varying the Assumptions

In this hypothetical example—with a 5.2% margin, 90% confidence split

evenly across 2 stages (β1 = β2 = 94.9%) and 800 audit batches—the initial

sample size is nearly 10% of the audit batches. Table 2 shows how the first-

stage sample size changes as some of these choices are varied: the margin, the

confidence level, and the allocation of error across stages. In these hypothet-

ical examples, in each batch the number of votes reported for candidate 3 is

fixed at 13, the number of overvotes is fixed at 2, and the number of under-

votes is fixed at 3. The first-stage threshold t for escalation is set so that the

outcome is certified if the margin between candidate 1 and candidate 2 has

been overstated by 3 votes or fewer (because 3 votes is a larger fraction of V12

than of V13, a much larger overstatement of the margin between candidate 1
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and candidate 3 is required before the audit escalates to stage 2).

Table 2 also shows the maximum probability that the audit will progress

to the second stage if 1% (i.e., 8) or 0.5% (i.e., 4) of the 800 audit batches

have errors that overstate the margin between candidates 1 and 2 by more

than 3 votes. These bounds are denoted γ0.01 and γ0.005 in the table. Finally,

table 2 gives upper bounds on the probability of a full manual count in those

two scenarios, with the additional assumption that the net error uncovered in

stage 1 is zero—overstatement errors are balanced by understatement errors

in the sample. Those probability bounds are denoted ω0.01 and ω0.005. The

bounds γ and ω assume that the 4 or 8 batches with large errors are all placed

in one stratum, which makes it most likely that the audit will progress to the

next stage and to a full manual count. (If they were distributed randomly,

the probability of a full manual count would be lower.) Appendix A discusses

how these bounds are calculated. Sample R code is given in appendix B.

4 Discussion and technical notes

4.1 Background error rate

The treatment of the background error rate—the threshold margin over-

statement t—can be sharpened considerably. Each audit unit is in one of

two categories: margin overstatement of t or less, or margin overstatement

exceeding t. The test at each stage is based on the number of audit batches

in the sample that are in the second category—the audit progresses to the
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

V12 β β1 β2 n n∗ f γ0.01 ω0.01 γ0.005 ω0.005 n∗2

5.2% 75% 76.0% 98.9% 37 38 4.75% 34.7% 23.8% 18.8% 7.2% 108

86.6% 86.6% 51 54 6.75% 45.3% 17.7% 25.5% 4.9% 50

90% 91.0% 98.9% 61 62 7.75% 50.0% 34.9% 28.7% 11.3% 108

94.9% 94.9% 76 78 9.75% 58.3% 31.2% 34.8% 9.5% 68

10.0% 75% 76.0% 98.9% 18 20 2.50% 22.3% 9.3% 11.6% 2.4% 54

86.6% 86.6% 25 28 3.50% 28.7% 6.3% 15.3% 1.5% 26

90% 91.0% 98.9% 29 30 3.75% 28.7% 12.1% 15.3% 3.1% 54

94.9% 94.9% 36 38 4.75% 34.7% 11.2% 18.8% 2.8% 36

19.6% 75% 76.0% 98.9% 9 12 1.50% 15.4% 4.0% 7.9% 1.0% 28

86.6% 86.6% 13 14 1.75% 15.4% 2.1% 7.9% 0.5% 14

90% 91.0% 98.9% 15 16 2.00% 15.4% 4.0% 7.9% 1.0% 30

94.9% 94.9% 18 20 2.50% 22.3% 4.5% 11.6% 1.1% 20

Table 2: Hypothetical 2-stage audit with 3 vote error threshold. Contests have 4 strata,

two with 300 audit batches and two with 100. Each batch has 255 ballots, including

13 votes reported for candidate 3, 2 overvotes and 3 undervotes. Columns: (1) Margin

between candidate 1 (winner) and candidate 2 (runner-up). 5.2% margin is 125 votes

for candidate 1 and 112 for candidate 2 in each batch; 10.0% is 131 versus 106; 19.6%

is 143 versus 94. (2) Minimum chance of a full manual count if the outcome is wrong.

(3) Minimum chance the audit goes from stage 1 to stage 2 if the outcome is wrong. (4)

Minimum chance the audit goes from stage 2 to a full manual count if the outcome is

wrong, if it gets to stage 2. (5) Stage 1 sample size before adjusting for stratification. (6)

Stage 1 sample size adjusted for stratification. (7) Column 6 as a percentage of 800. (8)

Maximum chance the audit progresses to stage 2 if 1% of audit batches overstate V12 by

more than 3 votes. (9) Maximum chance of a full manual count if 1% of audit batches

overstate V12 by more than 3 votes, and the stage 1 net error is zero. (10) Same as (8),

but with 0.5% of batches having large overstatements of V12. (11) Same as (9), but with

0.5% of batches having large overstatements of V12. (12) Stage 2 sample size if the net

error in stage 1 is zero.
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next stage if that number is not zero. To ensure that the test is conserva-

tive, audit batches are presumed to have the largest margin overstatement

they can without changing categories. That is, audit batches in the first

category are treated as if they have margin overstatements of t, and audit

batches in the second category are treated as if they have the largest margin

overstatement their bounds up permit. In the example in section 3, setting

t to correspond to a 3-vote overstatement of the margin between the winner

and the runner-up means that every audit unit can overstate the margin by

3/250 = 1.2% of its 250 votes. Hence, for that value of t, if the semi-official

margin were 1.2% or less, the method would require a full manual count.

One can construct a sharper test by grouping audit batches into more

than two categories. For example, audit batches could be divided into those

with no margin overstatement, overstatement between 0 and some thresh-

old t, and audit batches with margin overstatements greater than t. Using

three categories leads to “trinomial bounds;” more generally, one can derive

multinomial bounds. (Multinomial bounds have been used in financial au-

diting [1, 3] using a different sampling design: unstratified sampling with

probability proportional to size. The categories are pennies out of each dol-

lar of potential error, 101 categories in all.) Work in progress (Miratrix and

Stark, 2008) develops a test based on a trinomial bound. The audit pro-

gresses from one stage to the next if the number of audit batches in the

sample in either or both of the second two categories is too large.
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4.2 Improving the treatment of stratification

The sample size calculation at step 10 assumes that the q batches with enough

error to alter the apparent outcome could be distributed arbitrarily among

the strata. In fact, unless the error bounds up are all equal, batches that can

hold large errors might be concentrated in a relatively small subset of the

strata, which would make it more likely that the sample would find at least

one batch with large errors if the aggregate error is large enough to produce

the apparent margin. That is, the “worst case” for which the sample size is

calculated might not be feasible for the actual set of error bounds. Work in

progress (Higgins and Stark, 2008) sharpens the treatment of stratification

by calculating the worst feasible case: the attainable distribution of error

across batches that could account for the apparent margin and minimizes

the probability of finding any batches with large errors in a stratified sample.

When the strata are small, the probability bound CAST uses (based on

sampling with replacement) is weak. Small contests are generally contained

within a single jurisdiction, though, so there may be no need for more than

two strata—votes cast in precinct and votes cast by mail. In that case, it can

be tractable to derive sharper probability bounds using the hypergeometric

distribution in each stratum. Work in progress (Higgins and Stark, 2008)

sharpens the binomial bound when audit batches in different strata have

different error bounds.
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4.3 Comparison with previous work

CAST differs from the method of [4, 5] in important ways. Instead of using

Bonferroni’s inequality to bound the overall chance of certifying an incorrect

outcome, CAST controls the probability by designing the test at each stage

to control the conditional probability of certifying erroneously.

Second, CAST conditions on the audit results at previous stages, rather

than treating the sample at stage s as a “telescoping” sample that includes

previous stages as [4] does. This has a number of benefits. First, if an early

stage of audit finds a large discrepancy, the test statistic at later stages is

not necessarily large, because at each stage only the incremental sample en-

ters the test statistic. Second, margin overstatement errors discovered at one

stage do not lead to more than one step of escalation if there are canceling

margin understatement errors: while only overstatement errors are involved

in the test statistic at a given stage, the margin is adjusted sequentially to ac-

count for both overstatement and understatement errors. Third, this makes

it easy to incorporate “targeted” sampling.
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A Bounds on the probability of escalation

This section finds the maximum probability that the audit will progress from

one stage to the next if there are a given number q of audit batches with mar-

gin overstatements greater than t. It also shows how to use that maximum

to bound the probability of an unnecessary full manual count on the assump-

tion that the net error discovered in each stage cancels so that the margin

does not change.

The basic result is that the probability that the sample will contain none

of the q batches with a large margin overstatement is smallest when all q

of those batches are in one stratum (if there is any stratum c for which Nc,

the size of the stratum, minus nc, the size of the sample drawn from that

stratum, is less than q, the probability can be 100%). We establish this by

means of the following lemma.

Lemma 1 Suppose N > n, M > m, min(N,M) ≥ v ≥ r ≥ 0 are all

integers. Then (
N−r

n

)
(

N
n

) ×
(

M−v+r
m

)
(

M
m

) ≥ min


(

N−v
n

)
(

N
n

) ,

(
M−v

m

)
(

M
m

)
 . (50)

Proof. If v = 0 or v = 1, this is trivially true; it is also clearly true when

M − m < v or N − n < v, because then the probability is 1. Suppose

v ≥ min(M −m,N − n). Note that in general if ` < K,(
K−`

k

)
(

K
k

) =
(K − k)(K − k − 1) · · · (K − k − `+ 1)

K(K − 1) · · · (K − `+ 1)
. (51)
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Applying 51 twice, we find(
N−r

n

)
(

N
n

) ×
(

M−v+r
m

)
(

M
m

) =
(N − n)(N − n− 1) · · · (N − n− r + 1)

N(N − 1) · · · (N − r + 1)
×

(M −m)(M −m− 1) · · · (M −m− v + r + 1)

M(M − 1) · · · (M − v + r + 1)
..(52)

Identity 51 also shows that(
N−v

n

)
(

N
n

) =
(N − n)(N − n− 1) · · · (N − n− v + 1)

N(N − 1) · · · (N − v + 1)
(53)

and (
M−v

m

)
(

M
m

) =
(M −m) · · · (M −m− v + 1)

M(M − 1) · · · (M − v + 1)
. (54)

Thus 52 is to be compared with

min

{
(N − n) · · · (N − n− v + 1)

N(N − 1) · · · (N − v + 1)
,
(M −m) · · · (M −m− v + 1)

M(M − 1) · · · (M − v + 1)

}
. (55)

Now

(N − n) · · · (N − n− v + 1)

N(N − 1) · · · (N − v + 1)
=

(N − n) · · · (N − n− r + 1)

N(N − 1) · · · (N − r + 1)
×

(N − n− r) · · · (N − n− v + 1)

(N − r)(N − r − 1) · · · (N − v + 1)
.(56)

Suppose without loss of generality that the first term in the minimum in 55

is the smaller of the two. Then the lemma can be false only if

(N − n) · · · (N − n− r + 1)

N(N − 1) · · · (N − r + 1)
× (M −m) · · · (M −m− v + r + 1)

M(M − 1) · · · (M − v + r + 1)
(57)

<
(N − n)(N − n− 1) · · · (N − n− v + 1)

N(N − 1) · · · (N − v + 1)
; (58)
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i.e., only if

M −m
M

×· · ·×M −m− v + r + 1

M − v + r + 1
<
N − n− r
N − r

×· · ·×N − n− v + 1

N − v + 1
. (59)

Both sides of 59 are products of v − r terms; inequality 59 is equivalent to

the assertion that the geometric mean of the terms on the left is less than

the geometric mean of the terms on the right. If so, then the smallest of the

terms on the left is smaller than the largest of the terms on the right. Since

x < y implies that x−1
y−1

< x
y
, the smallest term on the left is M−m−v+r+1

M−v+r+1
and

the largest term on the right is N−n−r
N−r

. Thus

M −m− v + 1

M − v + 1
<
M −m− v + 2

M − v + 2
< · · · <

M −m− v + r

M − v + r
<
M −m− v + r + 1

M − v + r + 1

<
N − n− r
N − r

<
N − n− r + 1

N − r + 1
< · · · <

N − n− 1

N − 1
<
N − n
N

. (60)

Therefore,

M −m− v + 1

M − v + 1
× M −m− v + 2

M − v + 2
× · · · ×M −m− v + r

M − v + r

<
N − n− r + 1

N − r + 1
× N − n− r + 2

N − r + 2
× · · · ×N − n− 1

N − 1
× N − n

N
, (61)

Multiplying the left side of 59 times the left side of 61 and the right side of 59

times the right side of 61 shows that if the lemma is false,

(M −m)(M −m− 1) · · · (M −m− v + 1)

M(M − 1) · · · (M − v + 1)
<

(N − n)(N − n− 1) · · · (N − n− v + 1)

N(N − 1) · · · (N − v + 1)
,

(62)

which contradicts the assumption that the first term in 55 is the smaller of

the two. •

The lemma implies that for any pair of strata that have a total of v audit

batches with large overstatements, the probability that the sample contains
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at least one audit batch with a large overstatement is maximized if all v are

in the same stratum (provided they all fit; otherwise the probability is 100%).

If we use the independence of the samples in different strata and apply the

lemma result recursively to pairs of strata, we see that the probability that

the sample contains at least one audit batch with a large overstatement is

maximized when all the batches with large overstatements are in the same

stratum—if every stratum has room for all of them. Hence the maximum

probability of escalation can be found by first checking whether the number q

of batches with large overstatements is greater than or equal to the smallest

value of Nc − nc. If so, the maximum probability of escalation is 100%. If

not, the maximum probability can be found by comparing C numbers, the

probabilities when all the batches with large overstatements are in stratum

c, for c = 1, . . . , C.

The conditional probability that the audit progresses to stage s+ 1 from

stage s given that there are v batches with overstatement errors greater

than t among the unaudited batches is thus maximized when all v of those

batches are in one stratum. Clearly, the larger the value of v, the larger that

conditional probability, so the conditional probability of passing from stage s

to stage s+ 1 is largest if exactly one batch with a large overstatement was

found in the sample at each stage before s. (If none was found the audit

would not progress to the next stage.)

Let nsc denote the size of the sample drawn at stage s from stratum c,

and define n0c ≡ 0. Suppose that there are q batches with overstatement

errors greater than t in the original population of batches. If q < S, the
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chance of a full manual count is zero—if the audit gets to stage S − 1, there

are no more batches with large errors left to find. Otherwise,

Pr{full manual count} ≤
S∏

s=1

1−min
c

(
Nc−

∑s−1

r=1
nrc−(q−s+1)
nsc

)
(

Nc−
∑s−1

r=1
nrc

nsc

)
 . (63)

B R code to replicate the example

The following R commands calculate the initial stratum sample sizes n1, . . . , n4,

the total initial sample size n∗, and the maximum probability of escalation

to the 2nd stage as given in section 3.

#################### R Code for House contest cartoon

samSizes <- function(b, Cv, t, u) {

# b: the minimum probability of advancing to the next stage

# if the outcome is wrong

# Cv: vector of strata sizes, not-yet-audited batches

# t: threshold for tolerable error

# u: upper bound on the margin overstatement in each batch

tp <- min(t, u); # tolerable overstatement a batch can hold

utilde <- u-tp; # overstatement above t a batch can hold

P <- sum(Cv); # total batches in the contest

T <- tp*P; # bit of margin accounted for by t in each batch

q <- ceiling((1-T)/utilde); # minimum no. tainted batches required to

# account for remainder of the margin

n <- ceiling( log(1-b)/log((P-q)/P) ); # sample size for sampling with
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# replacement, unstratified

ceiling(n*Cv/P) # sample sizes in each stratum

}

S <- 2; # max stages before a full hand count

Cv <- c(300, 300, 100, 100); # strata sizes in batches

P <- sum(Cv); # total number of batches

alterFrc <- c(0.01, 0.005); # fractions of batches with errors,

# alternative hypothesis

alter <- ceiling(alterFrc*sum(Cv)); # batches w/ errors, alternative

# hypothesis

vtol <- 3; # tolerable overstatement before escalation, votes

v <- c(125, 112, 13, 2, 3); # vote in batch: candidates 1, 2, 3, overvotes,

# undervotes 5.2% margin scenario

# v <- c(131, 106, 13, 2, 3); # 10% margin scenario

# v <- c(143, 94, 13, 2, 3); # 19.6% margin scenario

v12 <- P*(v[1]-v[2]); # margin of candidate 1 vs candidate 2

v13 <- P*(v[1]-v[3]); # margin of candidate 1 vs candidate 3

margin <- 100*v12/(P*(v[1]+v[2]+v[3])) # margin in percent

t <- vtol/min(v12, v13); # tolerable overstatement as fraction of smaller

# margin

u12 <- (v[1]-v[2]+sum(v))/v12; # bound on overstatement of v12
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u13 <- (v[1]-v[3]+sum(v))/v13; # bound on overstatement of v13

u <- max( u12, u13 ); # bound on overstatement of either margin

beta <- 0.9; # min chance of full hand count for wrong outcome

betav <- rep(beta^(1/S),S); # min chance of escalation for wrong outcome

# betav <- c(beta+0.01, beta/(beta+0.01)); # allocate more error to 1st stage

nv1 <- samSizes(betav[1], Cv, t, u);

gamma11 <- 1-min(dhyper(0, alter[1], Cv-alter[1], nv1)); # max chance of

# escalation to 2nd stage if alter[1] batches

# have big errors

gamma12 <- 1-min(dhyper(0, alter[2], Cv-alter[2], nv1)); # max chance of

# escalation to 2nd stage if alter[2] batches

# have big errors

Cv2 <- Cv - nv1 # un-audited batches remaining in each

# stratum after stage 1

nv2 <- samSizes(betav[2], Cv2, t, u);

gamma21 <- 1-min(dhyper(0, alter[1]-1, Cv2-alter[1]+1, nv2)); # max chance of

# escalation from stage 2 to full manual count if

# alter[1]-1 batches have big errors

gamma22 <- 1-min(dhyper(0, alter[2]-1, Cv2-alter[2]+1, nv2)); # max chance of

# escalation from stage 2 to full manual count if

# alter[2]-1 batches have big errors
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omega1 <- gamma11*gamma21; # max chance of full hand count, alter[1] errors

# (conditional on no net error in 1st stage,

# 1 error found in 1st stage)

omega2 <- gamma12*gamma22; # max chance of full hand count, alter[2] errors

# (conditional on no net error in 1st stage,

# 1 error found in 1st stage)

####### output #######

margin # margin in percent

betav # min escalation probs, wrong outcome

nv1 # 1st stage stratum sample sizes

sum(nv1) # overall sample size including stratification

sum(nv2) # 2nd stage sample size including stratification

100*sum(nv1)/sum(Cv) # fraction of audit batches in the initial sample

c(gamma11, omega1) # max escalation & full count prob, 1% errors

c(gamma12, omega2) # max escalation & full count prob, 0.5% errors

References

[1] S.E. Fienberg, J. Neter, and R.A. Leitch, Estimating total overstatement

error in accounting populations, J. Am. Stat. Assoc. 72 (1977), 295–302.

[2] E. Ginnold, J.L. Hall, and P.B. Stark, A risk-limiting audit of Measure

A in the February 2008 Marin County election, 2008.

47



[3] J. Neter, R.A. Leitch, and S.E. Fienberg, Dollar unit sampling: multi-

nomial bounds for total overstatement and understatement errors, The

Accounting Review 53 (1978), 77–93.

[4] P.B. Stark, Conservative statistical post-election audits, Ann. Appl. Stat.

2 (2008), 550–581.

[5] , A sharper discrepancy measure for post-election audits, Ann.

Appl. Stat. in press (2008), in press.

48


	Introduction
	CAST Step-by-step
	Numerical Example: Cartoon of a U.S. House Race
	Stage 1
	Stage 2
	The outcome is wrong
	The outcome is correct

	Varying the Assumptions

	Discussion and technical notes
	Background error rate
	Improving the treatment of stratification
	Comparison with previous work

	Bounds on the probability of escalation
	R code to replicate the example

