A Biologist's Perspective On Interesting Problems Requiring Statistical Applications

- The Geneticist's Perspective
- The Purebred Dog Approach
- Biostatistics at the Interface

Nature is a study of contrasts

Genetics: Differences in phenotype stem from causal differences in genotype

Making Sense of Natural Variation

- Darwin = inter-specific diversity (1859)
- Mendel = intra-specific diversity (1865)
- The Principles => Tools & Perspectives
- Three general classes
 - 'Beanbag' Genetics
 - Describing alleles in populations
 - Plant & Animal Science
 - Good x Good crosses = Improve specific traits
 - Classical Genetics
 - Good X Bad crosses = Understand gene differences

Classical Genetics

- Identify all components of a biological process
- Assign function to each component
- Establish heirarchy of components
- Elucidate a pathway
 - Systematic and comprehensive
 - Restricted to model organisms
 - Relies on induced variation (typically loss-of-function)

What about natural variation?

Genomics

- With scale comes a new scope
- Extends genetics to every corner of biology
- The costs:
 - De-emphasizes hypothesis-driven approach
 - Quantity over quality & style over substance?
- The future?

Signals a return to studying natural variation

Human

- Interesting; diverse
- Difficult; heterogeneous

Mouse

- Suitable for engineering
- Lacking in diversity

Pronounced phenotypic diversity....

... That breeds true.

All dogs are descended solely from the wolf => artificial selection

⇒ Progenitor still exists

=> Traits will have simple genetic architectures

"Nothing in biology makes sense except in light of evolution"

-- Theodosious Dobzhansky

Canine Genetics 4 Areas of Study

• Population Genetics

- Molecular Variation
- Breed Phylogeny
- Gene Mapping

Population Genetics

Hardy-Weinberg
Mutation
Migration
Selection
Non-Random Mating

Genetic Isolates

- Founder Effects
- Historical Bottlenecks
- Favorite Sire Effects

=> Increased homozygosity

Assaying Molecular Variation

- Microsatellites
 - Ascertainment Bias
- SNPs
 - Standard Measure
- Jackpot Mutation Events

 Tied to Population
 Dynamics

Breed Phylogeny

Breeds are aggregates of traits; each trait will have a distinct phylogeny

Gene Mapping 3 Broad Opportunities

- 1) Simple Mendelian Traits
 - Family-based
- 2) Complex Intrabreed Variation
 - Population-based
- 3) Complex Interbreed Diversity
 - In Silico Mapping?

Genetic basis for systems of skeletal quantitative traits: Principal component analysis of the canid skeleton

Kevin Chase*, David R. Carrier*, Frederick R. Adler*, Tyler Jarvik*, Elaine A. Ostrander[†], Travis D. Lorentzen[†], and Karl G. Lark^{*†}

*University of Utah, Department of Biology, 257 South 1400 East, Room 201, Salt Lake City, UT 84112-0840; and ⁺Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-100, Seattle, WA 98109-1024

Communicated by Mario R. Capecchi, University of Utah, Salt Lake City, UT, June 4, 2002 (received for review March 18, 2002)

Genetics is limited by "phenotyping"

Principal Component Analysis

- Reduce complexity of datasets
 Simplification comes at a cost
- Remove redundancy of multiple metrics
 - But exploit the descriptive value (& increased accuracy) of multiple measures
- Explore phenotype interactions

 Addressing pleiotropy, etc
- Describe organizing principles
 Puts forth testable hypotheses

Measuring Behavior 4 Quantifiable Components

LatencyDuration

• Frequency

• Intensity

In Silico Mapping

In Silico Mapping

- Breed Genotype Profiles
 - Focus on IBD loci
 - Exclude variable loci
- Breed Phenomics
 - Quantitative
 - Penetrant
- Power of 400 breed comparisons

Good things happen at the Interface

<u>Genomics</u>: A convergence of genetics, molecular biology, statistics, and computer science

The Origins of Molecular Biology

'What is Life?''A Physicist's view of biology'

These essays transformed biology

BioStatistics

NASA versus Vegas

What's good enough?

Education vs Production

Balancing "learning" & "doing"

Helping the biologist identify and optimize the <u>next</u> experiment