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1. INTRODUCTION

Periodic variable stars emit light whose intensity, or brightness, changes over

time in a smooth and periodic manner. Both the period and the time-varying

function that represents brightness are of direct scientific interest, for example as an

aid to classifying stars into different categories depending on magnitude, period, and

light curve shape, for making inferences about stellar evolution, and for determining

astronomical distances (Hoffmeister et al., 1985). It is clear that if observations are

made at regularly spaced points in time then identification of the brightness function

without a structural model may not be possible. This is one aspect of a range of

aliasing problems that arise for observation times that lie on a grid. However, in

practice the times of observation are somewhat irregular—a star might be observed

on most nights but not at the same time each night.

Our work was motivated by the analysis of light curves of variable stars collected

by the MACHO project (Axelrod et al., 1994). The main goal of this project is to

search for dark matter in the halo of our galaxy by monitoring the intensity of

millions of stars. A valuable byproduct of this search was the identification of

more than 40,000 variable stars in the Large Magellanic Cloud, whose periods and

light curves were found by methods such as we discuss, based on (Reimann, 1994).

Large inventories of variable star light curves are also being produced by other

similar surveys (Ferlet et al., 1997). In addition to purely periodic functions, the

light curves of variable stars can exhibit non-periodic behaviour, including slowly

drifting periods and simultaneous pulsation at two incommensurate periods. Here

we focus on the strictly periodic case.

In the present note we analyse a nonparametric approach to estimating both

the period and the corresponding periodic function, exploiting the properties of

‘staggered’ observation times. We present a semiparametric lower bound for the

accuracy with which the period can be determined, and show that this bound

can be asymptotically attained by an estimate based on nonparametric regression.

Interestingly, this accuracy is the same as that which could be attained if the shape,

but not the period or phase, of the curve were known. We show that the period

can be estimated at rates that are more commonly found in completely parametric

problems. Indeed, the convergence rate of the estimator of period is O(n−3/2),

where n denotes the number of observations made. This is the rate obtained by
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Quinn and Thompson (1991), for example, who treated a related problem where

observation times were regularly spaced and the periodic function was modelled as

a finite-parameter trigonometric series.

Since the period can be estimated so accurately, if we construct a nonpara-

metric, smoothed estimator of the brightness function using our estimate of the

period, then the resulting nonparametric curve estimator has the same first-order

asymptotic properties that it would enjoy if the period were known.

Thus, very little is lost by adopting a nonparametric approach to this problem.

And of course there is much to gain, in the absence of physical evidence for an

elementary model for the way in which brightness varies with time. Relatively

conventional methods, such as local linear smoothing and kernel techniques, may

be used to estimate the brightness function itself. The relative susceptibility of

some curve estimators to edge effects is not an issue here, since periodicity will be

exploited to overcome that difficulty. These properties will be demonstrated both

theoretically and numerically in subsequent sections, and applications to star data

will be illustrated.

Trigonometric models for regression means have a long history, including for

example the contributions of Fisher (1929), Whittle (1959), Walker (1971), Hannan

(1973), Brillinger (1986), Rice and Rosenblatt (1988), and Reimann (1999). The

case of trigonometric models where all frequencies are harmonics of a single, funda-

mental frequency is closer to the context of the present paper, and has been treated

by Hannan (1974) and Quinn and Thompson (1991) in the setting of regularly

spaced observations. Smoothing methods in such problems have been discussed

by McDonald (1986), and Reimann (1994). See also Bickel, Klaassen, Ritov and

Wellner (1993, p. 107).

2. MODELS AND METHODOLOGY

Let g denote a periodic function, with period θ0 say, and suppose we make

successive observations (Xi, Yi), 1 ≤ i ≤ n, generated according to the model

Yi = g(Xi) + εi , (2.1)

where 0 < X1 ≤ · · · ≤ Xn and, conditional on the Xi’s, the εi’s are independent

and identically distributed random variables with zero mean and finite variance.
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From these data we wish to estimate θ0 and g, making only periodic-smoothness

assumptions about the latter.

To this end we construct a nonparametric estimator ĝ(·|θ) of g on (0, θ] under

the assumption that the period of g is θ. We extend ĝ to the real line by periodicity,

and, defining

S(θ) =
n∑

i=1

{
Yi − ĝ(Xi|θ)

}2
, (2.2)

take our estimator θ̂ of θ0 to be the minimiser of S(θ). This procedure was proposed

by McDonald (1986). Then, for an appropriate estimator g̃(·|θ) of g under the

assumption of period θ, we take ĝ0 ≡ g̃(·|θ̂) to be our estimator of g.

Even if the estimators ĝ and g̃ are of the same type, for example both local linear

estimators, it is usually not a good idea to take them to be identical. In particular,

to ensure optimal estimation of θ the estimator ĝ(·|θ) employed to define S(θ) at

(2.2) should be smoothed less than is appropriate for point estimation of g.

In general the function S will have multiple local minima, not least because

any integer multiple of θ0 can be considered to be a period of g. We take θ0

to be the smallest period of g, assumed to be well-defined. In particular, we do

not permit g to be identically constant, and we minimise S in a sufficiently small

neighbourhood of θ0. These specifications do not eliminate operational difficulties

that can be experienced with local minima of S, but they do remove technical

problems associated with making θ̂ well defined.

A range of generalisations is possible for the model at (2.1). For example, we

may replace the errors εi by σiεi, where the standard deviation σi is either known,

as is often effectively the case with data on star brightness, or accurately estimable.

Then, appropriate weights should be incorporated into the series at (2.2). Further-

more, our main results about convergence rates and appropriate choice of bandwidth

continue to hold when the errors form a sufficiently weakly dependent stationary

stochastic process. When constructing ĝ(·|θ) for the purpose of computing ĝ(Xi|θ)
at (2.2) we may drop the pair (Xi, Yi) from the data, without influencing first-order

asymptotic properties of our method.

Realistic mathematical models for the spacings between successive Xj ’s would

involve them not converging to zero as n → ∞. Moreover, they should be approxi-
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mately stochastically independent. One such model is

Xj =
j∑

i=1

Vi , 1 ≤ j ≤ n , (2.3)

where V1, V2, . . . are independent identically distributed nonnegative random vari-

ables. Clearly there are limitations, however, to the generality of the distribution

allowable for V , representing a generic Vi. In particular, if the distribution is defined

on an integer lattice, and if θ0 is a rational number, then the infinite sequence of

numbers Xj modulo θ0, for 1 ≤ j < ∞, is restricted to a lattice with rational span

in the interval [0, θ0). This means that, even if the errors εi are identically zero and

we actually observe the infinite sequence g(Xj), 1 ≤ j < ∞, g is not identifiable

under just smoothness conditions. These difficulties vanish if we assume that the

Xj ’s are generated by (2.3) where the distribution of V > 0 is absolutely continuous

with an integrable characteristic function and that all moments of V are finite. Call

this model (MX,1). The fact that the characteristic function should be integrable

excludes the case where the Xi’s are points of a homogeneous Poisson process, but

this context is readily treated separately.

Another class of processes X is the sequence Xj = Xj(n) ≡ nYnj, where

Yn1 < · · · < Ynn are the order statistics of a random sample Y1, . . . , Yn from a

Uniform distribution on the interval [0, y], say. Call this model (MX,2). Models

(MX,1) and (MX,2) are similar, particularly if V has an exponential distribution.

There, if X (n+1) =
{
X1, · · · ,Xn+1

}
is a sequence of observations generated under

(MX,1), if X ′(n) =
{
X ′

1, . . . ,X
′
n

}
is generated under (MX,2) with y = 1, and if we

define Xtot =
∑

i≤n+1 Xi, then
{
X1/Xtot, . . . ,Xn/Xtot

}
has the same distribution

as X ′(n).

A third class of processes X is the ‘jittered’ grid of Akaike (1960), Beutler

(1970) and Reimann (1994), where Xj = j + Uj , j ≥ 1, and the variables Uj

are independent and Uniformly distributed on (− 1
2 , 1

2 ). Call this model (MX,3).

All three models have the property that the spacings Xj − Xj−1 are identically

distributed and weakly dependent.

Next we discuss candidates for ĝ. Under the assumption that the true period of

g is θ, the design points Xi may be interpreted modulo θ as Xi(θ) = Xi − θbXi/θc,
for 1 ≤ i ≤ n, where bxc denotes the largest integer strictly less than x. Then,

the design points of the set of data pairs Y(θ) ≡ {(Xi(θ), Yi), 1 ≤ i ≤ n
}
, the
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‘phased’ or ‘folded’ data, all lie in the interval (0, θ]. We suggest repeating ad

infinitum the scatterplot represented by Y(θ), so that the design points lie in each

interval ((j − 1)θ, jθ] for −∞ < j < ∞; and computing ĝ(·|θ), restricted to (0, θ],

from the data, using a nonparametric smoother. Possible smoothers include kernel

estimators, local linear estimators, regression and smoothing splines, and truncated

trigonometric series expansions. In practice we would usually need to repeat the

design only in each of (−θ, 0], (0, θ] and (θ, 2θ], since the effective bandwidth would

be less than θ. We define ĝ(·|θ) on the real line by ĝ(x) = ĝ(x − θbx/θc|θ).
In view of the periodicity of g it is not necessary to use a function estimation

method, such as a local linear smoother, which accommodates boundary effects.

Indeed, our decision to repeat design points in blocks of width θ means that we do

not rely on the boundary-respecting properties of such techniques. To stress this

feature of our method, our theoretical analysis in Section 4 will focus on the case

where ĝ is the Nadaraya-Watson estimator, which suffers notoriously from boundary

problems:

ĝ(x|θ) =
∑

i Yi Ki(x|θ)∑
i Ki(x|θ) , 0 ≤ x ≤ θ , (2.4)

where Ki(x|θ) = K[{x − Xi(θ)}/h], K is a kernel, h is a bandwidth, and the two

series on the right-hand side of (2.4) are computed using repeated blocks of the

data Y(θ).

If g has r bounded derivatives; if the estimator ĝ is of r’th order, meaning that

its asymptotic bias is of size hr and its variance of size (nh)−1; and if h = h(n)

has the property that for some η > 0, n−(1/2)+η ≤ h = o(n−1/(2r)); then θ̂ =

argminS(θ) is consistent for θ0 and, under regularity conditions,

n3/2 (θ̂ − θ0) → N
(
0, τ 2

)
(2.5)

in distribution, where

τ 2 = 12σ2 θ3
0 µ−2

{∫ θ0

0

g′(u)2 du

}−1

, (2.6)

σ2 = var(εi) and µ = limj→∞ E(Xj − Xj−1), assumed to be finite and nonzero. In

section 4 we formally establish this result for the second order Nadaraya-Watson

estimate; it can be shown to hold for other kernel methods, such as Gasser-Müller,

higher order kernels, and local linear estimators. We believe that it holds generically

for reasonable smoothers, such as regression and smoothing splines and orthogonal



6

series estimators. Formula (2.5) implies that θ̂ converges to θ0 at a parametric rate.

The asymptotic variance is that given by the semiparametric lower bound presented

in Section 4. In Quinn and Thompson’s (1991) analysis of a periodogram estimate

in a closely related problem with equispaced observations, they obtained the same

limit theorem for θ̂, albeit with a different value of τ 2. A similar result for jittered

data with the periodic function being a cosinusoid was obtained by Reimann (1994).

Formula (2.6) implies that estimators of period have lower variance when the

function g is ‘less flat’, i.e. when g has larger mean-square average derivative. This

of course conforms to intuition, since a flat function g does not have well-defined pe-

riod, and more generally, the flatter g is, the more difficult it is to visually determine

its period.

If h ∼ Cn−1/(2r) for a constant C > 0, and ĝ is an r’th order regression

estimator, then n3/2 (θ̂ − θ0) remains asymptotically Normally distributed but its

asymptotic bias is no longer zero. In the r’th order case, h = O(n−1/(2r)) is the

largest order of bandwidth that is consistent with the ‘parametric’ convergence rate,

θ̂ = θ0 +Op(n−3/2). Since such h is optimal for estimation of g given θ0, the phased

data should be undersmoothed for estimation of the period relative to the amount

of smoothing optimal for estimating the underlying light curve itself.

This high degree of accuracy for estimating θ0 means that, if g̃(·|θ) is a conven-

tional estimator of g under the assumption that the period equals θ, then first-order

asymptotic properties of ĝ0 ≡ g̃(·|θ̂) are identical to those of g̃(·|θ0). That is, from

an asymptotic viewpoint the final estimator ĝ0 behaves as though the true period

were known. These results follow by Taylor expansion. For example, if g̃(·|θ) is the

Nadaraya-Watson estimator defined at (2.4), but with a different bandwidth h0 say,

satisfying h0 ≥ n−(1/2)+ξ for some ξ > 0, then a Taylor expansion argument such

as that given in the appendix shows that for all η > 0,

g̃(·|θ̂) = g̃(·|θ0) + Op

[
n |θ̂ − θ0|h−1

0

{
h0 + (nh0)−1/2

}
nη

]
= g̃(·|θ0) + op

{
(nh0)−1/2

}
. (2.7)

The remainder op

{
(nh0)−1/2

}
here is of smaller order than the error of g̃(·|θ0) about

its mean. And, despite the Nadaraya-Watson estimator g̃(·|θ) being susceptible to

edge effects, the order of approximation at (2.7) is available uniformly in x ∈ (0, θ0],

since the effects of errors at boundaries are of order n |θ̂ − θ0| = op{(nh0)−1/2}.
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3. NUMERICAL EXAMPLES

The MACHO project measures light intensities in two frequency bands, a ‘red’

and a ‘blue’ band. Figure 1 shows the measurements versus time in each of the

two bands for an eclipsing binary, i.e. two stars orbiting each other in the plane

of the observer. There are 300 measurements in the red band and 305 in the blue

band over a period of about 400 days. These plots are rather uninformative, but

when the times are transformed modulo a period of 2.4713 days, the periodicity is

apparent, as shown in Figure 2. The curve shape is typical of an eclipsing binary

system; the brightness is fairly constant when the stars are side by side and troughs

occur when one star passes in front of the other. Corresponding to the very fast

convergence rate of the estimate of period, when the period is changed very slightly,

the dispersion of the phased plot increases dramatically.

Days

R
ed

 A
-1

200 250 300 350 400 450 500 550 600

-0
.4

-0
.2

0.
0

0.
2

•
•

•

••

•

• •
••

•
••

•••

•
•
••

•

•••••

•

•

•

•

••

•
••

• •

•

••

•

•

••
••
••

•
•

•

•

•

•• ••

•• ••

•

••
•••
•

•

••
•
•

•

•

••
•
••

•

•
••

•••

•

••

•
•••

•
•

•

•

••
•
•••
•

•

•
••••

•

••

•

•••
••

•

•
•
•••

•

•
•
•

•
•

•
•

•
•

•

•

•
•

•

•
•
•

••

•

•
•
••

•
• ••

•

•

•
•

••

•

•
•
•

•

•
•
•

• ••

•

•

•

•
•••

•
•

••
•
•••

•

•

•••
•

•

•
•••
•

•
•••
•

•

•••

••

•
•
•
•
•
•
•

•
•

•

•

•

•

•

•

•

•
•
•
•
•

•
•

•

•
•

•

•

•

••••
•
••••

•
•

•

•
•
•
•

•

•
•
•

••
••

•

••

•

•

•

••

•

•
••

•••

•

•••
•

•

•

•
•

•

•

•
•
•
•

••

•
••••

Days

B
lu

e 
A

-1

200 250 300 350 400 450 500 550 600

-0
.4

-0
.2

0.
0 •

•

••

•

• •
•
•

• •

•••
••
•••

•

•••

•
••

•
•
•
••
•

•
••

•

••

•

••

•

••
••

•

•

•

•

•

•

•• •

•

•
••

•

•

•
••••
•

•

••
•••

•

•

•

••
•
•••

•

•

••

•••

•

•
••

•

•
••

•
•
•

•

•
•

•
•
•

•

•
•
••
•

•

••

•

•••
•

•

•

•
••

•

•••

•

•

•

••

•••

•

•

••
•

•
•

•

•

•
•
•
•

••

••••
•

•

• ••

•

•

•
•
••

•

•••

•

•
•
•

•
••

•

•
•

••••

•

•

••

•

••
•

•

•

••••

•

•
•••

•
•••

•

•
••

•
•

•
•

•

•

•
••

•

•

•

•

•

•

•

•

•

•••
•

•
•

•

•

•
•

•

•

•

••
•

••

••••••

•

•

•
•
•

•

•
•

•

••

••

•

••

•

•
•

•••

•••

•••

•

•
••

•

•

•

•

•

••

•

•
•

••

•
•

•••
••

Figure 1: Brightness plotted against time for the red and blue bands of star 77043:4317.
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Figure 2: Phase plot of star 77043:4317 at period 2.47133 days.

The residual sum of squares (2.2) used to estimate the period is typically highly

oscillatory. Furthermore, for some of the methods, the residual sum of squares is not

a continuous function of the period—discontinuities can occur when the ordering

of two phase values changes. Thus for the MACHO data, the minimiser was found

in two stages: a relatively crude initial grid search selected regions that were then

searched on a finer grid. Reimann (1994) provides a more complete discussion.

We now briefly describe the results of one simulation. An asymmetric curve

derived from data from a Cepheid was used for the true underlying function, with

the maximum and minimum scaled to be 0.5 and -0.5, Actual observation times,

200 in all spanning 243 days, were taken from the MACHO database. Two levels

of noise were used: independent and identically distributed Normals with standard

deviations .05 and .20. Typical realisations of the phased light curves with period

1.4432 days are shown in Figure 3.
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Figure 3: Phase plots of simulated light curves from model A at period 1.4432 days.

Estimates of period were computed for a variety of methods for 100 simulations.

The following nonparametric regression estimates considered for use in MACHO

were used in (2.2): trigonometric expansions of order one, two, four and six, cubic

periodic regression splines with five, nine, and thirteen knots, and SuperSmoother,

a cross-validated variable span local linear smoother (Friedman, 1984) for which

the sum of absolute residuals rather than sum of squared residuals at (2.2) was

minimised. Note that these techniques would be particularly difficult to treat in

the manner we have done for kernel techniques. We also considered the maximiser

of the periodogram

I(ω) =
1
n

∣∣∣∣
n∑

j=1

Yje
iωXj

∣∣∣∣
2

.

In the astronomy literature, this is referred to as the Deeming periodogram; its

properties in estimating frequency are discussed in Deeming (1975). A version of

the periodogram which is equivalent to least squares with a single cosinusoid was in-

troduced by Lomb (1976) and Scargle (1982), and is referred to as the Lomb-Scargle

periodogram. We also examine the behaviour of two other methods proposed in the

astronomy literature. The method of Lafler and Kinman (1965), in the case of equal
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error variance, chooses the period to minimise the quantity

LF (θ) =
n∑

j=1

{Y ∗
j+1(θ) − Y ∗

j (θ)}2 .

where the Y ∗
j (θ) are the values of the Yi(θ) ordered as are the Xi(θ). The related

method of Renson (1978) chooses the period to minimise

REN(θ) =
n∑

j=1

{Y ∗
j+1(θ) − Y ∗

j (θ)}2

{X(j+1)(θ) − X(j)(θ)}2 + b2

where the X(j)(θ) are the ordered values of the Xi(θ). Here b2 is a constant chosen

so as to prevent the denominator from being too small; Renson recommends taking

it to be the ratio of the noise variance to four times the squared amplitude of the

signal. This latter method gives greater weight to differences which are close in

phase. All the estimates were evaluated on a grid which was much finer than the

standard error provided by the semiparametric lower bound.

Table 1: Standardized bias, variance, and MSE of the frequency estimates

SD = 0.05 SD = 0.20

Method Bias/SE Variance MSE Bias/SE Variance MSE

×10−10 ×10−10 ×10−10 ×10−10

PG -16.7 6.3 24.1 -3.9 93 107

C1 -8.7 9.3 16.4 -1.7 128 132

C2 6.9 4.4 6.4 0.8 58 59

C4 -12.1 2.9 7.2 -3.9 50 56

C6 -4.8 3.3 4.0 -2.3 68 72

S5 68.5 1.2 59.3 11.3 33 76

S9 -27.7 4.5 39.0 -8.2 51 85

S13 -4.7 6.3 7.6 -2.5 84 89

LF -0.7 16.5 16.5 0.0 254 254

RN -0.7 16.5 16.5 0.0 253 254

SM -1.9 6.3 6.4 -1.2 140 142

The results of the simulation are summarised in Table 1. The lower bounds

for the variances of the frequency estimates are 2.5 × 10−10 and 4.1 × 10−9 for the

low and high noise cases. In the low noise case, the estimate with smallest MSE
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was the six term Fourier fit, whose mean squared error was 1.6 times the variance

bound. The five and nine knot spline estimates were subject to surprisingly large

biases, especially in light of the fact that they had the same number of degrees

of freedom as the respective Fourier fits. For both the Fourier expansion methods

and the spline methods, the mean squared error generally decreased as the order

increased. For the higher variance case, the Fourier methods had the smallest mean

squared error, followed by the spline methods. The smallest MSE, that of the four

term Fourier method, was equal to 1.4 times the lower bound. SuperSmoother was

not as effective in the high noise case as in the low noise case.

In general, the mean squared errors were larger than those given by our asymp-

totics and the biases were large relative to the standard errors. This may be in part

due to the estimates being determined by global minimisation, whereas the asymp-

totic analysis is highly localised. The Lafler and Renson methods, although having

little bias, were not competitive due to their large variances. Note that they are

crudely analogous to kernel estimates with an extremely small bandwidth. At the

other end of the continuum, the periodogram method and the estimate based upon

fitting a simple cosinusoid were not competitive with the more flexible smoothing

methods, and of these the less smoothed estimates performed better. However, in

general, all the methods were impressively accurate considering that only 200 ob-

servations were made over 243 days—the worst estimate in Table 1 has root mean

square error equal to about 16 × 10−5 cycles per day, which translates into a root

mean square error in the estimate of period of about 29 seconds. In this and other

examples, the variance bound was a reasonable guide to attainable precision and

can thus be recommended for aid in choosing a grid size for global optimisation.

4. ASYMPTOTIC PROPERTIES OF θ̂

We first state the semiparametric lower bound and indicate the proof. We

assume that the errors are independent and identically distributed, independent of

the observation times, and from a density which satisfies mild regularity conditions,

which hold in particular if it is Gaussian. Scaled to have period one, the regression

curve s(x) belongs to a set the members of which have uniformly bounded second

derivatives and integrated squared first derivatives uniformly bounded below. The

parameter space for the period is a bounded open interval. The observation times

are generated as in model (MX,2). Then if the regression function is known except
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for phase, or if it is unknown, the information bound for the estimate of the period

is given by (2.6), where σ2 is replaced by the reciprocal of Fisher information, I, on

a location parameter in the error density; the scaling factor is n3/2 as at (2.5).

The proof for the case of known shape and unknown phase follows by calcu-

lating the limiting Fisher information for this finite parameter model and verifying

that the conditions for local asymptotic normality hold, using Theorem II.6.1 of

Ibragimov and Has’minskii (1981). For the semiparametric case, with unknown

shape, we follow the lines of Bickel et al. (1993), who derive the information for

this periodic regression model with independent and identically distributed sam-

pling times. Their arguments need to be slightly modified for our sampling model,

a triangular array. The observation times in this model are Xj = nUj where the

Uj are (unordered) uniform variates. Let s denote the unknown periodic function,

normalised to period one, and h denote the uniform density. Then, following Bickel

et al., the information in the first n observations for θ is

Ψ2(n, θ) = nI E
[
s′(nU1θ

−1)2 {nU1 − E(nU1 | θ)}2
]

where, with both summations over −∞ < k < ∞,

E(nU1 | θ) =
n

∑
k (u1 + n−1kθ)h(u1 + n−1kθ)∑

k h(u1 + n−1kθ)

which equals nE(U1) + O(1). Thus

n−3 Ψ2(n, θ) = I E
[
s′(nU1θ

−1)2 {U1 −E(U1)}2
]
+ O

(
n−1

)
,

which converges uniformly to I var(U1)‖s′‖2
2. If the error density is Gaussian, the

information is I = σ−2, and we obtain the asymptotic variance at (2.6). Local

asymptotic normality follows by Proposition II.1.2 of Bickel et al.

We next state a limit theorem for θ̂ under specific regularity conditions, and

then we discuss generalisations. We assume that ĝ(·|θ) is defined by (2.4), where

(a) K is a symmetric, compactly supported density with three continuous derivatives

on (−∞,∞); (b) h = h(n) satisfies h ∼ Cn−a, where C > 0 and 1
4 < a < 1

3 ;

(c) g is periodic with period θ0, has two bounded derivatives, and is not identically

constant; (d) E|εi|2+δ < ∞ for some δ > 0; and (e) distributions of the observation

times X1 ≤ · · · ≤ Xn satisfy (MX,1), (MX,2) or (MX,3), given in section 2. Let

0 < b < 1
3 − a, and let θ̂ denote that value of θ in the interval |θ − θ0| ≤ nb−(3/2)
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which minimises S(θ). Then, θ̂ is asymptotically Normal N(0, τ 2), where τ is defined

at (2.6). Under condition (e), E(Xj −Xj−1) = µ + O(j−1), where µ = E(V ) when

(MX,1) holds, µ = y−1 under (MX,2), and µ = 1 under (MX,3).

If instead of condition (a) we assume that K has k continuous derivatives

then, using arguments in this appendix, the allowable range of values of a may

be increased to 1
4 < a < (k − 1)/2k in which case the value of b should satisfy

0 < b < (k − 1)/(2k) − a. Longer arguments may be used to substantially relax

these smoothness conditions on K. Likewise, the assumption that |θ−θ0| ≤ nb−(3/2)

can be relaxed to
∣∣θ − θ0

∣∣ ≤ δ for δ > 0 sufficiently small. Of course, if k is large

then (k − 1)/2k is close to 1
2 , and then h ∼ Cn−a and 1

4 < a < (k − 1)/2k requires

h to be of smaller order than n−1/4 and a little larger than n−1/2.

If h ∼ Cn−1/4 then a term in h2 that appears in Taylor expansions, such as

(4.4) in the proof below, contributes a quantity of size h2 ∼ C2n−1/2 to the bias of

n(θ̂ − θ0), in which case the Normal limit at (2.5) would have nonzero mean. More

generally, if the estimator ĝ is of r’th order, for example based on fitting polynomials

of degree r − 1, and if g is sufficiently smooth, then the bias term is of size hr, the

condition 1
4 < a < (k − 1)/2k changes to (2r)−1 < a < (k − 1)/2k, and a nonzero

mean is required in the Normal limit distribution at (2.5) if h ∼ Cn−1/r.

Finally we outline a proof of the asymptotic normality with variance given

at (2.6) under the specific conditions stated above. Observe that we may write

ĝ(x|θ) = γ(x|θ) + ∆(x|θ), where γ(x|θ) = G(x|θ)/A(x|θ), ∆(x|θ) = D(x|θ)/A(x|θ),

G(x|θ) =
∑

i g(Xi)Ki(x|θ), D(x|θ) =
∑

i εiKi(x|θ) and A(x|θ) =
∑

i Ki(x|θ). We

shall Taylor-expand about θ = θ0, arguing as follows. Assume that
∣∣θ − θ0

∣∣ ≤
n−1−η1h, where η1 > 0 is fixed, that K vanishes outside [−1, 1] and that x ∈
[2h, θ0 − 2h]. Then, Xi/θ0 is further than h away from all integers, uniformly in

indices i such that either Ki(x|θ) or Ki(x|θ0) is nonzero. If follows that bXi/θc =

bXi/θ0c, uniformly in such i, for all sufficiently large n. Therefore,

Xi(θ) − Xi(θ0) = θ0bXi/θ0c − θbXi/θc = (θ0 − θ)bXi/θ0c ,

the latter identity holding uniformly in indices i such that either Ki(x|θ) or Ki(x|θ0)

is nonzero. Hence,

Ki(x|θ)−Ki(x|θ0) =
2∑

j=1

j−1
(
θnXni

)j
K(j)(x|θ0)+ 1

6
(θnXni)3 K(3)(x|θ(i)) , (4.1)
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where K(j)(x|θ) = K(j)[{x − Xi(θ)}/h], θ(i) = θ(i)(x) lies between θ and θ0, θn =

n
(
θ − θ0

)
/h and Xni = bXi/θ0c/n.

Substituting the expansion at (4.1) into formulae for G(x|θ), D(x|θ) and A(x|θ)
we deduce Taylor expansions, in θ and about θ = θ0, of the latter quantities,

provided x ∈ [2h, θ0 − 2h]. This leads to Taylor expansions of γ(x|θ) and ∆(x|θ).
In particular, with probability 1 and uniformly in x ∈ [2h, θ0 − 2h], we have for all

η3 > 0,

γ(x|θ) − γ(x|θ0) = θn

(∑
i Xni g(Xi)K ′

i(x|θ0)
A(x|θ0)

− G(x|θ0)
∑

i Xni K ′
i(x|θ0)

A(x|θ)2
)

+ O
[
θ2
n

{
h2 + (nh)−1/2nη3

}
+ |θn|3

]
, (4.2)

∆(x|θ) − ∆(x|θ0) = θn

(∑
i Xni εi K ′

i(x|θ0)
A(x|θ0)

− D(x|θ0)
∑

i Xni K ′
i(x|θ0)

A(x|θ)2
)

+ O
{
θ2
n (nh)−1/2 nη3 + |θn|3 nη3

}
. (4.3)

In deriving these results we make use of the following consequence of assump-

tions (MX,1), (MX,2) or (MX,3) about the design sequence. If h1 = h1(n) → 0 in

such a manner that for some ξ > 0, n−1+ξ ≤ h1 ≤ n−ξ, then the number of values

of Xi(θ), 1 ≤ i ≤ n, that lie in an interval of width h1 is asymptotic to nh1/θ, in

the sense that for each 0 < θ1 < θ2 < ∞ and each 0 < δ < 1,

P

[
(1 − δ)nh1/θ ≤

n∑
i=1

I
{
Xi(θ) ∈ (x, x + h1)

} ≤ (1 + δ)nh1/θ

for all 0 ≤ x ≤ θ − h1 and all θ ∈ [θ1, θ2]
]

= 1 − O
(
n−C

)
for all C > 0. This property, and results about orders of magnitude that are used

throughout our proof, may be derived using moment methods. In the case of model

(MX,2), where the Xi’s represent ordered values of independent random variables,

moment calculations are relatively straight forward. This is also true under model

(MX,3). To calculate moments for the case (MX,1) we first delete indices i for which

1 ≤ i ≤ nη, where η > 0 is fixed but arbitrarily small. It is readily shown that by

taking η sufficiently small, the error incurred through this step is of smaller order

than the bound that is being derived. Then, writing
∑′

i to denote summation over

nη < i ≤ n, we calculate the k’th moment of
∑′

i f{Xi(θ)}, where f(u) might for

example denote I
[
u ∈ (x, x + h1)

]
, by writing the moments as∑

i1

′
. . .

∑
ik

′
E

[
f
{
Xi1(θ)

}
. . . f

{
Xik (θ)

}]
.
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This series may be approximated up to a remainder of order n−C , for any given

C > 0, by using an Edgeworth expansion of the joint density of (Xi1 , . . . ,Xik ).

Of course, the event Xi(θ) ∈ A, for any Borel set A, is equivalent to
⋃

k [{Xi ∈
(kθ, (k + 1)θ]} ∩ {Xi − kθ ∈ A}].

With probability 1 the coefficient of θn on the right-hand side of (4.2) equals

1
2 (µ/θ0)h−1

∫ θ0

0

g(u)K ′{(x − u)/h} du + O
{
h2 + (nh)−1/2nη3

}
= 1

2 (µ/θ0)h g′(x) + O
{
h2 + (nh)−1/2nη3

}
, (4.4)

uniformly in x ∈ [2h, θ0 − 2h], for all η3 > 0. In the same sense, the coefficient of

θn on the right-hand side of (4.3) equals O{(nh)−1/2nη3}, and γ(x|θ0) = g(x) +

O
{
h2 + h(nh)−1/2nη3

}
. Therefore,

ĝ(x|θ) = g(x) + ∆(x|θ0) + cn (θ − θ0) g′(x) + α1(x|θ) , (4.5)

where (i) c = µ/(2θ0), (ii) the stochastic function α1 satisfies, for j = 1,

sup
x∈[2h,θ0−2h]

|αj(x|θ)| = O{|ζn(θ)|} (4.6)

with probability 1, uniformly in θ for which |θ − θ0| ≤ n−1−η1h, and (iii) for any

η3 > 0,

ζn(θ) = |θn|
{
h2 + (nh)−1/2 nζ3

}
+ |θn|3 nζ3 + h2 + h (nh)−1/2 nζ3 . (4.7)

Taking x = Xi(θ), noting that Xi(θ)−Xi(θ0) = (θ0−θ) bXi/θ0c if Xi(θ) ∈ [2h, θ0−
2h] and |θ − θ0| ≤ n−1−η1h, and Taylor-expanding on the right-hand side of (4.5),

we deduce that

ĝ{Xi(θ)|θ} = g{Xi(θ0)} + ∆{Xi(θ0)|θ0}
+ n (θ − θ0) (c − Xni) g′{Xi(θ0)} + α2 {Xi(θ)|θ} ,

where α2 satisfies (4.6). Therefore, since g{Xi(θ0)} = g(Xi) and g′{Xi(θ0)} =

g′(Xi), then

Yi − ĝ{Xi(θ)|θ} = εi − ∆{Xi(θ0)|θ0} + n (θ − θ0) (Xni − c) g′(Xi) + βi(θ) , (4.8)

where βi(θ) denotes a random function satisfying

sup
i∈I

|βi(θ)| = O{|ζn(θ)|} (4.9)
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with probability 1, uniformly in θ such that |θ − θ0| ≤ n−1−η1h, and I = I(n) is

the set of integers 1 ≤ i ≤ n such that Xi(θ0) ∈ [3h, θ0 − 3h].

If i ∈ Ĩ ≡ {
1, . . . , n

}\I then, in view of the periodicity of g, (4.8) and (4.9)

continue to hold, provided we interpret ∆{Xi(θ0)|θ0} in the sense that design points,

and the associated response variables, are repeated in (−θ0, 0] and in (θ0, 2θ0], and

an extra term of the order of |g{Xi(θ)}−g(Xi)|, i.e. the order of n |θ−θ0|, is added

to the right-hand side of (4.9). That is, (4.7) holds for i ∈ Ĩ, with

sup
i∈Ĩ

|βi(θ)| = O
{|ζn(θ)| + n |θ − θn|

}
(4.10)

with probability 1.

Combining (4.8)–(4.10); noting that the number of elements of Ĩ equals O(nh);

and observing that under the assumptions made about h in condition (b) stated

early in this section, (4.7) implies ζn(θ) = O(n−(1/2)−η) for some η > 0, uniformly

in θ for which |θ − θ0| ≤ n−1−η1h, provided η3 in the definition of ζn(θ) is chosen

sufficiently small; we conclude that

n (θ0 − θ̂) =
∑

i (Xni − c) g′(Xi) [εi − ∆{Xi(θ0)|θ0}]∑
i {(Xni − c) g′(Xi)}2

+ op

(
n−1/2

)
.

The ratio on the right-hand side is asymptotically Normally distributed with zero

mean and variance∑
i (Xni − c

)2
g′(Xi)2

{∑i(Xni − c)2 g′(Xi)2}2
σ2

∼
{

n(µ/θ0)2
∫ 1

0

(
u − 1

2

)2
du · θ−1

0

∫ θ0

0

g′(u)2 du

}−1

σ2 = n−1τ 2 .

In deriving the asymptotic equivalence property claimed just above, observe that

g′(Xi) = g′{Xi(θ0)}, that Xi(θ0) is asymptotically Uniformly distributed on (0, θ0),

and that if i = i(n) → ∞ in such a manner that i/n → u where 0 < u < 1, then

Xni → µu/θ0 in probability as n → ∞.

REFERENCES

AKAIKE, H. (1960). Effect of timing error on the power spectra of sampled-data.
Ann. Inst. Statist. Math. 11, 145–165.

AXELROD, T., ALCOCK, C., ALLSMAN, R., ALVES, D., BECKER, A., BEN-
NETT, D., COOK, K., FREEMAN, K., GRIEST, K., GUERN, J., LEHNER,
M., MARSHALL, S., PETERSON, B., PRATT, M., QUINN, P., RODGERS,



17

A., STUBBS, C., SUTHERLAND, W., and WELCH, D. (1994). Statistical
issues in the MACHO project. In Statistical Issues in Modern Astronomy,
Feigelson, E. and Babu, G. (eds). Springer, New York.

BEUTLER, F.J. (1970). Alias-free randomly timed sampling of stochastic processes.
IEEE Trans. Inform. Theor. IT-16, 147–152.

BICKEL, P.J., KLAASSEN, C.A.J., RITOV, Y. AND WELLNER, J.A. (1993).
Efficient and Adaptive Estimation for Semiparametric Models. Johns Hop-
kins, Baltimore.

BRILLINGER, D.R. (1986). Regression for randomly sampled spatial series: the
trigonometric case. Ann. Appl. Prob. 23, 275-289.

DEEMING, T.J. (1975). Fourier analysis with unequally-spaced data. Astrophysics

and Space Science 36, 137-158.

FERLET, R., MAILLARD, J.P. AND RABAN, B. (1997). Variable Stars and the

Astrophysical Returns of Microlensing Surveys. Editions Frontières, Gif-
sur-Yvette, France.

FRIEDMAN, J. (1984). A variable span smoother. Technical Report No. 5, Lab-
oratory for Computational Statistics, Department of Statistics, Stanford
University.

FISHER, R.A. (1929). Tests of significance in harmonic analysis. Proc. Roy. Soc.

Ser. A 125, 54–59.

HANNAN, E.J. (1973). The estimation of frequency. J. Appl. Probab. 10, 510–519.

HANNAN, E.J. (1974). Time series analysis. IEEE Trans. Auto. Control AC-19,
706–715.

HOFFMEISTER, C., RICHTER, G. AND WENZEL, W. (1985). Variable Stars.
Springer, New York.

IBRAGIMOV, I.A. AND HAS’MINSKII, R.Z.(1981). Statistical Estimation: As-

ymptotic Theory. Springer, New York.

IVANOV, A.V. (1979). A solution of the problem of detecting hidden periodicities.
Theor. Probab. Math. Statist. 20, 51–68.

LAFLER, J. and KINMAN, T.D. (1965), An RR Lyrae survey with the Lick 20-inch
astrograph II. The calculation of RR Lyrae periods by electronic computer.
Astrophysical Journal Supplement Series 11, 216–222.

LOMB, N.R. (1976). Least-squares frequency analysis of unequally spaced data.
Astrophysics and Space Science 39, 447-462.

MCDONALD, J.A. (1986). Periodic smoothing of time series. SIAM J. Scientific

Statist. Comput. 7, 665–688.

QUINN, B.G. AND THOMPSON, P.J. (1991). Estimating the frequency of a peri-
odic function. Biometrika 78, 65–74.

REIMANN, J.D. (1994). Frequency Estimation Using Unequally-Spaced Astronom-



18

ical Data. PhD Thesis, Department of Statistics, University of California,
Berkeley.

REIMANN, J.D. (1999). Frequency estimation by randomly jittered sampling. Man-
uscript.
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