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1. Introduction.

Let E = {Pθ; θ ∈ Θ} be an experiment given by measures Pθ on a σ-field A. Let D
be a class of real valued functions defined on Θ. What can one say about the variance of

estimates T defined on E and such that the function θ;
∫
TdPθ belongs to D?

This problem and variants of it have been studied at great length in the statistical

literature. Perhaps one of the best known result linked to the problem is the Cramér-Rao

inequality with its family of variants.

An article of E.W. Barankin (1949) showed that, using a small amount of linear space

theory, one can give accurate bounds that, as he shows, imply all the Cramér-Rao type

inequalities published at that time.

The main point of Barankin’s paper however is that his bound is attainable. That is,

under a mild condition, there do exist estimates T that achieve Barankin’s bound.

In this paper we reconsider Barankin’s formulation extending it somewhat to cover

the case where one desires to obtain the minimax variance. This means finding estimates

T with expectation in D as before but such that supθ VarθT be minimum. (Here VarθT

is the variance of T under Pθ).

Barankin had considered only the problem of minimizing Varθ0T or other moments

for a specified θ0. As we shall see the minimax problem is somewhat more complex than

the problem of minimizing a variance at a point θ0.

One of the aim of the present paper is to show that whether the problem is one of

minimizing Varθ0T or supθ VarθT , one can, in principle, get a solution by solving a family

of two-dimensional problems.

Unfortunately the solutions involve integrals of the form
∫ dPdQ

dM
for measures P , Q

and M that are convex combinations of the Pθ’s.

These integrals are not easily computable or tractable in practice. Our hope was that

some relevant feature would shine through and help in directing the arguments. This has

not happened so far.
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Specifically, the contents of the paper are as follows. Section 2 sets the problem in a

linear space framework in the general spirit of Barankin [1949]. this means introducing

the linear span S(E) of the set {Pθ : θ ∈ Θ} in the space of finite signed measures in the

σ-field A. One expresses a quality requirement through a subset C of the (algebraic) dual

of S(E). Without any further conditions this system yields lower bounds that Barankin

had already shown to be better than all lower bounds available publicly in 1949.

To get the existence of estimates that satisfy the desiderata, one requires that C

contains the origin and that it be closed and convex. In many cases one can show that

the proposed set C is closed in the dual of S(E) by showing that it is compact for pointwise

convergence on S(E). This is done for several cases in Section 3. Section 4 is about the

problem of finding estimates with prescribed expectations for all Pθ and minimum variance

under a particular measure Q. Although the solution is implicit in Theorem 1, Section

2, we give a direct solution, assuming that Q dominates all the Pθ and that the densities

dPθ/dQ are square integrable for Q. These are the conditions in Barankin (1949). We

give examples showing that without any conditions the minimum variance for Q may be

zero but that no estimate can achieve an actual zero. The results can be written in various

forms. We give one in the form of a modulus of continuity equivalent to the form prefered

by J. Kiefer [1952].

To terminate this section we place the result of Fabian-Hannan [1977] in the context

of the present theory to complete Barankin’s assertion that his bound covers all known

Cramér-Rao type bounds. Of course, neither Kiefer [1952], nor Fabian and Hannan [1977]

can claim that their bounds are attainable without using Barankin’s arguments.

Section 5 is an aside. It shows that the matrices or kernels that occur in Section 4 also

arise in a different problem, that of finding estimates that minimize an expected square

deviation. This is done here (as in Le Cam [1986]) in a Bayesian context.

It is also shown that the matrices in question determine the type of the experiment

E. Section 6 contains a minimax theorem that reduces the minimax variance problem to

two-dimensional ones involving only three probability measures at a time. These measures

are finite convex combinations of the initial ones that formed the experiment E.

Section 7 considers more specifically the case where E is a binary experiment, E =

{P1, P2}. This is of course the simplest case. Even there, a complete solution is not

available, but certain usable inequalities are. We further show that in passages to the

limit that give inequalities similar to the classical Cramér-Rao ones, one can sometimes,
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but not always, substitute Hellinger distances for the distances issued from the formula

k2(P,Q) =
1

2

∫
(dP − dQ)2

d(P +Q)
.

Section 8 reconsiders the problem of minimizing the variance under P1 of an estimate

with specified expectation at P1 and P2. It shows that whenever P2 is dominated by P1

but dP2/dP1 is not square integrable for P1 the variance under P1 can be made as close

to zero as one wishes, but, of course, it cannot be made exactly zero.

Section 9 takes up the problem of substituting Hellinger distances for the Hilbert

norms of Section 4 for the case where the parameter space Θ is finite.

Section 10 is a mix of history and examples of applications, mostly of the two point for-

mulas of Section 7. It contains some results inspired by a paper of Simons and Woodroofe

[1983]. Up to this section we had not used any particular structure on the index set

Θ. Here we use a linear structure to relate our previous inequalities to a Cramér-Rao

inequality in infinite dimensional linear spaces.

We have not attempted full coverage. In particular we have not said anything about

the use of differential inequalities as in Berkson and Hodges [1962] on L. Brown and Gajek

[1990] or Brown and Low [1991].

2. A formulation in linear spaces.

Let E = {Pθ; θ ∈ Θ} be an experiment given by probability measures Pθ on a σ-field

A of subsets of a set X . The set Θ can be arbitrary.

Consider a function γ from Θ to (−∞,+∞). A problem that has been considered

often in the statistical literature can be stated as follows: Do there exist estimates T

defined on E and such that
∫
TdPθ = γ(θ) for all θ ∈ Θ? If so, what can one say about

their qualities or lack of them?

To study this problem we shall use a linear space formulation imitated from Barankin

[1949]. There are several spaces that introduce themselves naturally in the problem. One

of them, to be called S(E), for span of E, is the space of finite signed measures that are

finite linear combinations
∑
θ αθPθ of the Pθ’s of E.

Another space, say S0(E), is the space of finite linear combinations of the form∑
αs,t(Ps − Pt).

An estimate T defined by E and such that
∫ |T |dPθ < ∞ for all θ determines linear

functionals ϕT on S(E) and its subspace S0(E) by 〈ϕT , µ〉 =
∫
Tdµ if µ =

∑
αθPθ ∈ S(E).
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The restriction of ϕT to S0(E) does not differentiate between T and a shift T + c

where c is not random. This is a convenience if one wants to study variances or other

shift invariant measures of dispersion.

Barankin [1949] noted that if one prescribes an expectation function γ by γ(θ) =∫
TdPθ for some estimate T this defines a linear functional on the space S(E).

Of course, if one prescribed a function γ on Θ there might not be any linear functional

on S(E) that corresponds to it. Even if there is such a functional it might not be obtainable

from an estimate. Even if it is, the estimate might be a very poor one.

To take such possibilities into account we shall suppose given a certain set C of es-

timates T such that
∫ |T |dPθ < ∞ for θ ∈ Θ. These estimates will serve as standard of

quality. In Theorem 1 below we shall measure the difficulty of producing a prescribed

expectation function by the smallest r ≥ 0 such that there is a T ∈ rC with the prescribed

expectations.

For the selected C , the restrictions of its elements to S(E) form a subset C∗ of the

space S ′ of linear functionals on S(E). The further restrictions of these to S0(E) will be

denoted C∗
0 .

The set C∗ has a polar Co in S(E). This is the subset of S(E) formed by signed

measures µ such that 〈ϕ, µ〉 ≤ 1 for all ϕ ∈ C∗. Similarly we have a polar Co
o in So(E).

By abuse of language we shall call these polar sets the polars of C . This should entail no

confusion.

The following statements are easy to prove.

Lemma 1 There are linear functionals ϕ on S(E) such that 〈ϕ, Pθ〉 = γ(θ) for all θ ∈ Θ

if and only if for every finite linear combination
∑
θ αθPθ, the equality

∑
αθPθ = 0 implies∑

αθγ(θ) = 0.

The necessity is visible. The sufficiency can be proved by an application of Zorn’s

lemma.

Lemma 2 In order that there be a ϕ ∈ C∗ such that 〈ϕ, Pθ〉 = γ(θ) for all θ ∈ Θ it is

necessary that
∑
αθγ(θ) ≤ 1 for every finite linear combination such that

∑
αθPθ ∈ Co.

One can write similar statements for S0(E). For instance Lemma 2 applied to S0(E)

would say that there is a ϕ ∈ C∗
0 such that 〈ϕ, Ps − Pt〉 = γ(s) − γ(t), s, t ∈ Θ only if∑

αs,t[γ(s) − γ(t)] ≤ 1 for all combinations such that
∑
αs,t(Ps − Pt) ∈ Co

0 .

Lemma 2 is a simple consequence of the definition of polar sets. Note that it does not
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say anything about the conditions being sufficient, only about “necessity”. Nevertheless,

Barankin [1949] observed that such a Lemma implied all the Cramér-Rao type inequalities

that were published at that time. It is clear that it also implies the Chapman-Robbins

result of [1951] and Kiefer’s inequality [1952]. In Section 4 we shall show that the more

recent inequality of Fabian and Hannan [1977] is also a consequence of Lemma 2, taking

into account the convexity of a polar such as Co.

This is so for matters of “necessity”. However the great merit of Barankin’s paper is

that it does not stop there. He provides conditions under which the necessary condition

of Lemma 2 becomes a sufficient one.

We shall state conditions for C∗ on S(E). One can state similar conditions for C∗
0 on

S0(E). Consider C∗ as a subset of the algebraic dual S ′ of S(E). The two spaces S ′ and

S(E) are in separated duality for the weak topologies they induce on each other. Consider

then the following conditions

Condition (OCC): The set C satisfies (OCC) if it has the following properties

1) 0 ∈ C∗,

2) C∗ is convex

3) C∗ is w[S ′, S(E)] closed in S ′

The third condition is often difficult to verify. We shall often replace it by a stronger

condition (3+)

(3+) C∗ is compact for pointwise convergence on S(E).

If (1), (2) and (3+) holds we shall refer to condition (OCC)+.

One can formulate similar conditions for the restriction C∗
0 of the elements of C∗ to

S0(E). In this case we shall refer to (OCC)0 and (OCC)+
0 .

Note in passing that it may be very much easier to verify the compactness requirement

for (OCC)+
0 than for (OCC)+. This yield the following result in which r denotes a non-

negative real number

Theorem 1 Assume that C satisfies condition (OCC) and let γ be a real valued function

defined on Θ.

There exist a T ∈ rC such that
∫
TdPθ = γ(θ) for all θ if and only if

∑
αθγ(θ) ≤ r

for all finite linear combinations such that
∑
αθPθ ∈ Co.

Proof We already know from Lemma 2 that the condition is necessary. For a given r,

the condition implies, by Lemma 1, that there is a ϕ ∈ S ′ such that 〈ϕ, Pθ〉 = γ(θ). This

ϕ is well defined and our condition means 〈ϕ, µ〉 ≤ r for µ ∈ Co. Equivalently ϕ belongs
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to the polar rCoo of the set 1
r
Co.

The bipolar theorem says that the bipolar Coo is the closed convex hull of C∗ and 0.

Since 0 ∈ C∗ and since C∗ is closed and convex, one has Coo = C∗. Since C∗ is itself the

image of C there is a T ∈ C such that 〈ϕ, Pθ〉 =
∫
TdPθ. Hence the result.

Note. If the condition is satisfied for some r, it is satisfied for a smallest one given by

r = sup
α
{∑αθγ(θ);

∑
αθPθ ∈ Co}.

The preceding theorem admits an extension that would be more relevant for practical

purposes. Indeed, in practice, it would be unwise to insist on satisfying the relations∫
TdPθ = γ(θ) exactly. Such insistence can be of value in some theoretical questions,

hardly ever in practical ones. One would readily be satisfied to get an expectation function

θ ;
∫
TdPθ that belongs to some small neighborhood of a desirable γ.

Let us see what happens if we accept every possibility in a certain class D.

Theorem 2 Let C satisfy condition (OCC). Let D be a nonempty class of real valued

functions defined on Θ. Assume that D is convex and compact for pointwise convergence

on Θ.

Then there is a T ∈ rC with an expectation function θ ;
∫
TdPθ belonging to D if

and only if

sup
α

inf
f
{∑αθf(θ); f ∈ D,∑αθPθ ∈ Co} ≤ r

Remark Note the order “sup inf”, not “inf sup”. The sup is over the finite linear combi-

nations such that
∑
αθPθ ∈ Co.

Proof Let A be the set of finite linear combinations α = {αθ; θ ∈ Θ} such that
∑
αθPα ∈

Co. This is a convex set. For each f ∈ D define a function ϕf on A by ϕf(α) =
∑
αθf(θ).

Let R0 be the set of functions obtained in that manner for f ∈ D. It is a convex

pointwise compact set. Let R be the set of functions of the form ϕ + u with ϕ ∈ R0,

u ≥ 0. It is a convex set closed for pointwise convergence. According to the Hahn-Banach

theorem a function ψ on A belongs to R if and only if∫
ψdπ ≥ inf{

∫
ϕdπ;ϕ ∈ R0}

for all probability measures π with finite support on A. However, since A is convex
∫
ψdπ

is just the evaluation of ψ at some point of A. Thus if we define r0 as supα inff{∑αθf(θ);
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f ∈ D,
∑
αθPθ ∈ Co} = supα infψ{ψ(α); ψ ∈ R, α ∈ A}, there is an f ∈ D such that

ϕf (α) ≤ r0 for all α ∈ A. For r0 ≤ r the existence of a T ∈ C with
∫
TdPθ = f(θ) now

follows from Theorem 1.

Remark 1 One can state exact analogues of Theorems 1 and 2 using the space S0(E)

instead of S(E).

For instance, select a set C as “standard” and let C∗
0 be its restriction to S0(E). Let

γ be a given function. Assume (OCC)0.

It will be possible to satisfy the equalities
∫
TdPs − ∫ TdPt = γ(s)− γ(t) by a T ∈ rC

if and only if ∑
s,t

αs,t[γ(s) − γ(t)] ≤ r

for all finite linear combinations such that

∑
s,t

αs,t(Ps − Pt) ∈ Co
0 .

Remark 2 To apply a result such as the above, one presumably needs to be able to verify

whether a combination such as
∑
s,t αs,t(Ps − Pt) belongs to Co

0 . Whether that is difficult

or not will depend on how Co
0 can be characterized.

For the linear combinations note the following: Exchanging Ps and Pt if necessary, one

can assume αs,t ≥ 0. Then let a =
∑
s,t αs,t. The sum

∑
αs,t(Ps − Pt) can be written

∑
αs,t(Ps − Pt) = a(Pµ − Pν)

where Pµ =
∫
Pθµ(dθ), Pν =

∫
Pθν(dθ) for probability measures µ and ν with finite

support on Θ. The statement in Remark 1 takes then the form: There is a T ∈ rC such

that
∫
T (dPs− dPt) = γ(s)− γ(t) for all pairs (s, t) of points of Θ if and only if whenever

a(Pµ − Pν) ∈ Co
0 one has a[

∫
γ(s)µ(ds) − ∫

γ(t)ν(dt)] ≤ r.

For a given pair (µ, ν) the problem of verifying whether a(Pµ −Pν) belongs to Co
0 is a

one dimensional one. In terms of the given pair (Pµ, Pν) it is at most a two dimensional

problem. We shall return to that feature in Section 4 and 6.

In very many cases the sets C∗ or C∗
0 are symmetric around the origin. Then, working

for instance on S0(E) one can define a “seminorm” ρ by taking for ρ(m), m ∈ S0(E) the

infimum of numbers a such that m ∈ aCo
0 . (It will be truly a semi-norm if C satisfies

(OCC)+
0 ).

The system then looks as follows. One takes a signed measure λ with finite support

and total mass zero on Θ. One puts 〈λ, γ〉 =
∫
γdλ and Mλ =

∫
Pθλ(dθ). The desired
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relation then reads

|〈λ, γ〉| ≤ rρ(Mλ).

3. Some sets that satisfy the condition (OCC).

Barankin [1949] discusses the situation where one has an experiment E = {Pθ; θ ∈ Θ},
a real valued function θ ; γ(θ) and another probability measure Q on the σ-field carrying

the Pθ’s. He wishes to find estimates T such that
∫
TdPθ = γ(θ) and such that

∫ |T |sdQ
be as small as possible.

The probability measure Q used here need not be one of the Pθ’s. (It is in Barankin’s

paper). It could be a Pµ =
∫
Pθµ(dθ) as in the end of Section 2 or it could be entirely

unrelated.

If necessary for the notation, we shall enlarge Θ, adding to it a point ∆ and let E∆

be the corresponding enlarged experiment with P∆ = Q. We shall also extend γ to ∆,

putting γ(∆) = 0. (This may necessitate a recentering of γ).

Barankin imposes the following condition:

Condition BD. All the Pθ are dominated by the measure Q. The number s satisfies

s > 1 and for that chosen s, the densities fθ = dPθ

dQ
belong to the space Lt(Q) of functions

such that
∫ |f |tdQ <∞ with 1

s
+ 1

t
= 1.

To apply the results of Section 1 one would take a quality set C that is a ball C =

{T :
∫ |T |sdQ ≤ 1}.

Such a set is clearly convex for s ≥ 1. It is symmetric around zero. For s > 1 it is

also compact for the weak convergence on Lt(Q). Since (BD) requires that the densities

fθ belong to Lt(Q) our condition (OCC)+ is satisfied.

In the next section, we shall discuss more particularly the case s = 2, where one wants

to get estimates with prescribed expectation and minimum variance for Q.

One could wonder whether the condition (BD) is necessary, or whether it was imposed

for convenience. We shall see, in Section 8 that when Θ∪∆ consist of exactly two points

with Pθ << Q the minimum variance problem may not have a solution. Put γ(θ) = 1 and

γ(∆) = 0. then take for Q the Lebesgue measure on [0, 1] and for Pθ the measure that

has density 1
2
√
x

with respect to Q. It will be shown in Section 8 that for T that have the

prescribed expectations, infT Var(T |Q) = 0 but there is of course no T with variance zero

and
∫
TdPθ 6= ∫

TdQ. The minimax variance problem mentioned in Section 2 and treated

in Section 6 below introduces sets of the form {T =
∫
T 2dPθ ≤ m+ γ2(θ), all θ ∈ Θ}.
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More generally consider sets of the form

C = {T :
∫
T 2dPθ ≤ ρ(θ)}

where ρ is a function from Θ to (0,∞). Such a set is clearly convex and symmetric. To

make sure it is not empty one may require 1 ≤ ρ(θ) <∞.

Let us show that, under some restrictions, it also satisfies the compactness condition

of (OCC)+.

To do so it is somewhat more convenient to introduce the set M of probability mea-

sures with finite support on Θ. For µ ∈ M one writes Pµ =
∫
Pθµ(dθ). The condition∫

T 2dPθ ≤ ρ(θ), all θ is then equivalent to
∫
T 2dPµ ≤ ρ(µ) =

∫
ρ(θ)µ(dθ).

To proceed, let us introduce a linear space of measures W = ∪µ{Wµ;µ ∈ M} where

for each µ the space Wµ is the space of signed measures Q dominated by Pµ and having a

density dQ
dPµ

that is bounded in absolute value. The space W is clearly a linear space. One

could also consider the space W̄µ of finite signed measures Q dominated by Pµ and such

that
∫ | dQ

dPµ
|2dPµ <∞. On Wµ or W̄µ let us use the square norm ‖Q‖2

µ =
∫ | dQ

dPµ
|2dPµ.

Theorem 1 Let ϕ be a linear functional defined on W and such that if w ∈ Wµ then

|〈ϕ,w〉| ≤
√
ρ(µ)‖w‖µ.

Then, if E = {Pθ : θ ∈ Θ} is dominated by a finite measure, there exist a measurable

function f such that 〈ϕ,w〉 =
∫
fdw and f satisfies

∫
f2dw ≤ ρ(µ)‖w‖µ for each w ∈Wµ.

Proof According to Halmos and Savage (1949) there exist a sequence {θ(j), cj} with

θ(j) ∈ Θ and cj > 0 such that ν =
∑
cjPθ(j) is a finite measure that dominates all the ρθ.

(To see this easily, let M be a finite measure dominating all the Pθ. Let M0 be its

component in the band generated by the Pθ. Then M0 still dominates all the Pθ, but

being in their band, it is smaller than some convergent sum
∑
cjPθ(j))

Now consider the finite measure λn =
∑n
j=1 cjδθ(j) on Θ and the corresponding integral

Qn =
∑n
j=1 cjPθ(j). It has the form anPµn for µn = λn

‖λn‖ .

By assumption, one has |〈ϕ,w〉| ≤
√
ρ(µn)‖wn‖µn for that particular µn and for w ∈

Wµn . Thus ϕ extends by continuity to the Hilbert space W̄µn and ϕ is representable there

by an integral

〈ϕ,w〉 =
∫
fndw with

∫
f2
ndPµn ≤ ρ(µn).

One can decompose the band L of the Pθ into two complementary bands, writing

L = Ln +L+
n where Ln is the band of Pµn and where the elements of L+

n are disjoint from
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those of Ln. Since the whole family is dominated, there is a set An ∈ A that carries all

the measures in Ln and has measure zero for all those in L⊥
n .

One does not change
∫
fndw, w ∈Wµn , by putting fn equal to zero outside An.

Proceeding in this manner one gets a sequence {fn : n = 1, 2, . . .} such that fn+1 =

fn + un when un is zero on An and carried by An+1\An. The fn so constructed clearly

tend to a limit f pointwise.

Note that fn is determined up to equivalence onAn. Thus f is defined up to equivalence

for the dominating measure ν.

Let us show that if µ0 ∈ M is another probability measure, then
∫
f2dPµ0 ≤ ρ(µ0).

To do so, perform the same construction, but with a sequence {θ′(j); j = 1, 2 . . .} that is

the same as the previous one but with the θ’s in the support of µ0 put at its start.

This will give another function, say g instead of f . The two functions f and g differ only

on a set of measure zero and
∫
g2dPµ0 ≤ ρ(µ0). Therefore

∫
f2dPµ0 =

∫
g2dPµ0 ≤ ρ(µ0).

This concludes the proof of the theorem.

An immediate corollary is as follows:

Lemma 1 Consider the set C of functions satisfying
∫
T 2dPθ ≤ ρ(θ) for all θ ∈ Θ for

a given function ρ such that 1 ≤ ρ(θ) < ∞. If E = {Pθ; θ ∈ Θ} is dominated then C is

compact for the pointwise convergence on W or on ∪µ{W̄µ;µ ∈ M}.
Proof Each such T defined a linear functional ϕT on W . That functional clearly satisfies

|〈ϕT ,W 〉| ≤
√
ρ(µ)‖W‖µ for w ∈Wµ hence also for w ∈ W̄µ. A limit pointwise on W is a

linear functional on W , satisfying the same conditions. Hence it comes from some T ∈ C .

Remark Note that pointwise convergence on W implies pointwise convergence on ∪µW̄µ

of the extensions by continuity. This clearly also implies convergence of the integral∫
TdPµ.

The domination by a finite measure used in Theorem 1 is not entirely necessary,

but some restriction appears to be. One condition that would work would be that

E = {Pθ; θ ∈ Θ} be
∑

-finite. That means that there is a partition {Aj; j ∈ J}, usually of

high cardinality, such that:

1) The restrictions of the Pθ; θ ∈ Θ to each Aj are dominated.

2) If a function f ≥ 0 has its restrictions to Aj measurable, it is already measurable.

3) The integrals
∫
fdPθ are equal to

∑
j

∫
Aj
fdPθ .

It is stated in Le Cam (1986) that any experiment E has an equivalent version F that

is
∑

-finite. One obtains F by enlarging the σ-field A and the set that carries it.
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For an example consider the set of pairs θ = (α, λ). Let Pθ be the distribution of αXλ

where Xλ is an ordinary Poisson variable with EXλ = λ.

4. Estimates with minimum variance at a point.

In this section we shall consider an experiment E = {Pθ; θ ∈ Θ} given by probability

measures a σ-field A and another probability measure Q defined on that same σ-field.

The problem is then to find estimates with prescribed expectations γ(θ) for the Pθ

but with minimum variance for Q.

The measure Q need not be one of the Pθ. It may be a finite convex sum Q =
∑
αθPθ

or it may be entirely different from all such sums. For ease of notation we shall add to Θ

an extra point ∆, let Ps = Q and let E∆ be the experiment E∆ = {Pθ; θ ∈ Θ ∪ ∆}.
Since the estimates T under consideration are supposed to have small variance at Q,

they will also have an expectation
∫
TdQ. We shall set

∫
TdQ = 0, replacing if necessary

the prescribed γ(θ) =
∫
TdPθ by

∫
TdPθ − ∫

TdQ.

The problem will be considered only under the following restriction.

(BD) The Pθ are all dominated by Q and the densities fθ = dPθ/dQ are such that
∫
f2
θ dQ <

∞.

This is one of the problems treated by Barankin in [1949] (except that he puts Q = Pθ0

for some θ0 ∈ Θ). The solution is given by Theorem 1, Section 2. However, here, one can

proceed more directly to an explicit solution.

We shall work in the Hilbert space L2(Q) with square norm ‖f‖2 =
∫
f2dQ. However,

we shall make no notational difference between a function and its equivalence class.

Let U be the class of functions T such that
∫
T 2dQ <∞ and

∫
TdPθ = γ(θ), θ ∈ Θ∪∆.

Let U0 be the class of functions u such that
∫
U2dQ <∞ and

∫
udPθ = 0 for θ ∈ Θ ∪ ∆.

These are the unbiased estimates of zero.

The sets U and U0 will be treated as subsets of L2(Q).

Lemma 1 (Lehmann-Scheffé, 1950). Assume that U is not empty. Then a T ∈ U
minimizes

∫
T 2dQ if and only if it is orthogonal in L2(Q) to all unbiased estimates of

zero.

Proof Indeed

∫
(T + αu)2dQ =

∫
T 2dQ+ α2

∫
u2dQ+ 2α

∫
uTdQ.

If
∫
uTdQ is not zero one can select an α small of appropriate sign to make this smaller
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than
∫
T 2dQ. Hence the result. To say that u ∈ U0 is to say that for fθ = dPθ

dQ
one has∫

ufθdQ = 0 for all θ ∈ Θ and for θ = ∆ as well.

Let gθ = fθ − 1. This is an element of the subspace L2,0 of functions such that∫
gdQ = 0. In L2,0 the functions gθ span a certain linear space G and U0 is the orthogonal

complement of G. Thus, the orthogonal complement of U0 is the space H ⊂ L2,0, closure

of G.

This leads to the following lemma

Lemma 2 Let J be a finite subset of Θ. If there is a T ∈ H that satisfies
∫
TdPθ = γ(θ),

θ ∈ Θ, the orthogonal projection Tj of T on the span of {gj ; j ∈ J} satisfies
∫
TjdPj = γ(j),

j ∈ J and T is the limit in H of the Tj as J increases along the directed finite subsets of

θ.

This is clear. Barankin [1949] observes that one needs only to find approximate solu-

tions that became more and more refined as J increases. For simplicity we shall use only

exact solutions.

Note that for a given J the gj, j ∈ J might not be linearly independent in L2,0. Then if∑
cjgj = 0 one must have

∑
cjγ(j) = 0. When that occurs we need only to look at subsets

J such that the gj are linearly independent. Now fix a J such that the gj are linearly

independent, and, for ease in notation, drop the subscripts J whenever they would occur.

Thus we shall look for a T ∈ span of gj; j ∈ J such that
∫
TdPj = γ(j), j ∈ J .

Since T is in the span of the gj it has the form
∑
cjgj for real numbers cj , j ∈ J . The

equations
∫
TdPk = γ(k) become

∫ ∑
cjgjgkdQ = γ(k)

and

varQT =
∑
j

∑
k

cjck

∫
gjgkdQ.

This suggest writing {cj; j = J} as a column vector c and similarly for {γ(j), j ∈ J}.
Introduce also the matrix B whose entries are

Bj,k =
∫
gjgkdQ; j, k ∈ J,

and the column vector g formed by the gj , j ∈ J .

12



Lemma 3 For the finite set J with gj, j ∈ J linearly independent, the minimum variance

TJ has the form c′g for Bc = γ. Its variance under Q is

c′Bc = γ′B−1γ

Note that B is positive definite nonsingular since the gj are linearly independent in

L2,0. The variance γ′B−1γ can also be written in a variety of equivalent forms. For

instance

γ′B−1γ = sup
c
{|c′γ|2; c′Bc ≤ 1}

= sup
c6=0

|c′γ|2
c′Bc

= sup
c6=0

|c′γ|2
‖c′g‖2

.

This corresponds to the polar inequalities of Theorem 1, Section 2.

Still a further form can be obtained as follows. In a ratio such as |c′γ|2
‖c′g‖2 one can always

assume that
∑ |cj| = 1. Then note that

∑
cj(Pj −Q) =

∑
c+j pj + (

∑
c−j )Q− (

∑
c+j Q+

∑
c−j Pj)

can be put in the form
∑
cj(Pj − Q) = Pµ − Pν where Pµ =

∫
Psµ(ds) for a probability

measure µ with finite support on Θ ∪ ∆ and similarly for ν. Then ‖c′g‖2 =
∫ (dPµ−dPν )2

dQ
.

Therefore |c′γ|2
‖c′g‖2

=
|〈ν, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dQ

.

The inequality

varQT ≥ sup
µ,ν

|〈γ, µ〉 − 〈, ν〉|2∫ (dPµ−dPν )2

dQ

is exactly the inequality given by Kiefer [1952], except that here we use only measures µ

and ν with finite support on Θ ∪ ∆.

We have the further result that, under BD, there exist a T for which the inequality

is an exact equality. (This was noted by Kiefer [1952] by reference to Barankin’s paper).

Note further that the ratioR(µ, ν) = |〈ν, µ〉−〈γ, ν〉|2 {∫ (dPµ−dPν )2

dQ
}−1 is also obtainable

as follows:

One seeks estimates T such that
∫
T (dPµ − dPν) = 〈ν, µ〉 − 〈γ, ν〉. The ratio R(µ, ν)

is the minimum possible variance of such estimates.
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Note especially that in this problem T is restricted to satisfy
∫
T (dPµ−dPν) = 〈γ, µ−ν〉

and not the more stringent restriction that
∫
TdPθ = γ(θ) for all θ.

There is an adventitious feature in our creation of the pairs (µ, ν) to get ‖c′g‖2 =∫ (dPµ−dPν )2

dQ
. It is the circumstance that µ + ν gives mass at least unity to the point ∆.

This is not a serious feature, but it leads to the following remarks.

Take a particular pair (µ, ν) of probability measures with finite support on Θ∪∆. Let

δ be the Dirac mass at ∆. For ε ∈ (0, 1], let µ(ε) = εµ+(1− ε)δ and γ(ε) = εν+(1− ε)δ.

For any triplet (λ, µ, ν) of probability measures with finite support on Θ ∪ ∆, let

R(λ, µ, ν) =
|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

.

Lemma 4 With the notation just described one has

R(δ, µ, ν) = R[δ;µ(ε), ν(ε)]

≤ sup
µ′,ν′

R[
1

2
(µ′ + ν ′);µ′, ν ′]

Proof One has
∫ [dPµ(ε)−dPν(ε) ]

2

dQ
= ε2

∫ [dPµ−dPν ]2

dQ
and a similar relation for |〈γ, µ(ε)〉 −

〈γ, ν(ε)〉|2. Hence the first equality.

For the second, note that

1

2
[µ(ε) + ν(ε)] = ε

1

2
(µ+ ν) + (1 − ε)δ.

Thus, writing λ = 1
2
(µ+ ν) and λ(ε) = 1

2
[µ(ε) + ν(ε)], one has

Pλ(ε) = εPλ + (1 − ε)Q.

Hence Pλ(ε) ≥ (1 − ε)Q and therefore

1

1 − ε

∫
[dPµ(ε) − dPν(ε)]

2

dQ
≥
∫

[dPµ(ε) − dPν(ε)]
2

dPλ(ε)

.

This gives the inequality as stated.

These formulas, and Lemma 3, were obtained under the assumption that the gj , j ∈ J

were linearly independent. This is necessary if one wants to avoid dividing by zero or

writing inverses for matrices that are singular, but it is otherwise immaterial.
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For instance, in Section 7, we shall work with a finite set Pj; j ∈ J and with measures

Q of the form Q =
∑
βjPj, βj ≥ 0,

∑
βj = 1. Then the set {Pj ; j ∈ J} ∪ {Q} is

certainly not a linearly independent set. However, the corresponding matrix B satisfies

β ′B = Bβ = 0. Thus if one works in the space of vectors orthogonal to β this will not

change

sup
c
{|c′γ|2; c′Bc ≤ 1}

as long as one keeps the condition
∫
TdQ = 0, which becomes β ′γ = 0.

The foregoing equalities and inequalities have the following consequence: The general

problem has been reduced to the solution of a family of two-dimensional problems. In the

following sense. Consider two probability measures (with finite support) on Θ ∪ ∆. Let

them be µ and ν and let w = µ − ν. Consider the problem of finding estimates T such

that
∫
TdQ = 0,

∫ ∫
TdPθw(dθ) =

∫
γ(s)w(ds) and

∫
T 2dQ be minimized.

Let V (w) be the minimum possible variance. Then the minimum variance for the

initial problem is simply supw V (w).

As mentioned earlier Barankin, in his 1949 paper, showed that the bounds so obtained

included all the various existing versions of the Cramér-Rao type inequalities. They also

give the Chapman-Robbins (1951) and the Kiefer (1952) results. Let us show that the

bounds given here also include the Fabian-Hannan (1977) inequality.

These authors consider a case where Q is one of the Pθ’s, say Pθ0 . They assume that a

certain sequence, say {gn}, of differences gn = dPθn

dQ
− 1 is such that for a certain sequence

{cn} of real numbers, the products cngn converge weakly in L2(Q) to a limit h. The bound

is then

varQT ≥ 1

‖h‖2
lim
n
{cn[γ(θn) − γ(θ0)]}2.

Note that if cngn converges weakly to h then, for T ∈ L2(Q) one has

lim
n
cn

∫
gnTdQ =

∫
hTdQ = lim

n
cn[γ(θn) − γ(θ0)].

Thus the limit in the bound does exist.

Actually, Fabian and Hannan use a filter instead of a sequence, but it is a filter with

countable base and nothing needs to be changed in the arguments.

It can be assumed without loss of generality that γ(θ0) = 0. We shall do so.

The weak convergence of cngn implies that there are numbers b < ∞ and N such

that n > N implies ‖cngn‖2 ≤ b2. Then there will be finite convex combination, say∑
k>N αn,kckgk such that ‖∑αn,kckgk‖ ≤ b and such that

∑
αn,kckgk converges in the

sense of the norm to k. The limit of
∑
αn,kckγ(θk) is the same as that of γ(θk).
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Note then that the
∑
αn,kckgk are particular cases of the sums used in Lemma 3.

Therefore

lim
n

|cnγ(θn)|2
‖h‖2

≤ sup
c

|c′γ|2
‖c′g‖2

,

and the Fabian-Hannan bound is not larger than Barankin’s.

5. A related problem.

Instead of trying to find estimates such that
∫
TdPθ = γ(θ), with small variance, one

could just try to estimate γ with small expected square deviations. For instance one could

use a prior π on Θ and try to minimize
∫
Eθ[T − γ(θ)]2π(dθ).

For practical purposes this may be a better idea than to try to enforce the equalities∫
TdPθ = γ(θ), even though as shown in Section 2, one can give some leeway to the

equalities without too much additional effort.

In this section we shall consider the problem of minimizing
∫
Eθ[T − γ(θ)]2π(dθ) for a

probability measure π with finite support on Θ. We shall see that the solution involves the

matrices B with entries Bj,k =
∫ dPjdPk

dQ
− 1 as in Section 4, but with Q = Pπ =

∫
Pθπ(dθ).

We also show that if these matrices are known for enough measures π ∈ M, then the

type of the experiment E = {Pθ; θ ∈ Θ} is determined.

We shall restrict ourselves to measures π with finite support to avoid stating mea-

surability conditions. If such conditions are imposed, the result extends to arbitrary

probability measures on Θ. We shall give two derivations of the same formula.

Lemma 1 Let π be a probability measure with finite support on Θ. Then

inf
T

∫
Eθ(T − θ)2π(dθ) =

1

2

∫ ∫
[γ(s)− γ(t)]2A(s, t)π(ds)π(dt)

with A(s, t) =
∫ dPsdPt

dQ
, Q =

∫
Pθπ(dθ).

Proof For the Bayesian problem with prior π the optimum T is the posterior expectation

of γ given the observations. The posterior risk is the variance of that posterior distribution.

This variance is also 1
2
E|γ(s) − γ(t)|2 for independent versions s and t with common

distribution the posterior of θ. The joint distribution of the observation x and θ may be

written Pθ(dx)π(dθ) = Fx(dθ)Q(dx). so we have to take

1

2

∫ ∫ ∫
|γ(s) − γ(t)|2Fx(ds)Fx(dt)Q(dx)

=
1

2

∫ ∫
|γ(s) − γ(t)|2Ps(dx)Pt(dx)

Q(dx)
π(ds)π(dt).
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Hence the result.

One can argue differently as follows. Let A be the σ-field of the observations but take

the joint distribution of x and θ under Pθ(dx)π(dθ).

Then

Eγ2(θ) = EE[γ(θ) − E(γ(θ)|A)]2 + E{E[γ(θ)|A]}2.

Thus

EE[γ(θ) − E[γ(θ)|A]]2 = Eγ2 − E{E[γ(θ)|A]]2.

However E[γ(θ)|A] =
∫
γ(θ)Fx(dθ). Thus

E[γ(θ)|A]2 =
∫ ∫

γ(s)γ(t)Fx(ds)Fx(dt)

and E{E[γ(θ)|A]}2 =
∫ ∫ ∫

γ(s)γ(t)Ps(dx)Ps(dx)
Q(dx)

π(ds)π(dt). This gives

inf
T

∫
Eθ[T − γ(θ)]2π(dθ) =

∫
γ2(θ)π(dθ) −

∫ ∫
γ(s)γ(t)A(s, t)π(ds)π(dt).

This is obviously equivalent to the formula given in Lemma 1. Let us transform it to

make the matrices B(s, t) = A(s, t)− 1 appear.

Lemma 2 The quantity infT
∫
Eθ(T − θ)2π(dθ) is equal to

varπγ −
∫ ∫

γ(s)γ(t)B(s, t)π(ds)π(dt).

(Here varπγ is
∫
γ2(θ)π(dθ) − [

∫
γ(θ)π(dθ)]2. It is the variance of γ(θ) for the prior

measure).

Proof Since A(s, t) = B(s, t) + 1, one has∫ ∫
γ(s)γ(t)A(s, t)π(ds)π(dt) =

∫ ∫
γ(s)γ(t)π(ds)π(dt)+

∫ ∫
γ(s)γ(t)B(s, t)π(ds)π(dt).

The result follows.

Note that in this form, it does not matter if one replaces γ(θ) by γ(θ) − γ̄, with

γ̄ =
∫
γ(θ)π(dθ) since

∫
B(s, t)π(dt) =

∫
B(s, t)π(ds) = 0.

Note also that a term of the type
∫ ∫

γ(s)γ(t)A(s, t)π(ds)π(dt) can be put in the

alternate form
∫ (dV )2

dQ
where V is a certain signed measure V = aPµ − bPν , just as in

Section 4.

The occurence in this section of terms of the type A(s, t) =
∫ dPsdPt

dQ
withQ =

∫
Psπ(ds)

and the fact that if one wants to find infT supθ Eθ[T − γ(θ)]2 one will have to consider
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several averages
∫
Psπ(ds) for variable π, suggests inquiring whether the A(s, t) can be

computed in terms of a few simple characteristics of the experiment E. We shall now show

that to compute them one needs to know the type of the experiment E. Specifically, the

following result holds.

Proposition 1 Let Θ be a finite set. For a probability measure π on Θ let A(s, t; π) =∫ dPsdPt

dPπ
where Pπ =

∫
Pθπ(dθ) as usual.

If the matrices A(s, t; π) are known for all π in the neighborhood of an interior point

of the simplex of probability measures on Θ, then the type of E = {Pθ; θ ∈ Θ} is well

determined.

Proof It should be clear that the matrices A(s, t; π) depend only on the type of the

experiment E = {Pθ; θ ∈ Θ}. This is usually represented by the Blackwell canonical

measure in which one takes for π the uniform distribution on Θ, but one can use just as

well any π that charges all the θ ∈ Θ.

In this situation we shall write πθ for the mass given to θ by π. Similarly for other

measures. The Blackwell representative under π uses the densities fθ = dPθ

dQ
, Q =

∑
πθPθ.

The vector f = {fθ; θ ∈ Θ} of such densities sends Q into a probability measure on the

simplex S = {u : u ∈ RI Θ, uθ ≥ 0,
∑
πθuθ = 1}.

To characterize the type of E it is enough to give the distribution of f under Q.

Now take another finite positive measure β = {βθ; θ ∈ Θ} on Θ. If it is not a

probability measure, write t =
∑
βθ and µθ = βθ

t
. This is now a probability measure

(unless t = 0).

Consider the values

A(s, θ;µ) =
∫ dPsdPθ

dMµ
, with Mµ =

∑
µθPθ.

Assume that all the βθ are strictly positive. Then one can write

A(s, θ;µ) =
∫
dPsdPθ
dQ

dQ

dMµ

and ∑∑
πsπθA(s, θ;µ) =

∫ dQ

dMµ

∑
πsπθdPsdPθ

dQ

=
∫

dQ

dMµ
dQ.
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Now if
∫ dQ
dMµ

dQ is known, so is
∫ dQ
dMβ

dQ for β = tµ. Thus one can assume
∫ dQ
dMβ

dQ

known for β in a neighborhood of π = {πθ; θ ∈ Θ} in the space RI Θ itself. Note that
dMβ

dQ
=
∑
βθfθ, with fθ = dPθ

dQ
. Thus

∫ ( 1∑
βθfθ

)
dQ is given for β in a neighborhood of π

in RI Θ.

This is sufficient to determine the distribution under Q of the vector f = {fθ; θ ∈ Θ}.
One can see this by writing

∫ (
1∑
βθfθ

)
dQ =

∫ ∞

0
(
∫
e−(
∑

βθfθ)xdQ)dx.

Alternately one can take successive derivatives with respect to the βθ and evaluate them

at the point π.

For instance, if D(β) =
∫ ( 1∑

βθfθ

)
dQ then

∂D(β)

∂βj
= −

∫
fi

(
∑
βθfθ)2

dQ,

∂2D(β)

∂βj∂βk
= 2

∫
fjfk

(
∑
βθfθ)3

dQ,

and so forth.

Since
∑
πθfθ = 1, when one evaluate such derivatives at π one gets all the mixte

moments of f = {fθ; θ ∈ Θ}. These determine the distribution of f for Q since the

distribution is carried by a compact subset of RI Θ.

This gives the result as stated.

The preceding Proposition is a bit of an enthusiasm damper. To solve the minimax

problem infT supθEθ(T −θ)2 one will have to look at many prior measures such as π or µ.

The Proposition says that there is no way to compute exactly these minimax risks, perhaps

for several functions γ, unless one knows the type of the experiment E = {Pθ; θ ∈ Θ}.
Note that it does not say that one cannot compute approximations to the minimax

risks. To obtain those it will be sufficient to have approximations to the type of E.

The above discussion has been given in terms of a real valued function γ. However

nothing is changed if it is a function to some Hilbert space with norm ‖ · ‖. One just

changes |γ(s) − γ(t)|2 to ‖γ(s) − γ(t)‖2 and γ(s)γ(t) to the inner product 〈γ(s), γ(t)〉.

6. Minimax variance for prescribed expectations.

In this section we consider an experiment E = {Pθ; θ ∈ Θ} given by probability

measures Pθ on a σ-field A. There is also a set D of real valued functions defined on Θ.
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The problem is to find estimates T such that, for some γ ∈ D, one has
∫
TdPθ = γ(θ) but

in such a way that supθ VarθT be as small as possible.

The main result of this section is that the problem is solvable by taking limits of

solutions of finite dimensional problems, each reducible to a sequence of problems of the

type considered in Section 4.

We shall use throughout the following assumptions:

(A1) The experiment E is dominated by a σ-finite measure.

(A2) The set D is a non-empty convex set that is compact for pointwise convergence on

Θ.

Let F be the class of finite subsets of Θ directed upward by inclusion.

For each F ∈ F consider the problem of finding estimates TF such that the function

s;
∫
TFdPs, s ∈ F is the restriction to F of some γ ∈ D. The finite dimensional problem

is to evaluate

b(F ) = inf
TF

sup
s∈F

VarsTF

where the “inf” is taken over estimates TF such that s;
∫
TFdPs belongs to the set DF ,

restriction of D to F .

Note that this problem is a finite dimensional one in the sense that it involves only

the Ps for s ∈ F and the restrictions of the functions in D to F .

One first result is as follows.

Theorem 1 Let assumptions (A1) and (A2) be satisfied and let m be the minimax value

m = inf
T

sup
θ∈Θ

VarθT

where T runs over the set of estimates such that
∫
T 2dPθ <∞ and such that θ ;

∫
TdPθ

belongs to D.

Then

m = sup
F∈F

b(F ) = lim
F
b(F )

Proof Consider first the case where b = supF b(F ) is finite. One can certainly assert that

b ≤ m.

Let ρ be a real valued function defined on Θ and such that ρ(θ) ≥ 1+b+supγ{γ2(θ), γ ∈
D}. Since b <∞ and since D is pointwise compact one sees that 1 ≤ ρ(θ) <∞.
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Now fix a finite set F ∈ F . There will exist pairs (TF , γF ) such that γF ∈ DF and

such that
∫
TFdPs = γF (s), s ∈ F with VarsTF ≤ b, s ∈ F .

Consider also the spaces Wµ(F ) of Section 3, Theorem 1 for F ∈ F and µ(F ) uniform

on F . It is easily seen that W = ∪F{Wµ(F );F ∈ F} = ∪µ(Wµ;µ ∈ M).

The estimate TF defines a linear functional ψF on Wµ(F ). It can be extended to the

whole space W giving there some linear functional ϕF . Along an ultrafilter V finer than

the filter of tails of the directed set F the pairs (ϕF , γF ) will have a limit where the second

coordinate γ = limV γF belongs to D.

If F1 is any finite subset of Θ, as soon as F ∈ F satisfies F1 ⊂ F , the linear functional

ϕF will be such that

|〈ϕF , w〉| ≤
√
ρ[µ(F1)]‖w‖µ(F1)

for the norms used in the proof of Theorem 1 Section 3. Therefore the limit limV〈ϕF , w〉
will satisfy the same inequality for all w ∈ Wµ(F1). As a consequence limV ϕF defines a

linear functional ϕ on W . It is such that

|〈ϕ,w〉|2 ≤ ρ[µ(F )]‖w‖µ(F ) for F ∈ F .

By Theorem 1, Section 3 it arises from an integral 〈ϕ,w〉 =
∫
Tdw where

∫
T 2dw ≤ ρ[µ(F )]‖w‖2

µ(F ), all F ∈ F .

The functions γF converge to γ and, since the topology used in Theorem 1, Section 3,

implies convergence of integrals one will have γ(θ) =
∫
TdPθ for all θ ∈ Θ.

Since VarθTF ≤ b for θ ∈ F , one concludes, by lower semicontinuity, that VarθT ≤ b

for all θ ∈ Θ.

This concludes the proof since b = ∞ would imply m = ∞.

One can also obtain a result that involves prior distributions. Here again we shall

limit ourselves to priors λ that belong to M.

Theorem 2 Let assumptions (A1) and (A2) be satisfied. Then the minimax value m of

Theorem 1 is equal to

m = sup
λ∈M

inf
TF

∫
(varθTF )λ(dθ)

where F is the support of λ and TF runs through estimates such that the function s ;∫
TFdPs defined on F belongs to DF .
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Proof According to Theorem 1, it is sufficient to prove the result for finite subsets of Θ.

That is, for a given finite set F , we need to prove that

b(F ) = sup
λ∈MF

inf
TF

∫
(VarθTF )λ(dθ).

Thus, fix an F and assume first that b(F ) is finite. Take on F a function ρF such that

for s ∈ F one has 1 ≤ ρF (s) <∞ and

ρF (s) ≥ [1 + b(F )] + sup
γ∈DF

γ2(s).

Any TF that achieves the minimum or close to it on F will be in the set

CF = {TF ;
∫
T 2dPs ≤ ρF (s), s ∈ F}

Consider the set R0 of functions defined on F by s; r(s) = VarsT for T ∈ CF (D) where

CF (D) is the set of T ∈ CF whose expectation s;
∫
TdPs belong to DF .

The variances satisfy the inequalities that for α ∈ (0, 1) and T3 = αT1 + (1−α)T2 one

has VarsT3 ≤ αVarsT1 +(1−α)VarsT2. Thus introduce the set R of functions of the form

ϕ = ψ+u, ψ ∈ R0, u ≥ 0. According to the above the set R has the following properties:

1) The set R is convex

2) The set R is closed for pointwise convergence on F

3) For r ∈ R one has r(s) ≥ 0, s ∈ F .

The second properties follows from the compactness of CF .

It follows from a minimax theorem (for which see for instance Le Cam (1964) that

inf
ϕ∈R

sup
s∈F

ϕ(s) = sup
λ∈MF

inf
ϕ∈R

∫
ϕdλ.

Furthermore there exists a ϕ0 such that

sup
λ

∫
ϕ0dλ = sup

λ
inf
ϕ

∫
ϕdµ.

This gives the desired result if b(F ) < ∞. If on the contrary b(F ) = ∞, take any

a ∈ (0,∞).

Replace the previous CF by

CF,a = {T ;
∫
T 2dPs ≤ (1 + a) + sup

γ
[γ2(s); γ ∈ DF}.
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Let CF,a(D) be the subset of CF,a formed by those T ’s whose expectations s ; TdPs,

s ∈ F belong to DF . If CF,a(D) is not empty the previous argument would apply, giving

inf
T
{sup
s∈F

VarsT, T ∈ CF,a(D}

= sup
λ∈MF

inf
T
{
∫

(VarsT )λ(ds), T ∈ CF,a(D)}.

However this value would then be finite, contrary to the assumption that b(F ) = ∞.

The result follows as stated.

So far we have taken for D any class of functions that satisfies condition (A2). To

describe further implications of Theorem 2, let us look at the case where D consists of a

single function γ.

That is, for a given finite set F , one requires
∫
TFdPs = γ(s), s ∈ F .

In such a case the function s ; γ2(s) is also known. If λ ∈ MF and Pλ =
∫
Psλ(ds)

one can write ∫
T 2dPλ =

∫
(VarsT )λ(ds) +

∫
(
∫
TdPs)

2λ(ds).

Hence

Var(T |Pλ) =
∫

(VarsT )λ(ds) +
∫

(
∫
TdPs)

2λ(ds) − [
∫
TdPsλ(ds)]

2

=
∫

(VarsT )λ(ds) +
∫
γ2(s)λ(ds) − (

∫
γ(s)λds)2.

The means that, for given γ, the problem of minimizing
∫
(VarsT )λ(ds) is equivalent

to the problem of minimizing the variance of T under Pλ. This is a problem that was

treated at length in Section 4.

The solution given there suggests the following. Let F be the exact support of λ.

The Barankin conditions
∫ ( dPs

dPλ

)2
dPλ < ∞ are satisfied and for estimates T such that∫

TdPs = γ(s), s ∈ F , the minimum variance under Pλ is given by

inf
T

Var(T |Pλ) = sup
µ,ν

|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

where µ and ν are arbitrary elements of MF , such that Pµ 6= Pν .

This yields

inf
T

∫
(VarsT )λ(ds) = sup

µ,ν

|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

− {
∫
γ2(s)λ(ds) − [

∫
(s)λ(d)]2}
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As already noted in Section 4, the quantity R(λ, µ, ν) = |〈γ,µ〉−〈γ,ν〉|2∫ (dPµ−dPν)2

dPλ

is the minimum

possible variance at Pλ of an estimate T such that
∫
TdPµ − ∫

TdPν = 〈γ, µ〉 − 〈γ, ν〉.
Also, for any T such that

∫
TdPθ = γ(θ) for all θ one has

Var(T |Pλ) ≥ sup
µ,ν

|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

.

In addition, for every ε ∈ (0, 1) and triplet (λ, µ, ν) there exist measures µ′ and ν ′ such

that
1

2
(µ′ + ν ′) = ε

(µ+ ν)

2
+ (1 − ε)λ

and such that R(λ, µ′, ν ′) = R(λ, µ, ν). This gives, for fixed λ,

sup
µ,ν

|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

≤ 1

1 − ε
sup
µ,ν

|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dP 1
2 (µ+ν)

This leads to the following Theorem.

Theorem 3 Let (A1) be satisfied and let D be reduced to the single element γ. Take pairs

of probability measures (µ, ν) in M and let λ = 1
2
(µ + ν) and Var(γ|λ) =

∫
γ2(s)λ(ds) −

| ∫ γ(s)λ(ds)|2.
Then if the minimax risk of Theorem 1 is finite, it is equal to

sup
µ,ν


|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

−Var(γ|λ)

 .

Proof One can apply the result of Theorem 2 taking an arbitrary λ. Then the Barankin

or Kiefer bound is applicable as long as we work on the exact support of λ. This gives a

minimax risk equal to

sup
λ,µ,ν


 |〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

− Var[γ|λ)



where the sup is taken over all triplets (λ, µ, ν) of M such that µ + ν << λ. This

is certainly greater than the value given in the Theorem. However, by the inequalities

written before the statement of the theorem, one can restrict oneself to triplets such that

λ = 1
2
(µ+ ν).

Hence the result
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The quantity
|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

−Var(γ|λ)

can also be written in a different form.

Indeed Var(γ|λ) = 1
2
[Var(γ|µ) + Var(γ|ν)) +1

4
|〈γ, µ〉 − 〈γ, ν〉|2. Also

|〈γ, µ〉 − 〈γ, ν〉|2∫ (dPµ−dPν )2

dPλ

=
1

2
(Var(T |Pµ) + Var(T |Pν)) +

1

4
|〈γ, µ〉 − 〈γ, ν〉|2

for an estimate T such that
∫
T (dPµ − dPν) = 〈γ, µ〉 − 〈γ, ν〉 with minimum variance at

Pλ.

Therefore the result of Theorem 3 can be rephrased as follows.

Theorem 4 Let (A1) be satisfied and let D be reduced to the single element γ. For each

pair (µ, ν) of probability measures with finite support on Θ and for λ = 1
2
(µ+ν) let T (µ, ν)

be an estimate that minimizes Var(T |Pλ) subject to the condition that
∫
T (dPµ − dPν) =

〈γ, µ〉 − 〈γ, ν〉.
Then the minimax risk of Theorem 1 is equal to

sup
µ,ν

1

2




Var[T (µ, ν)|Pµ] + Var[T (µ, ν)|Pν]
−Var(γ|µ) −Var(γ|ν)


 .

Note that if one takes T such that
∫
TdPθ = γ(θ) for all θ in the support of λ, one

will have

Var[T |Pµ] − Var(γ|µ) =
∫

[VarθT )µ(dθ).

Thus the formulation of Theorem 4 amounts to say that one can take supµ,ν in two steps.

First one fixes λ = 1
2
(µ+ν) and take the sup for over such (µ, ν). Then one takes the sup

over λ.

7. The minimax problem for a binary experiment.

Let {P1, P2} be a pair of probability measures on a σ-field A. Let {γ1, γ2} be a given

pair of numbers. The problem considered in this section is that of finding estimates T

such that
∫
TdPi = γi, i = 1, 2 and such that maxi VariT be as small as possible.

As an aside, we also consider the problem of finding a T with prescribed expectation

and minimum variance under P1. This is similar to the problem treated in Section 4 except

that we do not impose the restriction that P1 dominates P2 and that
∫ (dP2

dP1

)2
dP1 < ∞.
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It is shown that if P2 << P1 but the integral
∫ (dP2

dP1

)2
dP1 = ∞ a T with prescribed

expectations and minimum variance under P1 does not exist, whenever γ1 6= γ2.

Throughout this section we shall assume that γ1 6= γ2 and that P1 6= P2, other cases

being trivially solvable or unsolvable.

Except perhaps for the version given by Fabian and Hannan (1977), (see also Wolfowitz

(1947)), the usual Cramér-Rao inequality is a consequence of inequalities valid for binary

experiments. An inequality published by Kholevo (1973) and Pitman (1979) in terms of

Hellinger distances already implies such Cramér-Rao inequalities.

Here the square Hellinger distance between measures (P,Q) is

h2(P,Q) =
1

2

∫
(
√
dP −

√
dQ)2.

We shall also use another square distance k2 defined by

k2(P,Q) =
1

2

∫
(dP − dQ)2

d(P +Q)
.

This distance gives an inequality that is somewhat sharper than Kholevo’s.

It is well known that both h and k define distances on the space of probability measures

carried by a σ-field A. For the case of k, see Le Cam (1986), page 47. Note also the

inequalities

0 ≤ h2 ≤ k2 ≤ h2(2 − h2) ≤ 1.

If we consider a pair (P1, P2) of probability measures and write EiT and VariT for the

expectation and variance of an estimate T under Pi one can prove the following

Lemma 1 Suppose that EiT exists for i = 1, 2. Then

1

2
[Var1T + Var2T ] ≥ |E1T − E2T |21 − k2

4k2

≥ |E1T − E2T |2 1 − h2

4h2(2 − h2)
,

with k2 = k2(P1, P2) and similarly for h2.

Proof The first inequality is proved directly in Le Cam and Yang (1990) page 127. It

also follows from the results of Section 4, as we shall see below. The second inequality

follows from the relations between h2 and k2.

Note We shall show below that the minimax variance for given (γ1, γ2) does not exceed

|γ1 − γ2|2 1
2k2 . Thus, in a sense the first inequality of Lemma 1 is in the right spirit. Note

26



that the bound given there is attained for a special T . The second inequality is attainable

only in the special case where | dP1−dP2
d(P1+P2)

| takes only one value.

However we shall show that in the case where h2 is let tend to zero (as for the Cramér-

Rao inequality) and under some uniform integrability condition, one can replace k2 by

2h2.

We shall call the second inequality the Kholevo bound. The inequality given in Lemma

1 is a special case of inequalities obtainable by minimizing βVar1T + (1 − β)Var2T for

β ∈ [0, 1]. For symmetry of notation we shall let β = 1
2
(1 + α), (1 − β) = 1

2
(1 − α) where

α now ranges over [−1,+1]. Also let

Mα =
1

2
(1 + α)P1 +

1

2
(1 − α)P2.

and K(α) =
∫ (dP1−dP2)2

dMα
so that K(0) = 4k2.

Lemma 2 Assume that |α| < 1. Then for D = γ1 − γ2 and for estimates such that

EiT = γi one has

inf
T

1

2
[(1 + α)Var1T + (1 − α)Var2T ] = D2

{
1

K(α)
− 1

4
(1 − α2)

}
.

Proof This follows from the formulas of Section 6 above applied to the triplet (Pλ, Pµ, Pν)

with λ = 1
2
(1 + α)δ1 + 1

2
(1 − α)δ2, δi Dirac mass at i and with Pµ = P1, Pν = P2. It is

sufficient to check that Var(γ|λ) = 1
4
(1 − α2)D2.

The estimate Tα that achieves the minimum variance under Mα is given by Tα =
D

K(α)
dP1−dP2

dMα
. Thus, for instance

∫
T 2
αdP1 =

D2

K2(α)

∫ [
dP1 − dP2

dMα

]2

dP1

and

Var1Tα =
D2

K2(α)

∫ [
dP1 − dP2

dMα

]2

dP1 −
[(

1 − d

2

)
D

]2

.

Note that K(α) depends only on α and the pair (P1, P2) while the numerator in the

risk depends only on D = γ1 − γ2. This separation does not occur in more general cases

although a sort of separation occurs whenever γ takes only two values.

To obtain the minimax risk one should take supα
{

1
K(α)

− 1
4
(1 − α2)

}
, |α| < 1. Note

that K is a convex function of α. Equating derivatives to zero gives the relation

2α

(∫
w2

1 + αw
dM0

)2

=
∫

w3

2 + αw
dM0
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where w = 1
2
dP1−dP2

dM0
, M0 = 1

2
(P1 + P2).

It can be checked that this relation is precisely equivalent to the condition that

Var1Tα = Var2Tα.

Note that unless
∫
w3dM0 = 0, the maximum risk will not be attained at α = 0 and

will therefore be larger than the bound in Lemma 1.

There are interesting cases where
∫
w3dM0 = 0. This happens for instance when the

distribution of w under M0 is symmetric around zero, as happens if P1 and P2 are obtained

by shifts of a symmetric measure. However, in general, one must expect that
∫
w3dM0

will be different from zero. Thus, no matter what α will be, the following result is of some

interest.

Lemma 3 The minimax variance r satisfies the following inequalities

D2

[
1

K(0)
− 1

4

]
≤ r = D2 sup

|α|<1

{
1

K(α)
− 1

4
(1 − α2)

}

≤ D2 sup
0≤α<1

{
1 + α

K(0)
− 1

4
(1 − α2)

}

≤ 2D2

K(0)
.

Proof Note that the left most term is precisely the bound given in Lemma 1 in terms of

k2. The fact that one needs only to look at α ∈ (−1 + 1) instead of the closed interval

[−1,+1] follows from the convexity of K, even if it is not continuous at the points -1 or

+1.

To proceed let us look at the form of K(α) in terms of the function w = dP1−dP2

dM0
. One

has K(α) = 4
∫ w2

1+αw
dM0. Now |α| < 1 and |w| ≤ 1. Thus

∫
w2

1 + αw
≥
∫

w2

1 + |α|dM0 =
1

1 + |α| [
1

4
K(0)].

The inequalities follow.

One could ask whether the upper bound can be improved. It cannot in general ac-

cording to the next result.

Lemma 4 For any ε ∈ (0, 1) there exist pairs (P1, P2) such that the minimax risk r is

larger than (2 − ε) D2

K(0)
.

Proof Let us look at the distribution under M0 of the function w. This is a probability

measure S on [−1,+1] such that
∫
wdS = 0. Conversely any S satisfying these conditions
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can be obtained from a binary experiment. Indeed the measure S is a slightly modified

version of Blackwell’s canonical measure.

Construct a probability measure S that places a mass π < 1/2 at 1 and a mass 1 − π

at − π
1−π . One will have

∫
wdS = 0 and

∫
w2dS = π

(
1 + π

1−π
)

∫
w2

1 + αw
dS = π

{
1

1 + α
+

π

1 − (1 + α)π

}

for α > −1. Thus for α > 0 and for π sufficiently small one can make the ratio K(α)
K(0)

=

[
1

1 + α
+

π

1 − (1 + α)π

] [
1 +

π

1 − π

]−1

as close to 1
1+α

as desired. This implies the desired result.

Remark 1. The example used in the proof of Lemma 4 is also such that for the

distances h and k one has k2

2h2 as close to 1
2

as one wishes. In such case, since both k2 and

h2 are small, the first bound of Lemma 1 is almost twice as large as the Kholevo bound.

Remark 2. The proof of Lemma 4 uses pair (P1, P2) such that K(0) tends to zero.

This is in the nature of things. One can show that K(α)− K(0)
1+α

cannot tend to zero unless

K(0) does. Indeed takes two numbers α ∈ (0, 1) and t ∈ (0, 1). One can write that

K(α) − K(0)

1 + α
≥

∫
w2
(

1

1 − αt
− 1

1 + α

)
I [−1,−t]S(dw)

+
∫
w2
(

1

1 − αt
− 1

1 + α

)
I [(−t, t]]S(dw)

≥ α

1 + α

1 − t

1 + αt

∫
w2I [−1, t]S(dw).

Thus ifK(α)−K(0)
1+α

tends to zero, so does
∫
w2I(−1, t]S(dw) and, in particular

∫
w−Sd(w) →

0. However
∫
w−S(dw) =

∫
w+S(dw). Therefore

∫ |w|S(dw) and
∫
w2S(dw) tend to zero.

Sequences of pairs (P1,n, P2,n) such that the corresponding K(0) = Kn(0) tend to zero

occur often. Indeed they are involved in the classical Cramér-Rao inequality, except in

the Fabian-Hannan proof which uses weak convergence in Hilbert space. (See however

Section 4 above). For such cases one can obtain a special result as follows

Lemma 5 Let {En} be a sequence of experiments En = {P1,n, P2n}. Let Qn = 1
2
[P1,n+P2,n]

and fi,n = dPi,n

dQn
.
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Assume that the Hellinger square distances h2
n = 1

2

∫
(
√
dP1,n −

√
dP2,n)

2 are non zero

but tend to zero as n → ∞. Let Xn be the random variable Xn = 1
2
[
√
f1,n −

√
f2,n]

2 for

the distribution induced by Qn.

Assume that if F is any cluster point of the sequence L
(
Xn

EXn

)
then

∫
xF (dx) = 1.

Then the quantities
k2(P1,n, P2,n)

2h2
n

and sup|α|≤1
Kn(0)
Kn(α)

tend to unity.

Proof Dropping the index n for simplicity, let ϕi =
√
fi. Then one can write

k2 =
1

4

∫
(ϕ2

1 − ϕ2
2)

2dQ and 2h2 =
∫

(ϕ1 − ϕ2)
2dQ.

From this it follows that

k2 =
1

4

∫
(ϕ1 − ϕ2)

2(ϕ1 + ϕ2)
2dQ

=
1

4

∫
(ϕ1 − ϕ2)

2[4 − (ϕ1 − ϕ2)
2]dQ

since ϕ2
1 + ϕ2

2 = 2. Thus

k2 = 2h2 − 1

4

∫
(ϕ1 − ϕ2)

4dQ

= 2h2 −EX2

for the variable X = 1
2
(
√
f1 −

√
f2)

2. Returning to the sequence En one has

k2
n

2h2
n

= 1 − 1

2

EX2
n

EXn
= 1 − 1

2
E(Xn)

(
Xn

EXn

)
.

The condition imposed on the limiting distribution of Xn/EXn implies that for every

ε > 0 there is a b = b(ε) and an N = N(ε) such that n ≥ N implies

E
[
Xn

EXn

]
I(Xn ≥ bEXn] ≤ ε.

Since 0 ≤ Xn ≤ 1 this gives

E{(Xn)
[
Xn

EXn

]
I [Xn ≥ bEXn]} ≤ ε.

The other part E(Xn)
[
Xn

EXn

]
I [Xn < bEXn) is bounded by bEXn which tends to zero by

assumption. This proves the first assertion. For the second one note that the variable w

introduced to represent Kn(α) as 4
∫ w2

1+αw
dQn is just

wn =
1

2
[f1,n − f2,n] =

1

2
(
√
f1,n −

√
f2,n)(

√
f1,n +

√
f2,n).
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Therefore w2
n ≤ 8Xn.

Since Ew2
n = k2

n ≥ h2
n. The variables Yn = w2

n

Ew2
n

will satisfy the same uniform integra-

bility condition as the Xn

EXn
.

The ratio Kn(α)
Kn(0)

can be written in the form Kn(α)
Kn(0)

= E Yn

EYn
[1 + Zn(α)] with Zn(α) =

1
1+αwn

− 1 = − αwn

1+αwn
.

If one takes a fixed ε ∈ (0, 1/2) and look only at values of α ∈ [−1 + ε, 1 − ε] one

will have |Zn(α)| ≤ |α|
1−|α| . The argument applied above to Xn

EXn
Xn applies also to YnZn(α)

EYn)
.

Therefore E
[
Yn

EYn
Zn(α)

]
tends to zero as n→ ∞.

By varying α ∈ [−1 + ε, 1 − ε] as n changes or by noting that Kn(α) is a convex

function of α, one concludes that Kn(α)
Kn(0)

tends to unity uniformly on [−1 + ε, 1− ε]. Using

the convexity again, one sees that if |Kn(α)
Kn(0)

− 1| < η on [−1+ ε, 1+ ε] then Kn(α)
Kn(0)

≥ 1− η
1−ε

on the segments [−1,−1+ ε] and [1− ε, 1]. This yields infα
Kn(α)
Kn(0)

≥ 1− η
1−ε and therefore

supα
Kn(0)
Kn(α)

≤ (1 − η
1−ε)

−1. This completes the proof of the second assertion.

Remark. If one obtains the Cramér-Rao inequality by passages to the limit in the

first inequality of Lemma 1 or in Kholevo’s inequality. (see E.J.G. Pitman [1949]) or

Simons and Woodroofe [1983]) the result of Lemma 5 implies that one will obtain the

same result whether one uses the first or the second inequality of Lemma 1 or if one

passes to the limit for the minimax risk.

Note, however, that this is proved here under an equi integrability condition on Xn

EXn
.

If such a condition is removed the ratios k2
n

2h2
n

can tend to anything one pleases in (1
2
, 1).

Similarly Kn(0)
Kn(α)

can tend to anything one pleases between 1
2

and 1 and the quantity

2h2
n supα

1
Kn(α)

may tend to 4.

It is true that the equi integrability condition imposed on Xn/EXn is not quite a

necessary condition for the conclusions of Lemma 5. However it is a condition that will

often appear automatically. For instance, for an experiment E = {Pθ; θ ∈ RI } and pairs

(P0, Pθ)n) where θn → 0, the condition will be implied by the often used differentiability

in quadratic mean of the square roots of densities.

8. Minimum variance at one point.

This section treats the problem of finding estimates T such that
∫
TdPi = γi, γ1 6= γ2,

for a binary experiment E = {P1, P2} with the requirement that Var1T be minimum.

We shall describe the solution in terms of the mixtures 1
2
(1 + α)P1 + 1

2
(1 − α)P2 as α

increases to unity. The limit limα{K(α), α < 1, α ↑ 1} = K(1) will be involved.
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One can always assume γ1 = 0, γ2 = −D 6= 0.

Proposition 1

a) If P2 possesses a nonzero part that is P1 singular, then there exists a T with the

required expectation and Var1T = 0, Var2T <∞.

b) If K(1) = ∞ but P2 << P1, there exist estimates with the prescribed expectation

and Var1T as small as one pleases. However there is no estimate achieving the prescribed

expectation and Var1T = 0.

c) If K(1) < ∞, then P2 << P1 and
∫ (dP2

dP1

)2
dP1 < ∞. An estimate of the form

T = D
K(1)

dP1−dP2
dP1

will achieve minimum variance under P1.

Note Under the condition K(1) <∞ the quantity Var2T may be infinite. It will be finite

if and only if
∫ (dP2

dP1

)3
dP1 <∞.

The proof will be divided into small lemmas.

Lemma 1 As α increases to 1 (by values α < 1) the K(α) tends to K(1) = 2
∫ (dP1−dP2)2

dP1
.

Proof In the notation of Section 7 one has

K(α) = 4
∫

w2

1 + αw
dM0 with M0 =

1

2
(P1 + P2)

and w = 1
2
dP1−dP2

dM0
.

On the set where w < 0 the integrand increases as α > 0 increases. On the set where

w ≥ 0 the integrand decreases as α increases. The limits are

∫
w<0

w2

1 + w
dM0 and

∫
w≥0

w2

1 + w
dM0.

This last term is always finite. Hence the limit of K(α) is 4
∫ w2

1+w
dM0 whether it is finite

or not. This gives the desired result.

Lemma 2 Let Tα be defined as in Section 7. then as α < 1 tends to unity (1− α)Var2Tα

tends to zero and 1
2
(1 + α)Var1Tα tends to D2

K(1)
.

Proof One has always

1

2
(1 − α)Var2Tα ≤

(
1 − α

2

)
Var2Tα +

(
1 + α

2

)
Var1Tα

= D2

{
1

K(α)
+

1

4
(α2 − 1)

}
.
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Thus, if K(1) = ∞, all those terms must tend to zero. If on the contrary K(1) <∞ then

Var1Tα =
D2

K2(α)

∫ (
dP1 − dP2

dMα

)2

dP1 −
[
1

2
(1 − α)D

]2

tends to D2

K(1)
. This is the same as the limit of D2

[
1

K(α)
+ 1

4
(α2 − 1)

]
, hence (1−α)Var2Tα

must tend to zero.

With this we can pass to the proof of Proposition 1.

Proof (of Proposition 1) Part (a) – Let V be the part of P2 that is P1 singular, with

‖V ‖ > 0. Take T = 0 on a set that carries P1 and γ2/‖V ‖ on a set that carries V . This

will give a result as stated in (a). For Part (b) note that, since P2 << P1, Tα may be

written

Tα =
D

K(α)

2(dP1 − dP2)

(1 + α)dP1 + (1 − α)dP2

=
D

K(α)

2(1 − f)

(1 + α) + (1 − α)f

with f = dP2

dP1
. If K(1) = ∞, but P2 << P1, Tα will tend to zero in P1-probability as

α → 1. Thus it tends to zero in P2-probability as well. However
∫
TαdP2 = −(1 + α)D

2
.

Therefore the integrals
∫ |Tα|dP2 cannot be uniformly convergent and Var2Tα will tend to

infinity.

On the contrary Var1Tα ≤ D2

K(α)
will tend to zero. However there are no functions T

such that
∫
TdP1 =

∫
T 2dP1 = 0 and

∫
TdP2 = γ2 6= 0.

For part (c), note that K(1) <∞ if and only if P2 << P1 and
∫ (dP2

dP1

)2
dP1 <∞.

In this case Tα tends in P1-probability to T1 = D
K(1)

dP1−dP2

dP1
. One has

∫
T1dP1 = 0,

∫
T 2

1 dP1 = lim
α

∫
T 2
αdP1

and T1 is the strong limit in L2(P1) of the Tα. Since (dP2/dP1) ∈ L2(P1) one has limit∫
TαdP2 =

∫
T1dP2 = γ2.

This concludes the proof of the Proposition.

For the remark following the statement of the proposition note that Var2T1 will contain

a term proportional to ∫ (
dP1 − dP2

dP1

)2

dP2
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which will be finite only if
∫ (dP2

dP1

)2
dP2 <∞ or equivalently

∫ (dP2

dP1

)3
dP1 <∞.

9. The case of measures that are nearly equal.

It was shown in Lemma 5, Section 7, that, for pairs (P1, P2) for which k2(P1, P2) is

small, it can happen that k2(P1, P2)[2h
2(P1, P2)]

−1 be close to unity. For such a result to

hold h2 and k2 must be small since h2(2 − h2)/k2 ≥ 1 with approximate equality only if

the variance of
√
f1f2 under M 1

2
(P1 + P2) is small. Here fi = dPi/dM .

The fact that k2/2h2 tends to unity locally under the conditions of differentiability in

quadratic mean (for square roots of densities) often used in the literature gives this very

special case an importance that it does not deserve otherwise.

In the present section we give an extension to the case of anm-tuple {Pi; i = 1, 2, . . . , m}
dominated by a common probability measure M .

Let fi = dPi/dM . Recall that the matrices B of Section 4 have entries of the form

Bi,j =
∫
(fi− 1)(fj − 1)dM . We shall also consider the corresponding correlation matrices

C with

Ci,j = Bi,j{
∫

(fi − 1)2dM
∫

(fj − 1)2dM}−1/2.

Consider also the matrices with entries Hi,j = 1
2

∫
(
√
fi − 1)(

√
fi − 1)dM . This is not a

centered covariance matrix since
∫
[
√
fj − 1]dM = 1 − h2

j , but since h2
j will be small this

will not matter. We shall also consider the corresponding “correlation” matrix R with

entries

Ri,j = Hi,j{1

4

∫
(
√
fi − 1)2dM

∫
(
√
fj − 1)2dM}−1/2.

Consider then the following assumptions, which refer to sequences that should be written

{Pin}, {Mn} etc but they will not suffer if one omits the “n”.

(A1) h2(Pi,M) tends to zero for i = 1, 2, . . . , m

(A2) There is a fixed c1 such that dPi/dM ≤ c for i = 1, 2, . . . , m and m is fixed

(A3) For fi = dPi

dM
, consider the variables Zi =

(
√
fi−1)2

2h2
i

, with h2
i = 1

2

∫
(
√
fi − 1)2dM as

usual.

Any weak cluster point F of the distributions L[Zi|M ] is such that
∫
xF (dx) = 1.

(Here the weak convergence used is that where Eϕ(Zi) → ∫
ϕ(z)F (dz) for bounded

continuous functions ϕ).

Proposition 1 Assume that (A1) (A2) (A3) hold. Then 1
8h2

i

∫
(fi− 1)2dM tends to unity

and the difference between the matrices C and R tends to zero.
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Proof Write

fj − 1 = 2(
√
fj − 1) + (

√
fj − 1)[

√
fj + 1 − 2]

= 2(
√
fj − 1) + (

√
fj − 1)2.

This gives

(fj − 1) = 4(
√
fj − 1)2 + (

√
fj − 1)4 + 4(

√
fj − 1)3.

It follows then from the argument carried out for Lemma 5, Section 7 that
∫
(fj −

1)2dM/4
∫
(
√
fj − 1)2dM tends to unity.

Similarly

(fj − 1)(fi − 1) = 4(
√
fj − 1)(

√
fi − 1)

+ 2(
√
fj − 1)(

√
fi − 1)2

+ ...

According to Schwarz inequality, one has

|E (
√
fi − 1)

hi

(
√
fj − 1)

hj
|2 ≤ E

(
√
fi − 1)2

h2
i

E
(
√
fj − 1)4

h2
j

= 2E
(
√
fi − 1)4

h2
j

.

Similarly for the other terms. Therefore C-R tends to zero. This completes the proof.

Note One can relax the condition (A2) that Pi ≤ c1M but then (A3) must be strength-

ened. The restriction that the cardinality m of the index set be fixed is somewhat ir-

relevant. Note that in Lemma 5, Section 7, condition (A3) was automatic, since M was
1
2
(P1 + P2).

The importance, if any, of this proposition resides in the fact that, for numbers such as∫ dPidPj

dM
, the relevant geometry is that of the Hilbert space L2(M). By contrast for numbers∫

(
√
fi − 1)(

√
fj − 1)dM =

∫
[
√
dPi −

√
dM ][

√
dPj −

√
dM ] the relevant geometry is the

Hilbertian geometry induced by the Hellinger distance. This is a “universal” geometry

not attached to a particular M .

Here the matrix R is one in which one views the Pi’s from the “center” M , but M

does not appear in the definition of the distances.

10. Inequalities of Cramér-Rao type.

35



The purpose of this section is to link the arguments of the previous sections to the

common form of the Cramér-Rao inequalities. The most usual forms assume that Θ is a

subset of a vector space V . They use various differentiability assumptions.

In the previous sections, our set Θ was just a set without any special structure. How-

ever note that in Section 2 we have embedded the family E = {Pθ; θ ∈ Θ} in a linear

space S(E). We also used the space M of probability measures with finite support on Θ.

This is a convex subset of the linear space F(Θ) of all finite signed measures with finite

support on Θ.

In this sense we embedded Θ in a linear space. There is more. In Section 4, Lemma

4 we used measures of the form µ(ε) = εµ + (1 − ε)δ where ε ∈ (0, 1) and where δ is the

Dirac mass at a particular point ∆.

The bound of Section 4 could be expressed in the following manner.

One takes µ(ε) as above and ν(ε) = εν + (1 − ε)δ. Let then

b(µ, ν) = lim
ε→0

1

ε
[〈γ, µ(ε)〉 − 〈γ, ν(ε)〉]

and

σ2(µ, ν) = lim
ε→0

1

ε2

∫ [dPµ(ε) − dPν(ε)]
2

dP∆

(These limits certainly exist since the quantities involved do not depend on ε.)

The bound is then

Var∆T ≥ b2(µ, ν)

σ2(µ, ν)

for all possible pairs (µ, ν).

That looks very much like an ordinary Cramér-Rao inequality and is indeed an imme-

diate consequence of Schwarz inequality.

The added feature of Section 4 is that it is proved that the bound is attainable, since

we used the supremum over (µ, ν) and assumed that
∫
(dPθ

dPs
)2dP∆ <∞ for every θ.

The most usual forms of the Cramér-Rao inequality assume that Θ is a subset of a

linear space, say V . Then the procedures of Section 4 would imbed V , or at least the linear

span of Θ, into our space F(Θ) of signed measures, but one can proceed otherwise and

use differentiability relations. First assume for simplicity that our special point ∆ ∈ Θ is

the origin of V .

Then for maps Z defined on Θ and with values in a locally convex topological vector

space one can consider various definitions of differentiability.

One of them is Gâteaux differentiability as follows

36



Definition 1 The map Z is Gâteaux differentiable at zero with derivative D if D is a

linear map such that for fixed v ∈ V

lim
ε→0

1

ε
[Z(εv)− Z(0) − εDv] = 0.

For this to make sense one should assume that εv ∈ Θ for ε small enough.

There is another concept called quasi-differentiability in Dieudonné (1960) page 151.

For this one assume that V itself is a topological vector space. Let then Φ be the set

of continuous maps ϕ from [0, 1] to Θ such that ϕ(0) = 0 and such that limt→0
1
t
[ϕ(t) −

ϕ(0)] = ϕ′(0) exists in V .

Definition 2 The map Z is quasi-differentiable at zero if there is a linear map D such

that

lim
t→0

1

t
[Z[ϕ(t)]− Z[ϕ(0)] − tDϕ′(0)] = 0

for every ϕ ∈ Φ.

With this concept comes the idea of a tangent set or space. Let C0 be the set of

derivatives ϕ′(0) for ϕ ∈ Φ. It is always a closed cone. Following Bickel, Klaassen, Ritov

and Wellner one can call it the tangent set of Θ at zero. These same authors call the linear

span C of C0 the tangent space of Θ at zero. Pfanzagl [1982] has amply demonstrated the

value of such concepts.

There are many other definitions of differentiability. For instance if V is a normed

space one can use the concept of Fréchet differentiability. We shall return to that later.

With such definitions one can produce various forms of Cramér-Rao inequalities.

One of them imitated from Fabian and Hannan [1977] is as follows.

Lemma 1 Assume that V is a topological vector space and that the map θ ; Pθ satisfies

the following conditions:

1) For θ close enough to zero one has Pθ << P0. Furthermore the density dPθ

dP0
is square

integrable for P0.

Let θ ; Z(θ) be the map θ ; Z(θ) = dPθ

dP0
considered as a map to L2(P0) on a

neighborhood of zero.

2) Assume that θ ; Z(θ) is quasi-differentiable at zero with quasi-derivative D for

the weak topology of L2(P0).

Then if T is an estimate such that
∫
T 2dP0 < ∞ and such that

∫
TdPθ = γ(θ) the

quasi-derivative Γ of γ at zero exist and satisfies

Var0T ≥ |Γv|2
‖Dv‖2
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for all v in the tangent space of Θ at zero.

Proof To see that γ is quasi-differentiable note that for ϕ ∈ Φ

1

t
[γ[ϕ(t)]− γ[ϕ(0)]] =

∫
T

1

t
[Z[ϕ(t)]− Z(ϕ(0)]]dP0.

By assumption this converges to
∫
T [Dϕ′(0)]dP0. Thus γ has derivative v ; Γv =∫

T [Dv]dP0. By linearity this relation is valid over the entire linear span of the tangent

set C0.

The stated inequality is obtainable from Schwarz inequality applied to
∫
T [Dv]dP0.

Remark. Following Fabian and Hannan [1977], see also Wolfowitz [1947], we have

assumed quasi-differentiability for the weak topology of L2(P0). As shown in Section 4

if the range of θ ; Z(θ) is convex one could use quasi-differentiability for the norm of

L2(P0) without changing anything in the result.

Note that the assumptions include the domination condition Pθ << P0 with
∫
(dPθ

dP0
)2dP0 <

∞ at least for θ close enough to zero. Kholevo’s inequality stated in Lemma 1, Section 7,

suggests that one could remove such conditions and use instead the quasi-differentiability

of the map θ ;
√
dPθ

dP0
. Indeed one can, but not necessarily for all estimates T such that∫

T 2dP0 <∞.

Let us say that θ ; Pθ satisfies condition DQM at zero if the following two require-

ments hold.

1) The map θ ;
√

dPθ

dP0
from Θ to L2(P0) is quasi-differentiable at zero for the norm

of L2(P0).

Let 1
2
D be its quasi-derivative.

2) If ϕ ∈ Φ then the mass of Pϕ(t) that is P0 singular tends to zero faster than t2 as t

tends to zero.

The second condition is to insure that 1
t2

∫
(
√
dPϕ(t) −

√
dP0)

2 tends to ‖1
2
Dϕ′(0)‖2. It

will be automatically satisfied if the tangent set C0 is a linear space.

Kholevo’s inequality would yield lower bounds for 1
2
[Varϕ(t)T + Var0T ] and limits of

such quantities. However for arbitrary T such that
∫
T 2dP0 < ∞ it does not guarantee

differentiability of
∫
TdPθ. One can construct simple examples when the mass of the part

of Pθ that is P0 singular is not zero. Here is an example where Pθ << P0 but where∫
(dPθ

dP0
)2dP0 = ∞.

Take for P0 the Lebesgue measure on (−1
2
,+1

2
). On the interval (2−n, 22−n], n =

3, 4, . . . , let Qn be the probability measure carried by (2−n, 22−n] that has a density

proportional there to (x− 2−n)−1/2.
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Then, according to Section 8, Proposition 1, for any ε > 0 and any prescribed an there

are estimates Tn such that
∫
TndP0 = 0,

∫
TndQn = an and Var0Tn < ε2−n.

One can assume that Tn (defined on (−1/2,+1/2)) is zero outside of (2−n, 22−n].

For θ ∈ (2−n, 22−n] let Pθ = (1 − θ3)P0 + θ3Qn. Furthermore let T =
∑
n Tn.

Then for θ ∈ (2−n, 22−n] one will have
∫
TdPθ = θ3an and also

∫
T 2dP0 ≤ ε

∑∞
n=3 2−n <

ε.

Since the number an are arbitrary they certainly can be chosen so that
∫
TdPθ behaves

quite arbitrarily as θ tends to zero by positive values. Kholevo’s inequality will give bounds

on VarθT + Var0T but not on Var0T .

The family {Pθ; θ ∈ Θ} used in this example satisfies DQM since for θ ∈ (2−n, 22−n],

1

2

∫
(
√
dPθ −

√
dP0)

2 ≤
∫

|dPθ − dP0| = θ3‖Qn − P0‖ ≤ 2θ3.

Note that, according to Lemma 5, Section 7, one would not change anything by re-

placing Kholevo’s inequality by the first inequality of Lemma 1, Section 7.

However one can prove the following

Lemma 2 Assume that (DQM) is satisfied at zero with quasi-derivative 1
2
D.

Let T be an estimate such that
∫
TdPθ = γ(θ) and such that for every ϕ ∈ Φ one has

lim supt→0

∫
T 2dPϕ(t) <∞.

Then γ is quasi-differentiable at zero with quasi-derivative Γ such that Γv =
∫
T (Dv)dP0.

The inequality of Lemma 1 remain valid.

Proof Take a particular ϕ ∈ Φ and, for simplicity of notation, let Qt = Pϕ(t).

Then one can write

1

t

∫
T (dQt − dQ0) = 2

∫
T

1

t
[
√
dQt −

√
dQ0]

1

2
[
√
dQt +

√
dQ0]

=
∫
T (

2

t
)(
√
dQt −

√
dQ0]

√
dQ0

+
∫
T

1

t
(
√
dQt −

√
dQ0)

2.

To evaluate this last term, take densities with respect to Mt = 1
2
(Qt + Q0). It becomes

Jt =
∫
T 1
t
(ϕt − ϕ0)

2dMt with

ϕt =

√
dQt

dMt
, ϕ0 =

√
dQ0

dMt
.
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Then

J2
t ≤ (

∫
T 2dMt)

∫
1

t2
(ϕt − ϕ0)

4dMt

≤ b
∫

1

t2
(ϕt − ϕ0)

4dMt.

According to Lemma 5 Section 7 this term tends to zero.

The first term 2
∫
T 1
t
[
√
dQt −

√
dQ0)

√
dQ0 can be written in the form

2
∫
T

1

t
(
√
ft − 1)dQ0

with

ft =
dQt

dQ0
.

The result follows since 2
t
(
√
ft − 1) converges in quadratic mean to Dϕ′(0).

It is not unreasonable to insist that
∫
T 2dPθ be bounded in some neighborhood of

zero if one is interested in local minimax results. Then Lemma 2 is usable without the

restriction Pθ << P0,
∫
(dPθ

dP0
)2dPθ <∞.

Lemma 1 or Lemma 2 show that if Var0T is finite then

|Γv| ≤ b‖Dv‖

for some b <∞ and all v in the linear span C of the tangent set C0. In particular Dv = 0

will imply Γv = 0.

This implies a restriction on the possible quasi-derivatives of functions such as θ ;∫
TdPθ.

Let us show that, under the conditions of Lemma 1, the existence of a b < ∞ such

that |Γv| ≤ b‖Dv‖ implies the existence of an estimate T such that θ ;
∫
TdPθ has

quasi-derivative Γ.

To do this let H0 be the quotient space of C identifying u and v if ‖D(u − v)‖ = 0.

Put in H0 the norm ‖Dv‖ and complete it, obtaining a Hilbert space H1. The map D

can be considered as a one to one map on H0 that sends H0 into L2(P0) isometrically. It

extends to H1 by continuity and then sends H1 onto a closed subspace of L2(P0).

A linear map Γ satisfying |Γv| ≤ b‖Dv‖ can also be considered as defined on H0 and

be extended to H1. Then it can be considered as a continuous linear functional on the

image of H1 by D. Therefore it is given by some square integrable function T such that

Γv =
∫
T (Dv)dPθ.
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The situation under the assumptions of Lemma 2 is somewhat similar: Given any

ε > 0 and Γ satisfying |Γv| ≤ b‖Dv‖, there is a Γ1 such that |(Γ − Γ1)v| ≤ ε‖Dv‖, there

is a Γ1 such that |(Γ − Γ1)v| ≤ ε‖Dv‖ and such that Γ1v =
∫
T1(Dv)dP0 for an estimate

T which satisfies the conditions of the lemma.

Indeed one can proceed in the same manner and obtain a P0 square integrable T as

above. Then one approximates T by a bounded T1 such that
∫ |T − T1|2dP0 < ε.

(It should perhaps be pointed out that the maps D of Lemma 1 and Lemma 2 are the

same. This is because the conditions of Lemma 1 imply that θ ; Pθ is quasi-differentiable

for the weak topology of L1(P0) while Lemma 2 implies quasi-differentiability for the

strong topology of L1.) It should be clear that neither the conditions of Lemma 1 nor

those of Lemma 2 can give upper bounds for the minimax risk on the set Θ itself or even

on a neighborhood of zero in Θ.

One can reverse the inequalities of Section 6 to obtain conditions under which a func-

tion γ will admit unbiased estimation with finite minimax risk.

If the minimax risk is to be ≤M then γ must satisfy the inequalities

|〈γ, µ〉 − 〈γ, ν〉|2 ≤
∫

[dPµ − dPnu]
2

dPλ
[M + var(γ|λ)]

for all pairs µ, ν of M and for λ = 1
2
(µ + ν). Except for the occurrence of the term

Var(γ|λ) on the right side this would be a Lipschitz conditions for the distance

[∫
(dPµ − dPν)

2

dPλ

]1/2

.

If h2 denotes the Hellinger distance, this give

|〈γ, µ〉 − 〈γ, ν〉|2 ≤ 4h2(2 − h2)[M + Var(γ|λ)]

with h2 = h2(Pµ, Pν) = 1
2

∫
(
√
dPµ−

√
dPν)

2. Thus γ must satisfy the same sort of modified

Lipschitz condition for h.

These are Lipschitzian conditions on the Pµ for µ ∈ M.

One cannot omit the terms Var(γ|λ) from the right side. To see this note that 0 ≤∫ (dPµ−dPν )2

dPλ
≤ 4

It is possible to show that these relations imply the inequalities |Γv| ≤ b‖Dv‖ under

the conditions of Lemma 1 or Lemma 2. However the converse does not seem to be

correct.
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We shall end on a special subject suggested by the article of Simons and Woodroofe

[1983].

Let us consider a sequence of experiments En = {Pθ,n; θ ∈ Θn} and a corresponding

sequence of real valued functions γn.

Suppose that µn is a probability measure on a σ-field Bn of subsets of Θn. Suppose

that Bn is large enough to make all the relevant functions, such as γn, or θ ; Pθ,n(A) and

so forth measurable.

Fix a particular point, say an in Θn. Then, under µn, the map

θ ;
|γn(θ) − γn(an)|2
4k2(Pθ,n, Pan,n)

is a certain random variable. Let Fn be its distribution under µn. Take estimates Tn such

that
∫
TndPθ,n = γn(θ) almost everywhere µn. Then one can assert the following.

Lemma 3 In the system just described assume that under µn the variables 1
2
[VarθTn +

VaranTn] tend to a constant σ2.

Then any cluster point F of the sequence {Fn} has its support contained in [0, σ2].

This is an immediate consequence of the inequalities of Lemma 1, Section 7. It is in

the same general spirit as Lemma 2.

A lemma of this kind was used by Simons and Woodroofe [1983] for the case where

Θn is an interval of the line Θn = (an − εn, an + εn) with εn > 0 tending to zero. The

measure µn was Lebesgue measure on Θn normalized to be a probability measure there

Simons and Woodroofe use this to show that the Cramér-Rao inequality “holds almost

everywhere”.

For this they use conditions similar to those of Lemma 2 but with approximate deriva-

tives instead of derivatives. Extensions to parameter spaces Θ that are infinite dimensional

do not seem to have been formulated.
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