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A Simple and Effective Method for Predicting
Travel Times on Freeways

John Rice, Erik van Zwet

Abstract— We present a method to predict the time that
will be needed to traverse a certain stretch of freeway when
departure is at a certain time in the future. The predic-
tion is done on the basis of the current traffic situation in
combination with historical data.

We argue that, for our purpose, the current situation of a
stretch of freeway is well summarized by the ‘current status
travel time’. This is the travel time that would result if
one were to depart immediately and no significant changes
in the traffic would occur. This current status travel time
can be estimated from single or double loop detectors, video
data, probe vehicles or by any other means.

Our prediction method arises from the empirical fact that
there exists a linear relationship between any future travel
time and the current status travel time. The slope and in-
tercept of this relationship is observed to change subject to
the time of day and the time until departure. This naturally
leads to a prediction scheme by means of linear regression
with time varying coefficients.

Keywords— Prediction, Travel Time, Linear Regression,
Varying Coefficients.

I. Introduction

THE Performance Measurement System (PeMS) [1] is
a large-scale freeway data collection, storage and ana-

lysis project. It involves the departments of EECS and
Statistics and the Institute of Transportation Studies at
the University of California, Berkeley in cooperation with
the California Department of Transportation (Caltrans).
PeMS’ goal is to facilitate traffic research and to assist Cal-
trans by quantifying the performance of California’s free-
ways. Useful information in various forms is to be dis-
tributed among traffic managers, planners and engineers,
freeway users and researchers. In real time, PeMS obtains
loop detector data on flow (count) and occupancy, aggre-
gated over 30 second intervals. For all of California this
amounts to 2 gigabytes per day. In its raw form, this data
is of little use.

In this paper we focus our attention on travel time pre-
diction between any two points of a freeway network for any
future departure time. Besides being useful per se, travel
time prediction serves as input to dynamic route guidance,
congestion management, optimal routing and incident de-
tection.

We are currently developing an Internet application
which will give the commuters of Caltrans District 7 (Los
Angeles) the opportunity to query the prediction algorithm
which is described in this paper. The user will access our
Internet site and state origin, destination and time of de-
parture (or desired time of arrival). He or she will then
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receive a prediction of the travel time and the best (fastest)
route to take.

In section II we state the exact nature of our prediction
problem. We then describe our new prediction method
(“linear regression”) and two alternative methods which
will be used for comparison. This comparison is made in
section III with a collection of 34 days of traffic data from a
48 mile stretch of I-10 East in Los Angeles, CA. Finally, in
section IV, we summarize our conclusions, point out some
practical observations and briefly discuss several extensions
of our new method.

II. Methods of Prediction

Consider a matrix V with entries V (d, l, t) (d ∈ D, l ∈
L, t ∈ T ) denoting the velocity that was measured on day
d at loop l at time t. From V we can compute travel times
TTd(a, b, t), for all d ∈ D, a, b ∈ L and t ∈ T . This travel
time is to approximate the time it took to travel from loop
a to loop b starting at time t on day d. We can also compute
a proxy for these travel times which is defined by

T ∗
d (a, b, t) =

b−1∑
i=a

2di

V (d, i, t) + V (d, i + 1, t)
, (1)

where di denotes the distance from loop i to loop (i+1). We
call T ∗ the current status travel time (a.k.a. the snap-shot
or frozen field travel time). It is the travel time that would
have resulted from departure from loop a at time t on day d
when no significant changes in traffic occurred until loop b
was reached. It is important to notice that the computation
of T ∗

d (a, b, t) only requires information available at time t,
whereas computation of TTd(a, b, t) requires information of
later times.

We fix an origin and destination of our travels and drop
the arguments a and b from our notation. We now formally
state the problem that is addressed in this paper.

Suppose we have observed V (d, l, t) for a number of days
d ∈ D in the past. Suppose a new day e has begun and
we have observed V (e, l, t) at times t ≤ τ . We call τ the
‘current time’. Or aim is to predict TTe(τ + δ) for a given
(nonnegative) ‘lag’ δ. This is the time a trip that departs
from a at time τ + δ will take to reach b. Note that even
for δ = 0 this is not trivial.

Define the historical mean travel time as

µTT (t) =
1
|D|

∑
d∈D

TTd(t). (2)

Two naive predictors of TTe(τ + δ) are T ∗
e (τ ) and

µTT (τ + δ). We expect—and indeed this is confirmed
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by experiment—that T ∗
e (τ ) predicts well for small δ and

µTT (τ + δ) predicts better for large δ. We aim to improve
on both these predictors for all δ.

A. Linear Regression

The main result of this paper is our discovery of an em-
pirical fact: that there exist linear relationships between
T ∗(t) and TT (t + δ) for all t and δ. This empirical finding
has held up in all of numerous freeway segments in Cali-
fornia that we have examined. This relation is illustrated
by Figures 1 and 2, which are scatter plots of T ∗(t) versus
TT (t + δ) for a 48 mile stretch of I-10 East in Los Angeles.
Note that the relation varies with the choice of t and δ.
With this in mind we propose the following model

TT (t + δ) = α(t, δ)T ∗(t) + β(t, δ) + ε. (3)

where ε is a zero mean random variable modeling random
fluctuations and measurement errors. Note that the pa-
rameters α and β are allowed to vary with t and δ. Linear
models with varying parameters are discussed by Hastie
and Tibshirani in [2].

Fitting the model to our data is a familiar linear re-
gression problem which we solve by weighted least squares.
Define the pair (α̂(t, δ), (β̂(t, δ)) to minimize

∑
d∈D
s∈T

(TTd(s) − α(t, δ) + β(t, δ)T ∗
d (t))2K(t + δ − s), (4)

where K denotes the Gaussian density with mean zero and
a certain variance which the user needs to specify. The
purpose of this weight function is to impose smoothness on
α and β as functions of t and δ. We assume that α and
β are smooth in t and δ because we expect that average
properties of the traffic do not change abruptly. The actual
prediction of TTe(τ + δ) becomes

T̂ T
αβ

e (τ + δ) = α̂(τ, δ)T ∗
e (τ ) + β̂(τ, δ). (5)

Writing β(t, δ) = β′(t, δ)µTT (t + δ) we see that (3) ex-
presses a future travel time as a linear combination of the
historical mean and the current status travel time—our two
naive predictors. Hence our new predictor may be inter-
preted as the best linear combination of our naive predic-
tors. From this point of view, we can expect our predictor
to do better than both. In fact, it does, as is demonstrated
in section III.

Another way to think about (3) is by remembering that
the word “regression” arose from the phrase “regression to
the mean.” In our context, we would expect that if T ∗ is
much larger than average—signifying severe congestion—
then congestion will probably ease during the course of
the trip. On the other hand, if T ∗ is much smaller than
average, congestion is unusually light and the situation will
probably worsen during the journey.

Besides comparing our predictor to the historical mean
and the current status travel time, we subject it to a more
competitive test. We consider two other predictors that
may be expected to do well. One resulting from Principal

Component analysis and one from the nearest neighbors
principle. Next, we describe these two methods.

B. Principal Components

Our predictor T̂ T
αβ

only uses information at one time
point; the ‘current time’ τ . However, we do have informa-
tion prior to that time. The following method attempts to
exploit this by using the entire trajectories of TTe and T ∗

e

which are known at time τ .
Formally, let us assume that the travel times on different

days are independently and identically distributed and that
for a given day d, {TTd(t) : t ∈ T} and {T ∗

d (t) : t ∈ T} are
multivariate normal. We estimate the covariance of this
multivariate normal distribution by retaining only a few of
the largest eigenvalues in the singular value decomposition
of the empirical covariance of {(TTd(t), T ∗

d (t)) : d ∈ D, t ∈
T}. How many of the eigenvalues are retained must be
specified by the user. Define τ ′ to be the largest t such
that t + TTe(t) ≤ τ . That is, τ ′ is the latest trip that
we have seen completed before time τ . With the estimated
covariance we can now compute the conditional expectation
of TTe(τ + δ) given {TTe(t) : t ≤ τ ′} and {T ∗

e (t) : t ≤
τ}. This is a standard computation which is described, for

instance, in [3]. The resulting predictor is T̂ T
PC

e (τ + δ).

C. Nearest Neighbors

As an alternative to Principal Components, we now con-
sider nearest neighbors, which is also an attempt to use
information prior to the current time τ . Similar to Prin-
cipal Components, it is a non–parametric method, but it
makes fewer assumptions (such as joint normality) on the
relation between T ∗ and TT .

Nearest neighbors aims to find that day in the past which
is most similar to the present day in some appropriate
sense. The remainder of that past day beyond time τ is
then taken as a predictor of the remainder of the present
day.

The trick with nearest neighbors is in finding a suitable
distance m between days. We suggest two possible dis-
tances:

m(e, d) =
∑

l∈L, t≤τ

|V (e, l, t)− V (d, l, t)| (6)

and

m(e, d) =


∑

t≤τ

(T ∗
e (t) − T ∗

d (t))2




1/2

. (7)

Now, if day d′ minimizes the distance to e among all d ∈ D,
our prediction is

T̂ T
NN

e (τ + δ) = TTd′ (τ + δ). (8)

Sensible modifications of the method are ‘windowed’ near-
est neighbors and k-nearest neighbors. Windowed-NN rec-
ognizes that not all information prior to τ is equally rele-
vant. Choosing a ‘window size’ w it takes the above sum-
mation to range over all t between τ − w and τ . So-called
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k-NN is basically a smoothing method, aimed at using more
information than is present in just the single closest match.
For some value of k, it finds the k closest days in D and
bases a prediction on a (possibly weighted) combination of
these. Alas, neither of these variants appear to significantly

improve on the ‘vanilla’ T̂ T
NN

.

III. Results

We have gathered flow and occupancy data from 116 sin-
gle loop detectors along 48 miles of I-10 East in Los Angeles
(between postmiles 1.28 and 48.525). Measurements were
done at 5 minute aggregation at times t ranging from 5 am
to 9 pm for 34 weekdays between June 16 and September 8
2000. We have used the so-called g factor method to con-
vert flow and occupancy to velocity using the well-known
formula

velocity = g × flow
occupancy

.

Here g is the unknown average length of vehicles, which
has to be estimated. There are two problems with this
method. First, the sensitivity of loop detectors differ and
this difference is incorporated into g. Secondly, the average
length of vehicles varies during a day from trucks late at
night to compacts during rush hour. To try to counter
these problems, we have used separate g factors for different
detectors and allowed them to vary with the time of day.
We estimate these g factors during times of freeflow when
the occupancy is below 15% and known freeflow speeds
occur. During congestion, when occupancy is above 15%,
we keep the g constant.

Another problem with computing the velocity field is
that loop detectors often do not report correct values or
do not report at all. Fortunately, the quality of our I-10
data is quite good and we have used simple interpolation to
impute wrong or missing values. The resulting velocity field
V (d, l, t) is shown in figure 3 where day d is June 16. The
horizontal streaks typically indicate detector malfunction.

From the velocities we computed travel times for trips
starting between 5 am and 8 pm. Figure 4 shows these
TTd(t) where time of day t is on the horizontal axis. Note
the distinctive morning and afternoon congestions and the
huge variability of travel times, especially during those pe-
riods. During afternoon rush hour we find travel times of
45 minutes to up to two hours. Included in the data are
holidays July 3 and 4 which may readily be recognized by
their very fast travel times.

We have estimated the root mean squared error of our
various prediction methods for a number of ‘current times’
τ (τ =6am, 7am,...,7pm) and lags δ (δ =0 and sixty min-
utes). We did the estimation by leaving out one day at
a time, performing the prediction for that day on the ba-
sis of the remaining other days and averaging the squared
prediction errors.

The prediction methods all have parameters that must
be specified by the user. For the regression method we have
chosen the standard deviation of the Gaussian kernel K to
be 10 minutes. For the Principal Components method we
have chosen the number of eigenvalues retained to be 4.

For the nearest neighbors method we have chosen distance
function (7), a window w of 20 minutes and the number k
of nearest neighbors to be 2.

Figures 5 and 7 show the estimated root mean squared
(RMS) prediction error of the historical mean µTT (τ + δ),
the current status predictor T ∗

e (τ ) and our regression pre-
dictor (5) for lag δ equal to 0 and 60 minutes, respectively.
Note how T ∗

e (τ ) performs well for small δ (δ = 0) and how
the historical mean does not become worse as δ increases.
Most importantly, however, notice how the regression pre-
dictor beats both hands down.

Figures 6 and 8 again show the RMS prediction error
of the regression estimator. This time, it is compared to
the Principal Components predictor and the nearest neigh-
bors predictor (8). Again, the regression predictor comes
out on top, although the nearest neighbors predictor shows
comparable performance.

The RMS error of the regression predictor stays below
10 minutes even when predicting an hour ahead. We feel
that this is impressive for a trip of 48 miles right through
the heart of L.A. during rush hour.

IV. Conclusions and loose ends

We stated that the main contribution of this paper is the
discovery of a linear relation between T ∗(t) and TT (t + δ).
But there is more. Comparison of the regression predictor
to the Principal Components and nearest neighbors predic-
tors unearthed another surprise. Given T ∗(τ ), there is not
much information left in the earlier T ∗(t) (t < τ ) that is
useful for predicting TT (τ + δ). In fact, we have come to
believe that for the purpose of predicting travel times all
the information in {V (l, t), l ∈ L, t ≤ τ} is well summa-
rized by one single number: T ∗(τ ).

It is of practical importance to note that our prediction
can be performed in real time. Computation of the param-
eters α̂ and β̂ is time consuming but it can be done off-line
in reasonable time. The actual prediction is trivial. As
this paper is submitted, we are in the process of making
our travel time predictions and associated optimal routings
available through the Internet for the network of freeways
of California District 7 (Los Angeles). It would also be
possible to make our service available for users of cellular
telephones—and in fact we plan to do so in the near future.

It is also important to notice that our method does not
rely on any particular form of data. In this paper we have
used single loop detectors, but probe vehicles or video data
can be used in place of loops, since all the method requires
is current measurements of T ∗ and historical measurements
of TT and T ∗.

We conclude this paper by briefly pointing out two exten-
sions of our prediction method.

1. For trips from a to c via b we have

Td(a, c, t) = Td(a, b, t) + Td(b, c, Td(a, b, t)). (9)

We have found that it is sometimes more practical or ad-
vantageous to predict the terms on the right hand side than
to predict Td(a, c, t) directly. For instance, when predicting
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travel times across networks (graphs), we need only predict
travel times for the edges and then use (9) to piece these
together to obtain predictions for arbitrary routes.

2. We regressed the travel time Td(t + δ) on the current
status T ∗

d (t), where Td(t + δ) is the travel time departing
at time t + δ. Now, define Sd(t) to be the travel time
arriving at time t on day d. Regressing Sd(t + δ) on T ∗

d (t)
will allow us to make predictions on the travel time subject
to arrival at time t+δ. The user can thus ask what time he
or she should depart in order to reach his or her intended
destination at a desired time.
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Fig. 1. T ∗(9 am) vs. TT (9 am + 0 min’s). Also shown is the

regression line with slope α(9 am, 0 min’s)=0.65 and intercept
β(9 am, 0 min’s)=17.3.
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Fig. 2. T ∗(3 pm) vs. TT (3 pm + 60 min’s). Also shown is the
regression line with slope α(3 pm, 60 min’s)=1.1 and intercept
β(3 pm, 60 min’s)=9.5.
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Fig. 3. Velocity field V (d, l, t) where day d = June 16, 2000. Darker
shades refer to lower speeds. Note the typical triangular shapes
indicating the morning and afternoon congestions building and
easing. The horizontal streaks are most likely due to detector
malfunction.
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Fig. 4. Travel Times TTd(·) for 34 days on a 48 mile stretch of I-10
East.
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Fig. 5. Estimated RMSE, lag=0 minutes. Historical mean (– · –),
current status (- - -) and linear regression (—).
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Fig. 6. Estimated RMSE, lag=0 minutes. Principal Components
(– · –), nearest neighbors (- - -) and linear regression (—).
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Fig. 7. Estimated RMSE, lag=60 minutes. Historical mean (– · –),
current status (- - -) and linear regression (—).
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Fig. 8. Estimated RMSE, lag=60 minutes. Principal Components
(– · –), nearest neighbors (- - -) and linear regression (—).


