Overview of the Bioconductor project and marray packages

> Sandrine Dudoit PH296, Section 36 May 6, 2002

Statistical computing

Everywhere ...

- for statistical design and analysis:
 - pre-processing, estimation, testing, clustering, prediction, etc.
- for integration with biological information resources (in house and external databases)
 - gene annotation (GenBank, LocusLink);
 - literature (PubMed);
 - graphical (pathways, chromosome maps).

http://www.bioconductor.org

- **Goal.** To develop a statistical software infrastructure which promotes the rapid deployment of extensible, scalable, and interoperable software for the analysis and comprehension of biomedical and genomic data.
- **Developers.** About 20 core members, international collaboration.
- **Model.** Open source and open development (GPL, LGPL).

- Use of the R language and environment for statistical computing and graphics
 - Open source, GNU's S-Plus.
 - Full-featured programming language
 - Extensive software repository for statistical methodology: linear and non-linear modeling, testing, classification, clustering, resampling, etc.
 - Design-by-contract principle: package system.
 - Extensible, scalable, interoperable.
 - Unix, Linux, Windows, and Mac OS.

- Integrated data analysis of large and complex datasets from varied sources:
 - transcript levels from microarray experiments;
 - covariates: treatment, dose, time;
 - clinical outcomes: survival, tumor class;
 - textual data (PubMed abstracts);
 - gene annotation data (GenBank, LocusLink);
 - graphical data (pathways, chromosome maps);
 - sequence data;
 - copy number (CGH);
 - etc.

- Object-oriented class/method design: efficient representation and manipulation of large and complex biological datasets of multiple types.
- Widgets: Specific, small scale, interactive components providing graphically driven analyses - point & click interface.

- Interactive tools for linking experimental results to annotation/literature WWW resources in real time. E.g. PubMed, GenBank, LocusLink.
- Scenario. For a list of differentially expressed genes obtained from **multtest**, use **annotate** package to generate an HTML report with links to LocusLink for each gene.

Bioconductor packages

- General infrastructure
 - Biobase
 - annotate, AnnBuilder
 - tkWidgets
- Pre-processing for Affymetrix data
 - affy.
- Pre-processing for cDNA data
 - marrayClasses, marrayInput, marrayNorm, marrayPlots.
- Differential expression

```
- edd, genefilter, multtest, ROC.
```

• etc.

Bioconductor training

- Extensive documentation and training materials for self-instruction and short courses

 all available on WWW.
- R help system:
 - interactive with browser or printable manuals;
 - detailed description of functions and examples;
 - E.g. help(maNorm), ? marrayLayout.
- R demo system:
 - User-friendly interface for running demonstrations of R scripts.
 - E.g. demo(marrayPlots).

Bioconductor training

- R vignettes system:
 - comprehensive repository of step-by-step tutorials covering a wide variety of computational objectives in /doc subdirectory;
 - Use **Sweave** function from **tools** package.
 - integrated statistical documents intermixing text, code, and code output (textual and graphical);
 - documents can be automatically updated if either data or analyses are changed.
- Modular training segments:
 - short courses: lectures and computer labs;
 - interactive learning and experimentation with the software platform and statistical methodology.

Diagnostic plots and normalization for cDNA microarrays

• marrayClasses:

- class definitions for microarray data objects;
- basic methods for manipulation of microarray objects.

• marrayInput:

- reading in intensity data and textual data describing probes and targets;
- automatic generation of microarray data objects;
- widgets for point & click interface.
- **marrayPlots**: diagnostic plots.
- marrayNorm: robust adaptive location and scale normalization procedures.

Classes and methods

- Object-oriented programming in R: John Chamber's methods package.
- Classes reflect how we think of certain objects and what information these objects should contain.
- Classes are defined in terms of slots which contain the relevant data
- Methods define how a particular function should behave depending on the class of its arguments and allow computations to be adapted to particular classes.

marrayClasses package

- See Minimum Information About a Microarray Experiment -- MIAME document.
- Microarray classes should represent
 - gene expression measurements, for example,
 - scanned images, i.e., raw data;
 - image quantitation data, i.e., output from image analysis;
 - normalized expression levels, i.e., log-ratios M.
 - reliability information of these measurements;
 - information on the probe sequences spotted on the arrays;
 - information on the target samples hybridized to the arrays.

Layout terminology

- Target: DNA hybridized to the array, mobile substrate.
- Probe: DNA spotted on the array, aka. spot, immobile substrate.
- Sector: collection of spots printed using the same print-tip (or pin),

aka. print-tip-group, pin-group, spot matrix, grid.

- The terms slide and array are often used to refer to the printed microarray.
- Batch: collection of microarrays with the same probe layout.
- Cy3 = Cyanine 3 = green dye.
- Cy5 = Cyanine 5 = red dye.

Layout terminology

4 x 4 sectors 19 x 21 probes/sector 6,384 probes/array

marrayLayout class

Array layout parameters

marrayInfo class

Descriptions of probe sequences or target mRNA samples

Not microarray specific

marrayRaw class

Pre-normalization intensity data

marrayNorm class

Post-normalization intensity data

marrayClasses package

- Useful methods for microarray classes include
- Accessor methods, for accessing slots of microarray objects.
- Assignment methods, for replacing slots of microarray objects.
- Printing methods, for summaries of intensity statistics and probe and target information.
- Subsetting methods, for accessing subsets of spots and/or arrays.
- Coercing methods, for conversion between classes.

marrayPlots package

- **maImage**: 2D spatial images of microarray spot statistics.
- **maBoxplot**: boxplots of microarray spot statistics, stratified by layout parameters.
- maplot: scatter-plots of microarray spot statistics, with fitted curves and text highlighted, e.g., MA-plots with loess fits by sector.
- See demo(marrayPlots).

marrayNorm package

- **maNormMain**: main normalization function, allows robust adaptive location and scale normalization for a batch of arrays
 - intensity or A-dependent location normalization (maNormLoess);
 - 2D spatial location normalization (maNorm2D);
 - median location normalization (maNormMed);
 - scale normalization using MAD (maNormMAD);
 - composite normalization.
- maNorm: simple wrapper function.
 maNormScale: simple wrapper function for scale normalization.

marrayInput package

- Start from
 - image quantitation data, i.e., output files from image analysis software, e.g., .gpr for GenePix or .spot for Spot.
 - Textual description of probe sequences and target samples, e.g., gal files, god lists.
- read.marrayLayout, read.marrayInfo, and read.marrayRaw: read microarray data into R and create microarray objects of class marrayLayout, marrayInfo, and marrayRaw, resp.

marrayInput package

 Widgets for graphical interface: widget.marrayLayout, widget.marrayInfo, widget.marrayRaw.

🦸 MarrayRaw builder		
Files		
Name of the marrayRaw object:		
swir		
Foreground and background intensities		
Green Foreground Gmean	Green Background morphG	
Red Foreground Rmean	Red Background m	orphR
Weights		
Layout:		
swirl.layout		Browse
Target Information:		
swirl.samples		Browse
Gene Information:		
swirl.gnames		Browse
Notes:		
Layout Target Genes Build Quit		

Multiple hypothesis testing

- Bioconductor R multtest package
- Multiple testing procedures for controlling
 - FWER: Bonferroni, Holm (1979), Hochberg (1986), Westfall & Young (1993) maxT and minP.
 - FDR: Benjamini & Hochberg (1995), Benjamini & Yekutieli (2001).
- Tests based on t- or F-statistics for one- and two-factor designs.
- Permutation procedures for estimating adjusted p-values.
- Documentation: tutorial on multiple testing.

Sweave

- The Sweave framework allows dynamic generation of statistical documents intermixing documentation text, code and code output (textual and graphical).
- Fritz Leisch's Sweave function from R tools package.
- See ? Sweave and manual <u>http://www.ci.tuwien.ac.at/~leisch/Sweave/</u>

Sweave input

- Source: a noweb file, i.e., a text file which consists of a sequence of code and documentation segments or chunks
 - Documentation chunks
 - start with @
 - can be text in a markup language like LaTeX.
 - Code chunks
 - start with <<name>>=
 - can be R or S-Plus code.
 - File extension: .rnw, .Rnw, .snw, .Snw.

Sweave output

- Output: Sweave produces a single document,
 e.g., .tex file, or .pdf file containing
 - the documentation text
 - the R code
 - the code output: text and graphs.
- The document can be automatically regenerated whenever the data, code or text change.
- Stangle: extract only the code.

Acknowledgements

- Bioconductor core team
- Robert Gentleman, Biostatistics, Harvard
- Yongchao Ge, Statistics, UC Berkeley
- Yee Hwa (Jean) Yang, Statistics, UC Berkeley

References

- R <u>http://www.r-project.org</u>
 - Software; Documentation; R Newsletter.

- Bioconductor http://www.bioconductor.org
 - Software; Documentation; Training materials from workshops; Mailing list.
- **Personal** <u>http://www.stat.berkeley.edu/~sandrine</u>
 - Articles and tech. reports on: image analysis; normalization; identification of differentially expressed genes; cluster analysis; classification.