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ABSTRACT

The census can be adjusted using capture-recapture techniques: capture in the census, recapture
in a special Post Enumeration Survey (PES) done after the census. The population is estimated
using the Dual System Estimator (DSE). Estimates are made separately for demographic groups
called post strata; adjustment factors are then applied to these demographic groups within small
geographic areas. We offer a probability model for this process, in which several sources of error
can be distinguished. In this model, correlation bias arises from behavioral differences between
persons counted in the census and persons missed by the census. The first group may on the whole
be more likely to respond to the PES: if so, the DSE will be systematically too low, and that is an
example of correlation bias. Correlation bias is distinguished from heterogeneity, which occurs if
the census has a higher capture rate in some geographic areas than others. Finally, ratio estimator
bias and variance are considered. The objective is to clarify the probabilistic foundations of the
DSE, and the definitions of certain terms widely used in discussing that estimator.

1. INTRODUCTION

The US census suffers from a small undercount, which is differential by race and ethnicity.
There have been proposals to adjust the census using capture-recapture techniques. Capture is
in the census, recapture is in a special sample survey—the Post Enumeration Survey, or PES—
done after the census. Undercount rates are estimated for several hundred demographic groups
called post strata: one post stratum might consist of non-Hispanic Asian male renters age 30–49,
across the whole U.S. Then, small areas—blocks, tracts, cities, states—are adjusted synthetically,
assuming that undercount rates are determined by demography not geography: in other words,
undercount rates are taken to be constant within post strata across areas. For more details, see Hogan
(1993), Freedman and Wachter (1994), or Brown et al. (1999). For institutional background, see
Skerry (2000). The Supreme Court has ruled against census adjustment for apportioning Congress.
However, adjustment is likely to to be used for redistricting, and allocation of tax funds. Government
acronyms are in constant flux: the 1980 analog of the PES was PEP (Post Enumeration Program).
For 2000, what was formerly ICM (Integrated Coverage Measurement) is now ACE—Accuracy
and Coverage Evaluation Survey.

There are familiar probability models for capture-recapture in animal populations. Extensions
to the census context present special complications, even at the conceptual level. For example,
blocks are sampled rather than individuals. Furthermore, erroneous enumerations—people counted
in the census in error—must be estimated, as well as gross omissions (people omitted from the cen-
sus). Previous modeling efforts will be reviewed in Section 3 below, but these models do not seem
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to handle the complications: for instance, erroneous enumerations are not represented. More-
over, even for gross omissions, the models depend on rather tenuous assumptions about individual
behavior.

Here, we propose a simple new model for the census adjustment process, which does handle
some of the major complications. The stochastic element is generated by the controlled randomness
in sampling blocks for the PES. No artificial behavioral assumptions are needed, and the block
structure is built into the model from the beginning. Erroneous enumerations are represented, as
well as gross omissions. This paper focuses on stating the model. However, a brief summary of
empirical results for 1990 is given in Section 7.

Estimated undercount rates for post strata suffer from random error (sampling error when
drawing blocks into the PES). This error can be quantified in fairly standard ways; see Section 6.
Adjustment factors developed for each post stratum are nonlinear functions of the data, which leads
to ratio estimator bias, also quantified in Section 6. Of more practical concern are the biases that
arise from operational errors of one kind or another (for instance, respondents may give incorrect
census-day address information). These errors will be set aside until Section 7.

There are people who are inaccessible, for one reason or another, both to the census and to the
adjustment. These people create another important source of bias—difficult to measure directly—
called “correlation bias” (Section 4). Finally, undercount rates cannot really be constant within
post strata. This leads to an error called “heterogeneity,” not in the post stratum adjustment factors
but in the adjusted counts for small areas (Section 5). Correlation bias, heterogeneity, and ratio
estimator bias are sometimes hard to distinguish in the context of census adjustment. For instance,
compare Ericksen, Fienberg, and Kadane (1994) with Freedman and Wachter (1994). Our model
permits a clear separation of these errors.

There is a minimal unit of census geography called a “block.” (In built-up areas, this is typically
a city block.) The census attempts to list all the “usual residents” of each block, as of census day.
In each block, some number of persons are counted in error by the census; these are Erroneous
Enumerations (EEs). A typical EE is a duplicate record; another typical example is a person whose
address was erroneously assigned to the block. Letcie be the number of EEs in blocki. Gross
omissions will be discussed below.

We consider the problem of adjusting a geographical area comprisingN blocks, indexed by
i = 1, . . . , N . After the census is taken,n out ofN blocks are chosen for the PES. Denote the sample
by S. We will assume the sample blocks are chosen at random without replacement. Of course,
our model can also be extended to cover stratified block samples, or unequal sampling weights.
For simplicity, we consider only one post stratum. Extending the model to have many post strata,
multiple sampling strata, and variable weights would increase the realism, but the exposition would
be cumbersome.

The PES makes an independent listing of the residents of the sample blocks, again as of census
day. In each block, there are four kinds of residents (the true numbers are shown in parentheses):

• matches, found both by the census and by the PES (cim);
• found by the census but missed by the PES (ci1);
• missed by the census but found by the PES (cig);
• missed both by the census and by the PES (ci0).

As noted above, the census count for each block also includes
• erroneous enumerations (cie).
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The census count for blocki is
ci = cie + cim + ci1. (1)

The true number of residents of blocki is

ti = cim + ci1 + cig + ci0

= ci − cie + cig + ci0, (2)

with cig + ci0 representing the number of persons missed by the census in blocki. The census
overcount in blocki is cie; the undercount iscig + ci0; the net undercount iscig + ci0 − cie. The
PES cannot directly determineci0: these people are missed both by the census and by the PES.
The total number of such people,C0 = ∑

i ci0, is necessarily somewhat uncertain, as discussed in
Section 2.

Typically, undercounts exceed overcounts. For instance, in the US in 1980 and 1990, the net
national undercount was in the range 1% to 2%. Some demographic groups and some geographical
areas are more heavily impacted than others. That is why the undercount has become a policy
issue. For more discussion of results and statistical questions, see Brown et al. (1999); on the
policy questions, see Skerry (2000).

The census determinesci , but not its components. To focus on the probabilistic issues, we
will assume that the PES can accurately determinecie, cim, ci1, andcig in each sample block, by
matching PES records against census records. Persons who move between the census and the PES
create special problems for the fieldwork, assumed away by our model. Likewise, there are some
persons counted in the census with insufficient information for matching; this too is ignored. Thus,
operational difficulties are not considered here. (Any precise description of the PES fieldwork, the
matching, and the potential sources of error would cover many hundreds of pages; there is by now
a huge literature on evaluations: Section 7 has a brief review, and citations.)

2. VISUALIZING THE MODEL

To visualize our model, imagine a PES taken in every block in the country, just as the census
is taken in every block. Unlike the census and the real PES, this hypothetical PES is assumed free
of error—although it may miss some people. Thus,cie, cig, andci1 are determined. Almost by
definition, the number of peopleci0 missed both by the census and by the PES remains unobserved.
The country-wide PES results are hidden, but we choose our random sample of blocks and uncover
the PES data in the sample blocks.

Capture-recapture methods cannot provide any scientific estimates of population size unless
one of the samples is generated by some truly random mechanism. With our framework, randomness
enters through the sampling. There is no need to treat capture in the census or the PES as stochastic
processes with assumed random behavior by persons. No imaginary ensemble of replicate censuses
is needed. The country-wide PES is, of course, a construct: given that construct, the model is
straightforward. Such constructs are frequently used to analyze samples and experiments; see, for
instance, Freedman, Pisani, and Purves (1998, chap. 27), which has further citations to the literature.

The capture-recapture method is often summarized in a 2× 2 table, like Table 1; in this table,
the erroneous enumerations are set aside. There are three observed cells, corresponding to
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(i) matches, that is, people captured in the census and in the PES;
(ii) people captured only in the PES;

(iii) people captured only in the census.

The counts in cells (i)–(iii) in blocki arecim, cig, andci1, respectively; Table 1 shows the totals.

TABLE 1. The 2×2 table for capture-recapture. Totals. Erroneous enumerations are set
aside.

Census

In Out

In Cm Cg

PES
Out C1 ??

In the real world, the table entries are just four numbers, not necessarily related to each other.
The three observed cells need not tell us anything about the fourth cell—the people missed by both
systems. The people in the different cells are different, and have behaved differently in response
to the census and the PES. Any attempt to use the three observed cells to estimate the fourth,
unobserved cell must depend on information not found in the census and the PES.

As explained in Section 4, the DSE estimates the number of people in the fourth cell by
proportionality:

C1Cg/Cm.

However, “estimation” is being used in its dry sense, without ordinary-language connotations. Thus,
it is technically correct to say that the population of Idaho can be used to estimate the population
of Iowa. Indeed, this estimator will have little random error, although bias is a problem. Such
estimators do not live up to the promise inherent in the terminology. Likewise, the DSE may not
be estimating the fourth cell in any satisfactory way—because correlation bias may be substantial.

The proportionality built into the DSE is called the “Independence Assumption:” somewhat
informally, capture in the census and recapture in the PES are assumed independent of each other.
Proportionality excludes correlation bias. When correlation bias is positive, the true 2× 2 table
is the sum of a table satisfying the “independence” or “zero correlation bias” assumption, plus a
table with zeros in the first three cells and some number of additional people in the fourth cell.
The additional group may be termed the “fifth cell.” People who do not wish to be found by any
government agency would go into the fifth cell. In fisheries applications, the fifth cell might be
populated by wily trout.

Let 1− π andπ be the proportions of the true population accounted for by the independence
model and by the fifth cell, respectively. Rudas, Clogg, and Lindsay (1994) define such aπ -index for
general contingency tables. Naturally, the additive representation is mathematically equivalent to
many other models. Likeπ , the structural parameters in those other models—which allow the fourth
cell to be determined from the three observed cells—are not identifiable from the data. Independence
is an example of an identifying restriction that determines the fourth cell. Some representations
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make it easier than others to forget the identifiability problem. The additive representation focuses
on the critical issue of identifiability.

3. MODELS FOR INDIVIDUAL BEHAVIOR

The typical capture-recapture model has independent individuals. These individuals have
independent responses to two surveys, so an individual can be characterized by two response prob-
abilities. In this literature, “heterogeneity” often means that response probabilities vary across
individuals, and the “correlation” in correlation bias then refers to correlated probabilities. Cor-
mack (1968, 1999) reviews capture-recapture models for estimating wildlife populations, and Cor-
mack (1966) considers models with unequal probabilities of recapture. For other reviews, see
Alho (1994), Hook and Regal (1995), and Pollock (2000).

To develop a capture-recapture model for census adjustment at the level of individual responses—
rather than block totals—requires a model for individual behavior. Each person has a response status
in the census:X = 1 if the person responds,X = 0 if not. Likewise, each person either will respond
(Y = 1) or will not respond (Y = 0) to the PES, andY is observable if the PES samples that person’s
block of residence. From this perspective, our treatment takes theX’s andY ’s as deterministic.

Stochastic models forX andY have been developed, but seem conjectural. For example,
Wolter (1986) proposes a model assuming independence across individuals: that is the “Multinomial
Assumption” and “Autonomous Independence” (p. 339). His section 3.1 contemplates, as we do,
a block sample. However, our treatment of correlation bias reflects the decision to treat responses
as deterministic not random. Compare equation (2.2) in Wolter (1986). Moreover, Wolter does not
make our distinction between correlation bias and heterogeneity; nor are EEs explicitly represented
in his model.

Darroch et al. (1993) propose a Rasch model forX andY , with a latent variable representing
a person’s capturability; also see Agresti (1994). Erroneous enumerations are not contemplated.
Given the latent variable, capture in the PES and in the census are assumed to be independent,
as well as capture in a hypothetical third survey. The model also assumes independence across
individuals. For the PES as for the census, only one person responds in each household—on behalf
of all members of the household. Thus, recapture by the PES, like capture by the census, must
be strongly correlated across members of a household; the independence assumption in Darroch
et al. is therefore questionable, as is the corresponding assumption in Wolter (1986). Our model
makes no independence assumptions, although it may be somewhat stylized in other respects.

Kadane, Meyer, and Tukey (1999) have an individual-level model with no geography and
no EEs; they argue that under certain (unverifiable) conditions, correlation bias will be positive.
Independence of capture and recapture is often said to be a critical assumption behind the DSE,
with positive correlation bias arising from dependence. See, for instance, Citro and Cohen (1985,
pp. 140, 168, 343–45), Steffey and Bradburn (1994, p. 109), or Ericksen et al. (1994). This idea is
hard to formalize, although the attempts by Wolter (1986) and Darroch et al. (1993) are interesting.

The sources of undercounts and overcounts in the census seem to be too complex to be repre-
sented in any convincing way by a probability model. Thus, we prefer to treat the census as a given
data set. The focus then shifts to variations in the probability of selection for the PES. Selection
probabilities for the sampling units—the blocks—are surely under good control. It is the responses
of individuals that are at issue. Again, these are hard to model, so we treat them too as data. In
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our setup, the only source of randomness is the sampling of blocks for the PES. A difference in
average PES response rates between census hits and census misses leads to correlation bias, while
differences in census response rates among geographical areas create heterogeneity.

4. THE DSE AND CORRELATION BIAS

We use capital letters for sums. For example, the total census count is

C =
N∑

i=1

ci = Ce + Cm + C1, (3)

whereCe = ∑N
i=1 cie, and so forth. The true population is

T =
N∑

i=1

ti = Cm + C1 + Cg + C0. (4)

The Dual System Estimator (DSE) forT is

T̂ = CŶ/X̂. (5)

Here,C is the census count defined in (3) andC/X̂ is the usual capture-recapture estimator. The
factorŶ takes care of the EEs.

The formulas forX̂ andŶ involve sums over blocksi in the PES sampleS. Specifically,

X̂ =
∑

i∈S wcim∑
i∈S w(cim + cig)

(6)

and

Ŷ =
∑

i∈S w(cim + ci1)∑
i∈S w(cie + cim + ci1)

, (7)

wherew = N/n weights the sample to the population. Intuitively,X̂ is the match rate, that is,
the estimated rate at which people are found both by the census and by the PES; the numerator
is the upweighted sample count of matches, and the denominator is the upweighted sample count
of PES records. Similarly,̂Y is the estimated rate of correct enumerations in the census. The
numerator is the upweighted sample count of census correct enumerations, and the denominator is
the upweighted sample count of census records.

The expected values for the numerator and denominator ofX̂ areCm andCm+Cg, respectively.
Let the actual numerator and denominator be 1+ ζ2 and 1+ ζ1 times their respective expectations.
Thus

X̂ = Cm

Cm + Cg

1 + ζ2

1 + ζ1
. (8)
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The expected values for the numerator and denominator ofŶ areCm +C1 andC = Ce +Cm +C1,
respectively. Let the actual numerator and denominator be 1+ η2 and 1+ η1 times their respective
expectations. Thus

Ŷ = Cm + C1

Ce + Cm + C1

1 + η2

1 + η1
. (9)

The random variablesζ1, ζ2 in (8) andη1, η2 in (9) have mean zero; the randomness is due to
sampling variability. By (3),

T̂ = C
Cm + C1

Ce + Cm + C1

Cm + Cg

Cm

1 + η2

1 + η1

1 + ζ1

1 + ζ2

= (Cm + C1)(Cm + Cg)

Cm

1 + η2

1 + η1

1 + ζ1

1 + ζ2

= T ∗ 1 + η2

1 + η1

1 + ζ1

1 + ζ2
, (10)

where

T ∗ = (Cm + C1)(Cm + Cg)/Cm

= Cm + C1 + Cg + (C1Cg/Cm)

= T + (C1Cg/Cm) − C0 (11)

by (4).
In effect, the DSE estimatesC0 asC1Cg/Cm. The error here is bias. “Estimation” is used

in its narrowest technical sense:C0 is not identifiable from census and PES data without further
assumptions, since the people who compriseC0 are not observed in either system. This has been
discussed above, in Section 2.

Definition. Correlation bias isC0 − C1Cg/Cm.

The sign is chosen for historical reasons. If correlation bias is positive,C0 is underestimated, and
the DSE will be too low.

Heuristic arguments are often given to suggest that

C0

Cg + C0
>

C1

Cm + C1
. (12)

This inequality is equivalent to positive correlation bias. The idea behind (12) is the following.
Set aside the EEs. ThenCg + C0 is the number of persons missed by the census, whileCm + C1
is the number found. Moreover,C0 andC1 represent PES misses in these two subpopulations
(census misses and census hits). What (12) says, then, is that the PES is more likely to miss people
among census misses than among census hits. If the inequality in (12) is reversed, correlation bias
is negative. There is some evidence for negative correlation bias in 1980: see Fay et al. (1988). If
equality holds in (12), there is no correlation bias. SinceC0 is not identifiable, neither is correlation
bias.
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5. HETEROGENEITY

Census adjustment is done at the block level: the census count for blocki is multiplied by the
adjustment factor̂φ = T̂ /C, whereT̂ is the DSE defined by (5); thus,φ̂ = Ŷ /X̂. In other words, to
adjust blocks, undercount rates are assumed to be constant (within demographic subgroups) across
wide geographic areas. Failures of this constancy assumption are termed “heterogeneity,” although
“geographical heterogeneity” might be more appropriate.

Definition. Heterogeneity refers to variation in the ratioci/ti of census counts to true counts
across geographical areas, indexed byi.

In our model, the difference between correlation bias and heterogeneity can be stated quite
sharply.

• Correlation bias refers to a behavioral difference between people missed by the census
and people counted in the census:C0/(Cg +C0) 6= C1/(Cm +C1). Census misses differ
from census hits, with respect to the likelihood of responding to the PES.

• Heterogeneity refers to a behavioral difference between residents of different areas: the
coverage ratioci/ti varies within demography across geography.

In particular, heterogeneity can be defined by reference to the census and the truth: the PES is not
involved. Easy examples can be given to demonstrate correlation bias without heterogeneity, or
heterogeneity without correlation bias.

A more complete model would have several post strata, indexed byj . There would be an
adjustment factor̂φj for each post stratum, computed as above from PES data on members of the
post stratum resident anywhere in the US. Letci(j) be the census number of residents of blocki

who are members of post stratumj . This block× post stratum fragment would be adjusted by the
factor φ̂j . The adjusted population in blocki would be

∑
j φ̂j ci(j), and the adjusted population in

any larger area would be obtained by summing over the blocks comprising that area. In practice,
block-level counts would be rounded, to avoid tables with fractional entries.

Subsampling within blocks may also be contemplated: this would help make contact with
the capture-recapture literature for estimating wildlife populations, where the “block” typically
consists of an individual animal. In that literature, “heterogeneity” often refers to variation in the
probability of recapture (section 3); then, heterogeneity is a feature of the post enumeration survey
rather than the census. Formally, individuals could be classified as responders or non-responders to
a post enumeration survey; the usual textbook model take all individuals to be responders. When
blocks reduce to individuals, our concept of geographic heterogeneity is unlikely to be very useful.

6. RATIO ESTIMATOR BIAS AND VARIANCE

This section is more narrowly technical, focusing on the sampling distribution of the DSE. In
view of (10), it suffices to consider

ρ = 1 + η2

1 + η1

1 + ζ1

1 + ζ2
. (13)

By construction,E(η1) = E(η2) = E(ζ1) = E(ζ2) = 0. However,E(ρ) 6= 1, because of the
nonlinearity.
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Definition. Ratio estimator bias isT ∗[E(ρ) − 1], whereT ∗ was defined by (11).

Thus, ratio estimator bias refers to the difference between the expected value of the DSE andT ∗,
while correlation bias refers to the difference betweenT ∗ andT , the true population.

Ratio estimator bias and variance can be traced back to variation, not inci/ti but in the
components

cie/(cim + ci1) andcig/cim.

Indeed, if
cim + ci1

cie + cim + ci1
= Cm + C1

Ce + Cm + C1

and
cim

cim + cig

= Cm

Cm + Cg

for all i, there is no ratio estimator bias or variance, sinceρ = 1 for all samples: see (6) and (7).
The balance of this section, which discusses the asymptotics, is mainly expository. We proceed

a bit heuristically, using the delta method and writing
.= for approximate equality. Rigor can be

obtained by lettingn andN go to infinity, but this seems out of place here. If we keep only linear
and quadratic terms,

ρ
.= 1 + λ + κ,

where

λ = (ζ1 − ζ2) − (η1 − η2)

and

κ = ζ 2
2 + η2

1 − ζ1ζ2 − η1η2 − (ζ1 − ζ2)(η1 − η2).

The asymptotic bias ofρ is E(κ) and the asymptotic variance is varλ.
Of course,E(κ)and varλcan be computed in terms of second moments of population quantities

cie, cim, ci1, cig; then means and variances can be estimated from sample quantities. Supposeui

andvi are real numbers for eachi, with
∑N

i=1 ui = ∑N
i=1 vi = 0. Recall thatS consists ofn

indices chosen at random from{1, . . . , N}. Let

U =
∑
i∈S

ui and V =
∑
i∈S

vi .

ThenE(U) = E(V ) = 0 and

cov(U, V ) = n
N − n

N − 1

1

N

N∑
i=1

uivi .

To evaluate cov(η1, η2), say, choose

ui = N

n

(cie + cim + ci1

Ce + Cm + C1
− 1

N

)
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and

vi = N

n

(cim + ci1

Cm + C1
− 1

N

)
,

soη1 = ∑
i∈S ui andη2 = ∑

i∈S vi . Let

d = n
N − n

N − 1
.

Then

cov(η1, η2) = d
1

N

N∑
i=1

uivi

= d
(N

n

)2
[

1

N

N∑
i=1

cie + cim + ci1

Ce + Cm + C1

cim + ci1

Cm + C1
− 1

N2

]

which can be estimated as

d
(N

n

)2
[

1

n

∑
i∈S

cie + cim + ci1

Ĉe + Ĉm + Ĉ1

cim + ci1

Ĉm + Ĉ1
− 1

N2

]
,

with Ĉe = ∑
i∈S wcie, and so forth. Other terms may be handled the same way, and we omit further

details. For more information on ratio estimators like the DSE, see Kish (1965, pp. 206–210).

7. EMPIRICAL RESULTS FOR 1990

The US census of 1990 counted 248.7 million persons, and the production DSE would have
added 5.3 million. Ratio estimator bias and variance are relatively easy to quantify, using just the
data from the PES, and were not a major problem in 1990—at least for large population aggregates.
For the national net undercount rate of 2.1%, ratio estimator bias was on the order of a tenth of a
percentage point, while sampling error was on the order of two tenths of a point: see Mulry and
Spencer (1993). For many individual post strata or states, however, sampling error was a concern:
see Freedman et al. (1993, 1994).

Heterogeneity is more difficult to measure. In principle, variation in undercount rates within
post strata can be measured across geography, but allowance must be made for sampling variation;
thus, large samples are needed to carry out the program. For some results, see Alho et al. (1993) or
Hengartner and Speed (1993). It may be more practical to use “proxy variables” whose behavior
mimics undercount rates; Kim (1991), Freedman and Wachter (1994). The evidence shows that
heterogeneity is a large-scale problem, which significantly complicates the tasks of adjusting the
census or comparing the accuracy of adjusted and unadjusted counts. This is so even within post
strata, and for geographical areas like counties or states; Fay and Thompson (1993), Freedman and
Wachter (1994).

Evaluation Followup data can be used to measure error rates in the PES arising from sources
like bad census-day address information. As noted above, the production DSE would have added
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5.3 million persons to the census count. Of this total, 3.0 to 4.2 million persons would have been
added due to errors in the PES rather than errors in the census, with a central estimate of 3.6 million.
See Mulry and Spencer (1993), Breiman (1994), or Wachter and Freedman (2000).

Correlation bias can be determined at the national level, by combining results from the PES,
the Evaluation Followup, and an independent estimate of the population. Perhaps the most solid
such estimate is provided by Demographic Analysis, which is keyed to administrative records.
DA suggests adding 4.7 million persons to the 1990 census count. Thus, correlation bias can be
estimated as a residual: 4.7 − (5.3 − 3.6) = 3.0 million.

The object of the PES is to put back into the census some 5 million people who were left out.
But these people have to be allocated to the right places—states, cities, counties, congressional
districts. Otherwise, adjustment could make the census worse, not better. If the PES itself stands
in need of correction, first subtracting 3.6 million people then adding back 3.0 million different
people, its reliability for adjusting the census seems questionable. The people who must be added
back to the PES do not resemble those who must be taken out, in terms of race, sex, and likely place
of residence; Wachter and Freedman (2000). For other perspectives, see Belin and Rolph (1994)
or Cohen, White, and Rust (1999).
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