Overview of the Bioconductor project and marray packages

Sandrine Dudoit
PH296, Section 36
May 6, 2002
Statistics and microarrays

- Biological question
- Experimental design
- Microarray experiment
- Image analysis
- Normalization
- Estimation
- Testing
- Clustering
- Prediction
- Biological verification and interpretation
Everywhere …

- for statistical design and analysis:
 - pre-processing, estimation, testing, clustering, prediction, etc.
- for integration with biological information resources (in house and external databases)
 - gene annotation (GenBank, LocusLink);
 - literature (PubMed);
 - graphical (pathways, chromosome maps).
http://www.bioconductor.org
Bioconductor project

• **Goal.** To develop a statistical software infrastructure which promotes the rapid deployment of extensible, scalable, and interoperable software for the analysis and comprehension of biomedical and genomic data.

• **Developers.** About 20 core members, international collaboration.

• **Model.** Open source and open development (GPL, LGPL).
Bioconductor project

• Use of the R language and environment for statistical computing and graphics
 – Open source, GNU’s S-Plus.
 – Full-featured programming language
 – Extensive software repository for statistical methodology: linear and non-linear modeling, testing, classification, clustering, resampling, etc.
 – Extensible, scalable, interoperable.
 – Unix, Linux, Windows, and Mac OS.
Bioconductor project

- **Integrated data analysis** of large and complex datasets from varied sources:
 - transcript levels from microarray experiments;
 - covariates: treatment, dose, time;
 - clinical outcomes: survival, tumor class;
 - textual data (PubMed abstracts);
 - gene annotation data (GenBank, LocusLink);
 - graphical data (pathways, chromosome maps);
 - sequence data;
 - copy number (CGH);
 - etc.
Bioconductor project

- **Object-oriented class/method design:** efficient representation and manipulation of large and complex biological datasets of multiple types.

- **Widgets:** Specific, small scale, interactive components providing graphically driven analyses - point & click interface.
Bioconductor project

- Interactive tools for linking experimental results to annotation/literature WWW resources in real time. E.g. PubMed, GenBank, LocusLink.

- Scenario. For a list of differentially expressed genes obtained from `multtest`, use `annotate` package to generate an HTML report with links to LocusLink for each gene.
Bioconductor packages

• General infrastructure
 - Biobase
 - annotate, AnnBuilder
 - tkWidgets

• Pre-processing for Affymetrix data
 - affy.

• Pre-processing for cDNA data
 - marrayClasses, marrayInput, marrayNorm, marrayPlots.

• Differential expression
 - edd, genefilter, multtest, ROC.

• etc.
Bioconductor training

- Extensive documentation and training materials for self-instruction and short courses
 - all available on WWW.

- **R help system:**
 - interactive with browser or printable manuals;
 - detailed description of functions and examples;
 - E.g. `help(maNorm)`, `? marrayLayout`.

- **R demo system:**
 - User-friendly interface for running demonstrations of R scripts.
 - E.g. `demo(marrayPlots)`.
Bioconductor training

• **R vignettes system:**
 – comprehensive repository of *step-by-step tutorials* covering a wide variety of computational objectives in `/doc` subdirectory;
 – Use `Sweave` function from `tools` package.
 – *integrated statistical documents* intermixing text, code, and code output (textual and graphical);
 – documents can be *automatically updated* if either data or analyses are changed.

• **Modular training segments:**
 – short courses: lectures and computer labs;
 – interactive learning and experimentation with the software platform and statistical methodology.
Diagnostic plots and normalization for cDNA microarrays

- **marrayClasses**: class definitions for microarray data objects; basic methods for manipulation of microarray objects.
- **marrayInput**: reading in intensity data and textual data describing probes and targets; automatic generation of microarray data objects; widgets for point & click interface.
- **marrayPlots**: diagnostic plots.
- **marrayNorm**: robust adaptive location and scale normalization procedures.
Classes and methods

- Object-oriented programming in R: John Chamber’s `methods` package.
- **Classes** reflect how we think of certain objects and what information these objects should contain.
- Classes are defined in terms of **slots** which contain the relevant data.
- **Methods** define how a particular function should behave depending on the class of its arguments and allow computations to be adapted to particular classes.
marrayClasses package

- See Minimum Information About a Microarray Experiment -- MIAME document.
- Microarray classes should represent
 - gene expression measurements, for example,
 - scanned images, i.e., raw data;
 - image quantitation data, i.e., output from image analysis;
 - normalized expression levels, i.e., log-ratios M.
 - reliability information of these measurements;
 - information on the probe sequences spotted on the arrays;
 - information on the target samples hybridized to the arrays.
Layout terminology

- **Target**: DNA hybridized to the array, mobile substrate.
- **Probe**: DNA spotted on the array, aka. spot, immobile substrate.
- **Sector**: collection of spots printed using the same print-tip (or pin), aka. print-tip-group, pin-group, spot matrix, grid.
- The terms **slide** and **array** are often used to refer to the printed microarray.
- **Batch**: collection of microarrays with the same probe layout.
- **Cy3** = Cyanine 3 = green dye.
- **Cy5** = Cyanine 5 = red dye.
Layout terminology

- 4 x 4 sectors
- 19 x 21 probes/sector
- 6,384 probes/array

Probe
Sector
marrayLayout class

Array layout parameters

- maNspots: Total number of spots
- maNgr, maNgc: Dimensions of grid matrix
- maNsr, maNsc: Dimensions of spot matrices
- maSub: Current subset of spots
- maPlate: Plate IDs for each spot
- maControls: Control status labels for each spot
- maNotes: Any notes
marrayInfo class

Descriptions of probe sequences or target mRNA samples

- **maLabels**: Vector of probe or array labels
- **maInfo**: Data frame of probe or target sample descriptions
- **maNotes**: Any notes

Not microarray specific
marrayRaw class

Pre-normalization intensity data

<table>
<thead>
<tr>
<th>maRf</th>
<th>maGf</th>
<th>Matrix of red and green foreground intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>maRb</td>
<td>maGb</td>
<td>Matrix of red and green background intensities</td>
</tr>
<tr>
<td>maW</td>
<td></td>
<td>Matrix of spot quality weights</td>
</tr>
<tr>
<td>maLayout</td>
<td>Array layout parameters -- marrayLayout</td>
<td></td>
</tr>
<tr>
<td>maGnames</td>
<td>Description of spotted probe sequences -- marrayInfo</td>
<td></td>
</tr>
<tr>
<td>maTargets</td>
<td>Description of target samples -- marrayInfo</td>
<td></td>
</tr>
<tr>
<td>maNotes</td>
<td>Any notes</td>
<td></td>
</tr>
</tbody>
</table>

Description:

- **maRf**: Red foreground intensity matrix.
- **maGf**: Green foreground intensity matrix.
- **maRb**: Red background intensity matrix.
- **maGb**: Green background intensity matrix.
- **maW**: Spot quality weight matrix.
- **maLayout**: Array layout parameters.
- **maGnames**: Names of the spotted probe sequences.
- **maTargets**: Names of the target samples.
- **maNotes**: Any notes.
marrayNorm class

Post-normalization intensity data

- **maA**: Matrix of average log-intensities
- **maM**: Matrix of normalized intensity log-ratios
- **maMloc**: Matrix of location and scale normalization values
- **maMscale**: Matrix of spot quality weights
- **maW**: Array layout parameters
- **maLayout**: Array layout parameters -- `marrayLayout`
- **maGnames**: Description of spotted probe sequences
- **maGnames**: -- `marrayInfo`
- **maTargets**: Description of target samples -- `marrayInfo`
- **maNormCall**: Function call
- **maNotes**: Any notes
marrayClasses package

- Useful **methods** for microarray classes include
- **Accessor methods**, for accessing slots of microarray objects.
- **Assignment methods**, for replacing slots of microarray objects.
- **Printing methods**, for summaries of intensity statistics and probe and target information.
- **Subsetting methods**, for accessing subsets of spots and/or arrays.
- **Coercing methods**, for conversion between classes.
marrayPlots package

- **maImage**: 2D spatial images of microarray spot statistics.
- **maBoxplot**: boxplots of microarray spot statistics, stratified by layout parameters.
- **maPlot**: scatter-plots of microarray spot statistics, with fitted curves and text highlighted, e.g., MA-plots with loess fits by sector.
- See `demo(marrayPlots)`.
marrayNorm package

- **maNormMain**: main normalization function, allows robust adaptive location and scale normalization for a batch of arrays
 - intensity or A-dependent location normalization (*maNormLoess*);
 - 2D spatial location normalization (*maNorm2D*);
 - median location normalization (*maNormMed*);
 - scale normalization using MAD (*maNormMAD*);
 - composite normalization.
- **maNorm**: simple wrapper function.
 maNormScale: simple wrapper function for scale normalization.
marrayInput package

• Start from
 – image quantitation data, i.e., output files from image analysis software, e.g., .gpr for GenePix or .spot for Spot.
 – Textual description of probe sequences and target samples, e.g., gal files, god lists.

• read.marrayLayout, read.marrayInfo, and read.marrayRaw: read microarray data into R and create microarray objects of class marrayLayout, marrayInfo, and marrayRaw, resp.
marrayInput package

- Widgets for graphical interface:
 widget.marrayLayout, widget.marrayInfo, widget.marrayRaw.
Multiple hypothesis testing

- Bioconductor R `multtest` package
- Multiple testing procedures for controlling
 - FWER: Bonferroni, Holm (1979), Hochberg (1986), Westfall & Young (1993) maxT and minP.
- Tests based on t- or F-statistics for one- and two-factor designs.
- Permutation procedures for estimating adjusted p-values.
- Documentation: tutorial on multiple testing.
Sweave

- The Sweave framework allows dynamic generation of statistical documents intermixing documentation text, code and code output (textual and graphical).
- Fritz Leisch’s Sweave function from R tools package.
- See ? Sweave and manual http://www.ci.tuwien.ac.at/~leisch/Sweave/
Sweave input

• Source: a noweb file, i.e., a text file which consists of a sequence of code and documentation segments or chunks
 – Documentation chunks
 • start with @
 • can be text in a markup language like LaTeX.
 – Code chunks
 • start with <<name>>=
 • can be R or S-Plus code.
Sweave output

- Output: **Sweave** produces a single document, e.g., `.tex` file, or `.pdf` file containing
 - the documentation text
 - the R code
 - the code output: text and graphs.
- The document can be automatically regenerated whenever the data, code or text change.
- **Stangle**: extract only the code.
Sweave

- `main.Rnw`

Sweave

- `fig.eps`
- `main.tex`
- `fig.pdf`

latex

- `main.dvi`

dvips

- `main.ps`
dvi2pdf

- `main.pdf`
Acknowledgements

• Bioconductor core team

• Robert Gentleman, Biostatistics, Harvard

• Yongchao Ge, Statistics, UC Berkeley

• Yee Hwa (Jean) Yang, Statistics, UC Berkeley
References

- **R** http://www.r-project.org
 - Software; Documentation; R Newsletter.

- **Bioconductor** http://www.bioconductor.org
 - Software; Documentation; Training materials from workshops; Mailing list.

- **Personal** http://www.stat.berkeley.edu/~sandrine
 - Articles and tech. reports on: image analysis; normalization; identification of differentially expressed genes; cluster analysis; classification.