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Issues

• Identification of differentially expressed genes.

• Magnitude of difference for the spotted genes given the sources

of variation.

• What level of observation is statistically significant?

• Methods for analyzing data.

• Experimental design, number of replications.
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Sources of variation

1. Interesting variation

• variation in the expression profile for a given gene

• variation in the expression profile among genes

• variation in the expression profile due to different treatments

2. Obscuring variation due to

• sample preparation

• manufacture of the array

• hybridization of the sample

• optical measurements
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ANOVA Model
Kerr and Churchill (2000)

log(yijkg) = µ + Ai + Dj + Tk + Gg + (AG)ig + (TG)kg + εijkg

µ - overall average signal (normalization term)

A - array (normalization term)

D - dye (normalization term)

T - treatment (normalization term)

G - overall gene effect

(AG) - a particular spot on the array

(TG) - gene expression attributable to treatments!!!

εijkg independent, identically distributed
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ANOVA Model - Bootstrap
Kerr and Churchill (2000)

Estimated differences (Latin square design)
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• variety × gene interactions are averages of just two

observations (no CLT)

• fitted residuals appear heavy-tailed

• Bootstrap: simulated data sets

log(yijkg)
∗ = µ̂ + Âi + D̂j + V̂k + Ĝg + (ÂG)ig + (T̂G)kg + ε∗ijkg

where ε∗ijkg ∼

√
4N/(N − 4)F̂ (independently drawn), F̂

empirical distribution of original residuals.
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• percentile method to obtain 99% confidence intervals for the

differences (T̂G)1g0
− (T̂G)2g0

. Width=1.61, i.e. estimated fold

change of e1.61/2 = 2.24 is significant at the 0.01 level. (normal

confidence interval width = 1.29)

Checking assumptions:

• residuals are identically distributed,

• constant error variance,

• log scale seems appropriate.

• Multiple testing not taken into account.
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ANOVA Model - Least squares
estimators

Kerr and Churchill (2000)

Objective: Minimize the residual sum of squares, RSS.

tijkg = log(yijkg)

RSS =
∑

ijkg

(tijkg − µ − Ai − Dj − Vk − Gg − (AG)ig − (TG)kg)
2

Partial derivatives, constraints lead to

(T̂G)kg = t··kg − t··k· − t···g + t····
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ANOVA Model - Comments
Kerr and Churchill (2000)

• early analyses of microarray data: fold changes to identify genes

for the standardized log ratios of the fluorescence intensities.

• “Global” normalization procedures may not be able to remove

undesirable experimental effects.

• ANOVA: estimate sources of variation for large data sets.

• A, D, T terms normalize data without preliminary data

manipulation.

• no computation of log ratios

• accounts for effects of dyes or variation between samples

(experimental design).
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• residual distribution nonnormal, but constant error variance:

bootstrap approach.

• large number of similar quantities → estimates of highest and

lowest effects too extreme.

• multiple testing not taken into account.
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Multiple testing

• false positives: genes declared to be differentially expressed

which in reality are not

• false negatives: genes truly differentially expressed but not

declared as such
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Normalization and multiple testing
Dudoit et al. (2002)

X of log intensities log2 R/G with k rows (genes), n = n1 + n2

columns (control, treatment hybridizations).

1. Normalization: log2 R/G → log2 R/G − cj(A),

cj(A) = lowess fit to M vs. A plot, jth print-tip.

2. test statistic

tj =
x̄2j − x̄1j√

s2
ij/n1 + s2

2j/n2

3. permutation test statistics t
(b)
1 , . . . , t

(b)
k

4. adjusted p-values to account for multiple hypotheses testing

(Westfall and Young)
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Normalization - Comments
Dudoit et al. (2000)

• “Global” methods of normalization miss some experimental

features

• multiple testing

• ANOVA model by Kerr et al: one main effect for

normalization, one error term for all genes

• strong model assumptions? (parametric models (gamma,

Gaussian), functional relationships)

• which effects should be included?

• replication, experimental design questions
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Effects

• fixed effects: attributable to a finite set of factor levels that

occur in the data

• random effects: attributable to a (infinite) set of factor levels,

of which a random sample occur in the data

Mixed models: fixed effects and random effects

Benefits: recovery of interblock information
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Mixed Models
Wolfinger et al. (2001)

ygki = log2 of the background corrected measurement from gene g,

treatment k, and array i.

1. Normalization model

ygki = µ + Tk + Ai + (TA)ki + εgki,

µ - overall mean value,

T - main effect for treatments,

A - main effect for arrays,

(TA) - interaction effect of arrays and treatments,

ε - stochastic error.

random effects: Ai, (TA)ki, εgki normally distributed random

variables, zero means, variance components σ2
A, σ2

TA, σ2
ε

14



2. Gene model

rgki = Gg + (GT )gk + (GA)gi + γgki,

rgki - residuals of normalization model

(GA) - spot effects

random effects: (GA)gi, γgki normally distributed random

variables, zero means, variance components σ2
(GA)g

, σ2
γg

,

independent across their indices and with each other.
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Restricted Maximum likelihood (REML)

REML: maximize the part of the likelihood which is invariant to

the location parameters of the model (i.e. to the fixed effects).

REML takes account of implicit degrees of freedom associated with

the fixed effects (ML does not).

For balanced data: Solutions to REML equations = ANOVA

estimators
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Mixed Models - Comments
Wolfinger et al. (2001)

• replication within and between arrays necessary

• experimental design

• global distributional assumptions too strong

• effects to be included depends on research question

• heterogeneity in the gene models

• false positive rates: cutoff at the Bonferroni value

0.05/(6917 × 10) = 1e − 6.14 for experimentwise false positive

rate of 0.05.

• missing values, background correction, various designs

• correlation of the residuals: little difference in practice?

• normality on the log scale “usually reasonable.”
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Power analysis
Wolfinger et al. (2001)

Power - probability of declaring statistical significance when a true

difference exists.

power = 1 − P (false negative)

• experimental design

• model assumptions

• approximate values for the model parameters

• hypotheses to be tested

• desired false positive rate
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