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1. Introduction. Let [xj; j=1,2,-.:] be a sequence of
independent identically distributed random variables whose
distribution Pg depends on a parameter ©¢®., Let &
be the experiment which consists in observing the first
n of the variables. Intuition suggests that when m/n 1is
close to unity the two experiments € and En provide
about the same amount of information. The same remark
applies to experiments L in which the number N of
variables observed is decided by a sequential stopping
rule, or other stochastic mechanism provided again that
N/n be close to unity in probability.

The bulk of the present paper is devoted to an attempt
to express this intuitive feeling more precisely in terms
of appropriate distances between experiments.

For two arbitrary experiments & ={P.; ©e¢@} and

X
E=[QG; @e®] indexed by the same set & a natural distance
A has been previously introduced by the present author.

Unfortunately this distance is often difficult to evaluate.
Another possibility occurs when one of the experiments, say

£, 1s a subexperiment of the other, so thet roughly speaking, &




consists in observing only certain functions of the
observations available in ¥. In this situation one can
ask how much one must modify the measures Qg attached to
% 8o as to make sufficient statistics of the functions
which generate .

Ideas leading to this latter kind of distance may be
found in Wald's paper [1]. Further developments occur in
[2] [3] and in Kudo [4] and Pfanzagl [5].

After a preliminary Section 2 which describes the
terminology used, we give in Section 3 an exact definition
of the distances used and some examples indicating their
relations or lack of relation.

Section U4 considers more specifically the case of
experiments Em and Eﬂ which differ by the number of
observations one is allowed to take, It is shown that
restrictions on the dimensionality of @ insure the
correctness of the intuitive feeling described at the beginning
of this Introduction. Examples show that the dimensionality
restrictions cannot be entirely omitted. Since the pPresent
work was suggested by the justification of the technical
device which consists in replacing the fixed sample size
n by a Poisson variable N, special mention is made of this

case,

The general theme of Section 4 is, of course, not




entirely without precedent in the literature. Certain
arguments of Bickel and Yahav [6] or Min-Te-Chao [7] are
related to the phenomenon described here. Perhaps the
cleanest example of this form of reasoning is that of Grace
Yang in [8]. However the bounds given here appear to be
more specific then anything that has come to our attention.

2. General terminology. For simplicity we shall follow
closely the terminology of [9]. However, since the abstractness
of some portions of [9] may repel some readers, we shall
often state results in a more restricted form, the abstract
definitions being used only to avoid measure theoretic
technicalities.

Let © be an arbitrary set. By a standard experiment
indexed by @ will be meant a map @ ~> Pg from @ to the
space of g-additive probability measures on a g-field a
carried by a set Z and subject to the following restrictions:

1) X is a Borel set in a Euclidean, or Polish, space

and 0 1is the 6-field of Borel subsets of ¢

2) There is a finite measure which dominates all the Py -

If (r,a] and {ﬁgﬁﬂ are two measurable spaces, a
Markov kernel from (Z,a} to (¥,%] is a map x ~> K which

assigns to each xe# a probability measure Kx on ~., with

3

the added restriction that for each BeS the function

X ~> Kx{Bj is (O-measurable,
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When (;,0] is the underlying space of an experiment
¢ and ye! 1is some object of interest to the statistician,
Markov kerﬁels from (,,0)] to { .} are also called
randomized estimates based on &.

The corresponding terminology in [9] is as follows.
An experiment & indexed by @ is a map © ~> Pg to some
abstract L-space L with restriction that P, > 0 and

e
||P9|i = 1. The role of Markov kernels is played by
"transitions", Given two L-spaces L' and L", a transition
from L' to L" is a positive linear map T from L' to
L" such that ||Tw™|| = ||uF|| for all pel'.

For any experiment ¢, there is a smallest L-space
which contains all the Pg. It is called the L-space of &
and denoted L(&), Randomized "estimates" are then transitions
from L(€) to some other L-space.

Let & =[@g; @e®) and g ={QG; @eB] be two experiments
indexed by the same set ©., The deficiency 6(c,5) of &
with respect to § 1is the number

6(¢,8) = inf sup %1|TPQ~QG||,
T @
where the infimum is taken over all transitions T from
L(€) to L(%). The distance A(¢,¥) is A(e,d) =
max (6 (&,%), 6(¥,€)). (Note that these definitions differ

from those of [9] by the inclusion of a factor 1/2).
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In the sequel, we shall be concerned almost entirely
with estimation problems in which the loss functions are
bounded. In other words, there will be a decision space,
say Z, with a loss function Wg(z) = W(e,z) defined on
@xZ and such that sup(|W(e,z)|; 0e®, zeZ)} < =, Estimates
will be transitions to the space of linear functionals on
the vector lattice generated by the constants and the
functions Wg, Bed.

The purpose of these abstract definitions is two fold.
Qur definition of "standard experimeni" requires domination.
This is not preserved by small modifications of the Pg'
However, the technical difficulties this entails are not
insuperable. The main reason for the sample space free
definition and the replacement of Markov kernels by
transitions is that when this is allowed one can make most
if not all arguments as if all parameter, sample and decision
spaces in sight were finite and then pass to the limit.
The amount of freedom so gained is well worth the price,
especially since many of the "regularity" conditions to be
found in the literature seem to have for main object that
our "transitions" are automatically representable by Markov
kernels.

Let us mention specifically two features of the abstract

definitions. One is that for decicion spaces with bounded
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loss functions the minimax theorem always holds and that
the minimax risk can be obtained by first computing a mini-
max risk for finite subsets A&® and than taking a supremum
over A.

Another feature is that the deficiency 6(&,%) can

also be written
6(&,3) = % sup inf supl}TPg-Qg|{,
A T ©eA
for A ranging over all finite subsets of @.

In general, for all the propositions stated in the
present paper, one can first restrict oneself to finite subsets
of @, In this case the Polish structure of standard
experiments can easily be made available by passage to
likelihood ratios. Thus, there will be no loss of generality
in using it in the proofs or simply to make the notation look

more familiar, This flexibility will be used arbitrarily

and without much warning especially to avoid measure theoretic

difficulties.

3. Measuring the insufficiency of a subfield. In chis
section we shall consider two experiments ¢ =[Fg; @e®) and
i =[Qg; @e®@} indexed by the same set © and assume in
addition that & 1is a subexperiment of § in the following
precise sense. There is a certain set %ﬁ carrying a ¢-field
(4. Each of the Q, 1is a probability measure on . The

experiment & is obtained by taking a 5-field oc =



and letting PEII be the restriction of Q@ to Q.
In such a situation one can measure the deficiency
6(€,%) by the method indicated in Section 2. However,
since & 1is a subexperiment of § another measure becomes
available. To introduce it let us note that when @ 1is
a sufficient subfield, in the Halmo=z-Savage sence, for the
family Qgr statisticians generally agree that there is
no loss of information in pascing from ¢ to Q.
This suggests measuring the loss of information by
ascertaining how much one needs to modify the measures Qg
to insure that @ is cufficient for the modified family.
In such modifications one may encounter difficulties with the
Halmos-Savage definition. In particular, it may happen that
aca', that a ic sufficient, but that @' 1is not. See
[10]. This does not agree well with intuitive requirements.
To avoid the difficulty, we shall request only pairwise
sufficiency, or, equivalently, sufficiency for dominated
subfamilies.

Definition 1. In the situation just described, the

insufficiency of & relative to § is the number

%) = i Li10*-
n(c,¥) = inf e sl 11,

where the infimum is taken over all families [Q;; ced)

such that ¢ is pairwise sufficient for {Q;; ee@).
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Before going further, we shall elaborate a few relations
which lead to a better understanding of this definition.
For simplicity, this will be done first in the general
notation of [9]. A translation of the standard experiments
is given afterwards,

Consider the experiment ¥ and the L-space
L = L(%) generated by the family {Qg; 2e®} on the g-field
. Let M be the dual of the Banach space L. Let MO
be the closure in M for the pointwise topology w(M,L) of
the algebra of equivalence classes of bounded «-measurable
functions. The space M itself has a dual M' which consists
of all bounded linear functionals on M. One can argue
assuming that L ic identified to a subspace (in fact a band)
in M.

Let us first note that there is no need to go beyond
these objects.

Lemma 1. One does not change the value of the

expression entering in the definition of n(&,¥) if ome

restricts the approximating Q; to belong to the space

L = L(3).

Proof. Suppose that @ 1is pairwise sufficient for
{q;; @e@). Explicitely, if s and t are two elements of
® and if p = Q; -+ Q:, the Radon-Nikodym density

(dqgfdu} is equivalent to an C-measurable function. There
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exists a positive linear projection V onto L = L(%) such
that VQ;EL and such that Qg - ?Q; is disjoint from every
element of L. If all the [|vQj|| vanish, one has
][QS-lel = 2 and the situation ic trivial. If not there
is some te® such that [|vq;]| > 0, One can define elements
Qé = UQE + E{Q][?sz with coefficients B(6) > 0 chosen
to insure that |[Qé[| = 1. The Radon-Nikodym densities
associated with pairs {qé,Q;} are still equivalent to
G-measurable functions. Also [|Qé-Qg|[ < ]|Q;—Qg||. Hence
the result.

Assuming QSeL, the 6-field 0 is pairwise sufficient
for the family [Q;; 8e@) if and only if there is a positive
linear projection u ~> ul of M onto Hb such that
{uH,QS} = <u,Q;> for all wueM and all ©e®. This is shown
in [9] for the case where the family {q;; ©eB) generates
the whole band L(%), If the band i generated by the
Qg is smaller than L(%), one can proceed as follows. Take
in M, the smallest idempotent v such that <v,Q;> = 1
for all e. If @ is pairwise sufficient, the argument of

[9] sgives a projection 1, well defined for terms of M

1
which have the form wuv, ueM. Decompose the idempotent
I -v=w intoasum w=2x wj, jeJ of disjoint idempotents

0
(Qy} is dominated by some element quL, My o> 0, HujH =1,

wjeH such that, when restricted to each wj, the family
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Extend II1 to a projection I of M onto MO by
taking on each Wj the conditional expectations for the

measures This gives the desired projection. It has

ye
the added merit that it is the adjoint of a projection into
L of the space L(¢) obtained by identifying two elements
of L(%) 1if they do not differ on M.

In general, a pocitive linear projection N of M
onto Eb iz not necessarily the adjoint of a map from
L(¢) to L(3), but it is the adjoint of a map from L(&)

'  of bounded linear functionals on M. The

to the space M
extension of the definition of pairwise sufficiency of M,
to elements of M presents no difficulty.
This being the case, let I be any positive linear
projection of M onto Fb. For each Qg; Be® let
1

Qg = I Qg be the element of M defined by the equality

<u,qé> = {UH,QQ}. Since 1 1is a projection, one can write

<ull,Qy> = <ulll, Q> = <ull, Q> = <u,Qy>.

Thus I is a conditional expectation operator for all the

Qé and M, is sufficient for the family {Qé; eed].

Lemma 2. The insufficiency n(&,%) can also be defined

as the number

| : 1
,{5 - £ _'lIH- i El:-
n(€,73) 1; s;p 51 11MQ,-Q,
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where the infimum is taken over all positive linear

projections I of M onto s

Proof. Suppose that QSEL and that qQ 1is pairwise
s.ifficient for {Q;; @et), Let N be an associated

projection of M onto FB. One can write
<u(I-m),Qy> = <u(I-N),Qy> = <u(I-1),(Q,-Qg)>
= <u(I-1), (Qy-Qg)>-

This gives ]|QQ-HQQ|E < 1IQQ"Q;|1' Conversely, let I be
a projection of M onto HO Then MO is sufficient for
the family {Qé] with Qé = nqg. One can now replace the
Qé by Q;EL[ﬁ} by Lemma 1. Hence the result,

Note. The argument shows that one can, if so desired,

assume that the projections II are adjoints of maps from
L{&) to L(%), without changing the value of the infimum
in Lemma 2.

For each subset ACE® let Ty be the experiment
{Qg; @ecA] obtained by restricting the domain of © to the
subset A. Define the corresponding experiment “s by

restricting the measures Qg to d.

Lemma 3. For arbitrary sets &, one has

2

n(€,¥) = sup,(n(€,,5,); A&®, A finite].

Proof. Let g be a number strictly larger than the
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supremum on the right side. For each AcC®, A finite,
let n, be a projection of M onto Mb such that
SHPQEAJ!HﬁQQngll < 2g. Direct the sets A by the inclusion
order and let I be a cluster point of the filter so
obtained, in the set & of all positive bilinear functions
on MxL topologized by pointwise convergence on MxL.

Since the projections HA are such that uﬂeMﬁ for
ueM and ul = u for ueM,, the limit 1 bhas the same
property. Thus it is also a positive linear projection of
M onto M,. The norm is lower semicontinuous for the point-
wise convergence topology. Hence, I|HQQ-QGI| < 2g, which
implies the desired result.

To summarize, n(&,5) behaves very much like 6(&,3).
However, one has 6&(&,%) < ¢ if there is a transition T
from L(<¢) to L(%¥) such that f|QQ-TRQg|| < 2g, denoting

by R the operation which restricts QQ to M,. This,

TR need not be a projection, while the definition of

uses projections only.

The difference can be seen in the standard experiment
case as follows. Suppose that (44%) 1s Polish and that
{Qg] is dominated by a finite H; Let C be the completion
of the g-field ¢ for p. In this case, each Qe admits
conditional expectations which can be represented by Markov

kernels x ~> F, _ from (,0) to (U,f). Furthermore,
o

= -
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one can assume that these kernels are almost proper in the
sense that if AeC and xeA, then FG,K{A} = 1 except
perhaps for a p-null set of values of x.

Similarly, let 1 be a positive linear projection of
M onto M,, adjoint of a map from L(t) to L(%). In the
standard experiment case such a I admits a representation
by an almost proper Markov kernel x ~> Kx' The condition
of being almost proper corresponds for I to the property
of being a projection. By contrast the operations TR can
be induced by arbitrary Markov kernels.

In the standard experiment situation, the value
sup[[quﬂ,qg>-<u,qg>[;|u] < I} has an interpretation
describable as follows, Let x ~> KK be a Markov kernel
representing I, let x ~> Fé,x be a Markov kernel giving
the conditional expectation (given ¢) for the measure QB'
The L,-norm Ile"Fﬁ,x[l can be computed by taking a supremum
over a fixed countable subset of the ball ([u; ueM, |ul < T4,

From this it follows easily that
1R -Fy  11Qg(ax) = sup(|<ull,q > - <u,@,>|;|u| < 1).

Thus, one can state that n(¢,5) < ¢ 1if and only if there are
almost proper Markov kernels x ~> K. such that
f||Kx-Fbe||QG{dx} < 2 for all oe®.

This can also be seen without the use of our previous
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lemmas using the following arguments. Let (7,%) be a Polish
space with its Borel sets. Let @ be a sub s5-field of &

Let S5,; i=1,2, be two positive finite measures on (4 Let

i3

Sl be the restriction of S, to G. Finally, let x ~> F

i
be a Markov kernel which induces the conditional expectation

1,X

given G for the measure Si.

Lemma 4, With the notation just described,

1. 1 1
o Py o Fp | 1(8145,) (ax) =< [[8;-S,11 + [18)-5,11.

Proof. Let M = 51 -+ SE and let Hﬁ be its restriction

to d. Let E denote the conditional expectation operator
associated with M for the pair (a;#). Let £, Dbe the

density £, = dsifdM. Define f£!

i i

operating only with equivalence classes, one can write

= dSidet similarly. Then,

fi(uEi) = (ufi}E, denoting u -~ uk,, the conditional

expectation for the measure Si. This gives

[u(£;-£,)E = Z(UE -uE) + S(£}-£L) (uE, +iE,).

Therefore,
I 1
sIuE -uE | < |ful [{[]£,-£,|E]+|£1-£,]].

The result follows by integration with respect to M if one
takes a supremum over a suitably dense countable subset of

(U; |ul| = 1}
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In the present circumstances, suppose that a 1is
sufficient for *1 with QFeL(8). Let
[Qg3 Q (%) X ~> Kx be a
Markov kernel inducing the common conditional expectation of

all the Qé. Then

IR -F, 11 a4y = [1Qd-a 1 + 11e3'-a} 1,

an inequality which reduces to the previous one if the
restriction Q;' of Q; to @ coincides with the correspond-
ing restriction of Qg.

To make the relation between &(&,¥) and n(g,3) more
explicit, one can proceed as follows. Suppose that both
(£,0) and (%%) are Polish spaces with their Borel fields.
Let ¢ be a Borel map from qﬁ to ‘2. Assume for simplicity
that ¢ admits a Borel section, or, explicitely that there
is a Borel function ¢' from ¥ to f?ﬁ such that m[mT(x)]
Thiz assumption is actually irrelevant.to our purpose, but it
helps insure existence of appropriate decompositions for
measures on {EﬁB].

Any Markov kermel x ~» K from (¢,0) to (4,%) admits
a representation in the form Kx(dy} = fFﬁ{dz}Gz{dy], where
K Fi is a Markov kernel from (/,0) to (,,a) ditself and
where for each =zes the probability measure Gz is carried
by the fiber mil{z} in yﬂ Among such kernels, those where

the measure Fx is the Dirac measure concentrated at x
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itself, play a special role. 1In fact, they represent
projections in the sense that they transform (P-measurable
bounded functions into O-measurable functions, but leave
invariant those (#-measurable functions which are constant
on the fibers m-l{x}.

In this situation, let § -[Q@; ®e@] be a family of
probability measures on ({#®) and let Py be the image
of Qg by the map ¢. Letting ¢ be the experiment
¢ =(P,; ©@e@}, the inequality &4(%,3) < ¢ corresponds to
the existence of a kernel K, with Kk{dy] = szx{dz}Gz{dy}

such that

|/16,(B)F, _(dz) B (dx) - Q (B)| < e

for all Be’”. On the contrary the inequality n(e,3) < e

corresponds to an inequality of the type

] 6, (B)P (ax) - Q(B)| < e.

In this case of the Markov kermel K, there is no reason to
expect that any sufficiency property will be preserved. One
estimates the entire measure Q with small bias from the
knowledge of x alone. In the second case, one estimates

the conditional dictributions with small error. This suggests
that although one has always &(¢,%) < n(¢,¥), it will be

impossible to conclude from smallness of & that n is also
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small.
To give an example of such a situation it is convenient

to use instead of the L_,-norm of a difference PE - p

1
of probability measurec, the Hellinger distance H{pE,pt}

t

defined by

2
2
H™(p,P,) ILKdP - VAP ) =1 -p)p_,P.),

where p 1is the affinity between p_ and P.- Note that

HE{PE,Pt} = %—Ilps-ptli = H(p_,p,) V2 .
Let ©® be the r dimensional Euclidean space € = R,
Let p, be the Gaussian distribution n(e,I) which has
expectation €@ and covariance matrix equal to the identity.
Let ¢ be the experiment which consists in taking n
independent identically di:tributed observations from one of
the Py Let ¥ be the experiment which consists in

casrying out £ and then taking one additional observation.

Proposition 1. Let & and % be the Gaussian experiments

just described. Then

§(c,8) =< ";—E

3/2

and
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Proof. For the Gaussian experiment with n observations,

the average of the observations is a sufficient statistic.
Let Gn be the distribution of this average if @ = 0.

Let G, be Gn translated by ©. On the Euclidean space

,
Rr, the measure Gn admits a dencity equal to
n rl2 1 2
(z)  expl- 3 nllx]|| )
with respect to the Lebesgue measure. Since |]Gn,g-Gn+1,g|| =
||Gn—Gn+1||’ one has certainly 6&(¢,T) < 1/2 ilﬂn—Gn+1||.

In fact Torgersen [11] has shown that &(&,%) 1is precisely

equal to this number so that

b
1 Ibg o X xa-ldx
1

ra)

6(€,%) =

with a = r/2, b, = an log(l + 1/n) and b, = by, + a log(l +1h)

The upper bound given here is easily obtainable by noting that

the affinity p(Gn’GnA1} has the form
(6,6 ..) = [1 L_ 5%

p(G = [l - ——

n’ ntl (2n+1)

2 r
so that H {Gﬂ’Gn-i*l} 2 632 -

For the second statement, let us consider the problem

of estimating the distribution Py of the n+l%% observation

given the first n observations Kp ¥ ,00 X . Take

xn+-1 T
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as loss function the distance W(e,t) = % ||pg-pt||. The
proper Markov kernel formulas which follow Lemma 3 show that
it will be enough to prove that for this loss function the
minimax risk is at least %Vf’ E_ expl- %-E-]‘}. The extra
factor 2 originates in the circumstance that the kernels Ko

need not be one of the P., te€®. Simple algebra shows that

B-t e
sy w2 PR g

2T

Take a small number ¢ > 0 and use as prior distribution
the Gaussian measure 0,(0,cI). The posterior distribution
of 6 given [xl,xg,---,xn] is then a Gaussian distribution
with inverse covariance matrix (l4c)I and center a point
x/(l4) with nx = zg‘_l x,. From this it is possible to
compute the Bayes risk. Letting c¢ tend to zero, one obtains

a limit of the type

r1, X308

. Uy, e du] dy

— C(r) J exp(- %:{E] X
J2m

with C(r) determined so that

o "
c(x) [ exp(- 3 x°) x" 7 dx = 1.



Transforming variables with u = ty, this yields

1
A R

. (=) 2
nE J (L+£7) dt

JrOT(Z 0

r4l
> i E (o expl(- ri}}ﬂjfg .
oo ke

For integer values of r, the expression

r{%la} [r{%} T ]-1 achieves a minimum equal to (lA/m ) at
r = 1, Substituting this minimum value, gives the result
as stated.

Proposition 1 shows that if one takes r = n and lets
n became large, then &(&,5) will become small, but n(g,%)
will not.

Let us also note the following. Let & be the experiment
i =[Qg; CeB)}, where Q, 1is the distribution of n + 1

observations from the Gaussian n(e,I). Let §' be the

n+1,9; GeE}.

experiment %' =(G

Then ¥ and 3§' are "isomorphic'. Specifically let
L = L(%) and L' = L(ﬁl} be their respective L-spaces.
There is a transition S from L to L' such that

SQQ = G . There is also a transition T from L' to L
n+l,8
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such that TGn+1,G = Q. In particular, TSQ, = Q . However,
TS is not the identity map of L into itself. In §'

there is nothing resembling the 6-field generated by the
first n observations of 9.

Consider more generally two experiments § -{Qg; ceB)
and &' -{QQ; 0e®] with respective L-spaces L and L.,
Let M be the dual of L. Similarly, let M' be the dual
of L.

Let M, be a w{(M,L) closed sublattice of M such

that TeM,. Let M[') be a similar object Mé e MY,

Finally, suppose that there are transitions § from
L to L' and T from L' to L such that SQG - Qé
and TQé - Q. Consider the map TS: v ~> v(TS) from M
to itself and the map ST: u ~> uST from M to itself.

Let & (resp. &'} be the experiment obtained by
restricting ¥ (resp. §') to M, (resp. b%ﬁ. It can be
shown that n(c',8') < n(e,8) if TS leaves each element
of Hb invariant. Similarly, n(&,3) j_q{t',ﬁl} if ST
leaves each element of H% invariant.

In summary, even though 7 1is not preserved if experiments
are replaced by equivalent ones it is preserved by vector
lattice isomorphisms of the triplets {L,H,HO} .

To conclude this section, let us mention two particular

cases in which it is possible to show that certain
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insufficiencies n(¢,5) are small,
For the first case, consider for each integer n a
set =fn carrying two 6-fields ﬂn and B with Gn C;zh.

Let § =[QG

n , @e®} be given by measures on fjn and let

’
511

&n = {Pg o e} be obtained by restricting the measures
¥

QO n to ﬂn.

3

According to Torgersen [12], one always can write

e, @, Il - [|p aPeall 24 8(e,,8).

g8.n "t s,

However, this inequality on L,-norms does not have any
analogue in terms of Hellinger distances. The proposition is
based on the remark that an analogue is obtaineble under
uniform contiguity restrictions, expressible as follows.

Condition C. For each ¢ > O, there are probability

measures hn’ a number C ¢(0,»), and an integer N(e)

such that n > N(g) implies

A
L1

lIpg o-[Rg M@ =

and

A
m

1
|18y V(g 18y o1 =

for all oeB.

Proposition 2. Suppose that the experiments {an,ﬁn]




satisfy condition C and that é{ﬁn’ﬁn}'# 0. Then

n(ﬂn,ﬁn}-w 0.

Proof. It is clear from Lemma 3 that one can assume,

without loss of generality, that @ iz at most countable,

In such a situation, the measures Qy n 2dmits a representation
»

of the type dqg n = 4F (dx), where the map

e,n,x Pg,n
X n> Fb o has all the properties of a proper conditional
172

expectation, except that Fy o x need not be countably
-] ¥
additive.
OCne can assume that F9 nx &re concentrated on the
2 »

appropriate fibers, except for a set of values of x which

has A, measure zero. The affinity between Q, , and

Qt n can be written in the form

3

PQq Qe o) = [V @ Y R (@F, (&)

This gives
H(Q, Q@ ) - H(R, B ) = H3(F_  _,F. /P (&P @
s,n’*"t,n s,n’ t,n s,nx'" tnx s,n tn
-1
= [p{P; n*Pt,n}] EIH(Fs,n,x’Ft,n,thPs,n{dK}Pt,n{dx]]
1

, L
~2/3 IIIFEIH,K-Ft,n,xIIﬂaln(dxwt]n(m :

When condition C 1is satisfied, the convergence of E(En,ﬁn]
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to zero implies that

2

:UE[H (qs n’ n}-H (Pa,n’P 11]']'_F e
This and a passage from ,fPEln{dU} Pt,n{dl} Lo A implies

that

sup JIIF [x,(du) =0

S,n,X t ,N,X
and concludes the proof of the proposition.

For the next proposition, let us consider two experiments
& =[Pe; @e®) and ¥ =[Qg; ©e®), where § is obtained by
observing additional variables in the following way.

Suppose that & has for underlying space a set < with
c-field 4. Let ® ~> v(w) be an Q@-measurable function
from 2 to the nonnegative integers. TFor each 0e® let
a4 be a probability measure on a certain space {H;E}.

To carry out ¥, one first carries out the experiment
& itself, obtaining a result . This determines the integer
viw). If v(w) =m one observes m independent observations
each distributed according to 9 -

The experiment § has for underlying space the direct

sum U A X yfl where A ={w; v(w)=m]. Restricted to

¥

A X }P the measure Q, agrees with the direct product

A

m
Pgﬁbqg.



25

Proposition 3, Let & and ¥ be the two experiments

just described. Define a minimax risk

2
p = inf cup E, H (q ,q )
8 © e 8’3"’

)
where © is allowed to be any randomized estimate of @

based on the experiment &. Then

n(€,s) =./2bp

with b = Sup, Egv.

Proof. According to Lemma 3, one can assume, without

loss of generality, that © 1is a finite set. Let o ~~ Kh
be a Markov kernel from (%,0) to the subsets of @. If

weh define on ﬁ$m' the measure

0, o= 1 (a).

Extend this to &m x %m, taking a semi-direct product by

the formula

I 0@,V n(d0,dy) = [ @, 7)¥, ,(dy)Fg(d).

Let Qg,m be the restriction of QG to this same set
ﬁm X %P. Using standard inequalities for Hellinger distances,

one can write

%_I ”Qg,m"“gij =2 I*"'*m V(@) H(qg,q,)K (dt) B (d).
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Thus, reassembling all the Vo m in one measure Vg, ome
3

has
1 -
3 Hog=Vyll = V2 Ejlv(w) [ H(a,,q0)K (dt) ).
Schwarz's inequality gives

2 2
< [BgVIEg| [ H(ap,9)K (dt)

B LATo) f H(a,.a0)K (dc)]
However, for each ¢ one has
& 2

‘I ¥I{qt=q9}1¢m{dtll = J H7(q,95)K (dt).

This yields the desired result, since ¢ is sufficient for

the family [vé}.

i. EﬂﬁﬂffiCiE““ for finite dimensional parameter sets.

In this section, we shall consider situations where observations
are made on independent identically distributed variables and
compare experiments which differ solely by the number of
observaticns taken,

Specifically, let ¢ ={Pg5 @e@) be given by probability
measures on some space [/,a). Let €™ be the direct product
of n copies of <. We shall compare experiments such as

el and bn+k with k > 0.

¥

In such a situation another interesting experiment is the

Poisson experiment f;“ accompanying ¢®, This is constructed
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as follows, Cne first observes a Poisszon rendom variable

N such that EN = n. Then, N being determined one carries
out EH.

The reason for introducing *® iy that it turns out

to be a usable simplifying device in many situations. Also,
LT "infintely divisible" in the sense that for any two
numbers a,b such that 0 <a, 0 <b, a4b =n one can first
observe Poisson variables N, and N_ with respective

1 2
Hl N
expectations a and b, carry out < and then ¢

2
independently. This gives an experiment equivalent to (7"

Remark. Except as specifically indicated the inequalities
given here are intended for use for fixed values of n, so
that a more explicit but more cumbersome notation would be to
assume that & ={P9,n; eee] and &" -[pgln; 6e@). Except
as specifically mentioned, we shall not "let n tend to
infinity" for fixed [pg}.

Let us first give two examples chowing that even for n
large 6f&n,un+l) need not be small.

Example 1. Let © be a Euclidean space with r = 2a
dimensions. Let Pg be the Gaussian distribution n(e,I) in

r dimensions. A formula for 5{En,bn+1}

was given in Section
3. For a and n both very large, one can conclude from
this formula that a{@“,5“+1} is approximately equal to

Pr[Fﬁl jfé% }, where ¢ is a n(0,1) real random variable.



28
Thus if a is taken so that hﬁg and n are approximately
equal 5(&“,6“*1} is nearly equal to .38, Of course as

o ﬁn+l} remains

mentioned in Section 3, the insufficiency n(e ,
large even if a itself is of the same order of magnitude
as n.

In the preceding example the natural dimension of the
parameter space © iz taken to vary with n in the same
general manner as nE. One can inquire if it is possible
to have a fixed family {pg; 6e®} such that (an,ﬁ“+l) does
not tend to zero as n tends to infinity, (everything else
remaining the same contrary to the understanding of the
Remark above.)

One such case is as follows.

Example 2. Let / be the interval [0,1] with the
Lebesgue measure 7. Each =xe Thas a binary expansion
X = Ejzl gj(x}z'j with gj(x} equal to zero or unity. Let
© be the set of integers © ={0,1,2 ...].
be the

For @ =0, let Pg =M. For G >1 let

Po

meacure whose density with respect to » is Egg{x}.
Take a large integer k and let m be the integer

m = 3k En*E. Let @m be the set @m =(1,2,**+,m}. Consider

the following estimation problem. The set of possible decisions

D 1is the set of all subsets S of Em which have cardinality

at most equal to k. The loss function W(©,S) 1is zero
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if ©eS or if o ¢ ®n and W(e,S) =1 if 00 but
o ¢ 8.
For a given Ge@m and given number v of observations,

the number M of elements j # 8 of @m such that

Hi—l Ej{xi} > 0 1is a binomial variable corresponding to
(m=1) trials with probability of success Eﬁv. For v =n
this gives EM < %ﬁ, However for v <mn - 1, we have

EM > %?. Thus, the estimation problem is very easy for En,

but it is difficult for & giving a minimax risk about
equal to 2/3.

Similarly, (for n large) the Poisson number N of the
experiment {ﬁn' iz approximately half of the time below n
and approximately half of the time above n., It results

), 8",
n

and a(_“,a ) stay bounded away from zero as n — w.

from this that all the deficiencies é(ﬁn’bn+l

In view of this last example (and still in violation of

our previous Remark), the following may be of some interest.

Proposition 4, Let & ={pg5 Be€] be an experiment

such that s # t implies # p. and such that the family

[pg; 6e®) 1is compact in L.-norm. Then for every fixed k

1

one hac

1im q{a.“,f:,“"k

=0

) =0

Proof. The compactness of £ implies the existence of
—_
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a probability measure u such that p(A) = 0 if and only

if sup, Fg[ﬁ] = 0. Take a countable dense set {6,} in

i

@ metrized by the L1~nnrm and let fi be the Radon-Nikodym
dp. .
ei
density fi - - T

The sequence (£ maps {/,0) into the space RH

i)
product of a countable copies of real lines. Since RN is
Polish, there is a one to one Borel map of RH onto the
interval [0,1]. Let Fg be the cumulative distribution
defined on [0,1] through this map and let d(s,t) be the
distance defined on ® by d(s,t) = supz|Fs{z}-Ft{z)|. The
sufficiency of the map =x ~»> [fi(x); i=l,2,+-+]} and the
compactness of © implies that the distance d 1is equivalent
to the distance defined by the Ll-nnrm. Using the empirical
cumulative distributions, it is eaey to construct estimates
Sn such that Egjﬁ' d{aﬂ,G) stays bounded independently
of ©. These estimates will also be such that
sup, ED||FE - pg||-¢ O and the result follows by application
of Proposition 3 (Section 3).

The Gaussian Example 1 suggest that 5{mn,6n+l] or

n{E“ En+1) can be large when the dimension of the parameter

¥
space is large compared to n. We shall now proceed to give
an inequality in the opposit direction, showing that q{un,£n+l}
is small when n 1is large compared to a suitable dimensionality

coefficient attached to the experiment & -[pg; GeB}.
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The definitions and arguments will be given in terms
of Hellinger distances instead of the statistically more appeal-
ing Ll-distanﬂe for the following reason. If P and Q
are two probability measures, their affinity is p(P,Q) =
[/dPdQ = 1 - HE[P,Q]. It results from this that the direct
products P’ and Q“ have an affinity equal to p[Pn,Qn} =
[p{P,Q}]n. In particular, this implies HE{Pn,Qn} :‘nHE{P,Q).

The Llﬂdistances can be recovered through bounds such
as ||P"-Q"|| < 2 x/2-y2 if /n H(P,Q) <y =< 1. Similarly,
211P"Q"| > 1 - exp(- n B%(2,Q) ).

To proceed further, consider the experiment ¢ ={pg; Bel]

and numbers a , b respectively defined by af = 2-(v+lﬂ]

“l, 1\’.,

=Y

and b2 =2 for v =0,1,2,:--
v

Define covering numbers C(v)} by the following procedure,

First metrize @ by h(s,t) = H(P,:Ft}*
Let S5 be any finite subset 58 with diameter at most

equal to b, Cover the set S by subsets {Si], 1eJ

g [
whose diameters do not exceed a . Let us say that two indices

of a pair (i,j) are distant if
sup{h(s,t); seA,, teﬁj] > b .

For each 1 let Ci be the number of indices j which are

distant from 1 and let C' be the supremum C' = sup Ei.

This number depends on the set S and on the cover [Ai}.
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Call the cover minimal for S if the number G;(S} attached
to it is as small as possible. Finally, let C(v) be the
supremum of CL{S} over all possible finite subsets Sc@
whose diameter does not exceed bv&l.
We still need another definition. Let § ={QQ; Be@)] be

an experiment indexed by &. Let Ai’ i=1,2 be two subsets

of ©. For each test ¢ available from the experiment § let

m(A1,A 5 ¥,9) = sup sup J(1-9)dQ  + [ pdQ..

seﬂl teAE

Let ﬂ{ﬁl,AE; T) = lnfﬁ ﬂfﬁljﬁg; ¥,9). This will be called

the error sum available on % for testing Al against AE.

The covering number can be uced to indicate the possibility

of constructing confidence sets according to the following scheme.

Lemma 5. Let S8 be a finite set whose diameter is at

Let {Ai; ieJ} be a minimal cover of & by sets

A; ( of diameter at most a). Let § =[Qg; ©eS) be some

experiment indexed by S. For each distant pair (1,j) 1let

m

i3 be the error sum available on § for testing Ai against

A,. Let w be the supremum sup. , 7, . taken over distant
: Sl 1,3 1,3
pairs.
Then, there are confidence sets B available on ¥ such
that

i) the diameter of B never exceeds b.,
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ii) for all Ge5 cne has Q,[6eB°] < 2 C(v)m.

Proof. Disjoint the sets A for instance by letting

i:
' i, C
Ay = A, and A = A, N {Ujii &j] . For the new system of

sets and for each i, 1let J(i) be the set of indices

J which are distant from i. This is not the same relation

az the original one ucing the zets Ai themselves.

Since 5 iz finite for each pair (i,3), jeJ(i), there

¢ 1 !
exists a test wi,j such that Ty i = w[Ai,Aj, F,@i,j].

»

If the test mi j iz not given by an indicator, let ®y; j
5

be the indicator of {mi 3 > 1/2). In any event this gives
¥

indicators mi,j such that ﬂ{ﬁi,ﬂj; E’¢i,j} :_Eﬂi,j
provided that jeJ(i). By symmetry, one can assume that

g =1 - .
szi ¢i'j

Let ¥, = inf{mi j3 jeJ(i)). By construction for any
distant pair (i,j), one has wj d ¢j,i =1 - By Thus
if y;, =1 and jeJ(i), one must have wj = 0. In additionm,
let p =2 sup EjEﬁi_j; jeJ(i)). The definition of ¥y
i

Finally, suppose that one has carried out the experiment

shows that if seA! then Qs{wi = 0] =< B.

¥ obtaining a result w. Let K(w) be the set of indices
k such that ¥, (w) =1 and let B = U{Al:c; keK(w)}. If

seai, except for probability at most equal to B, we shall

have ¢i(m} = 1 and therefore secA, € B. Also assuming

i
ﬁi(m} = 1, the set K(w) containz no jeJ(i) and therefore
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no points t such that h(s,t) > bv' If all the wj are
zero, one can take an arbitrary point in 8. Since

B =< 2C(v)m, the lemma is completely proved.

Theorem 1. Let & be an experiment ¢ '{P95 Bed}

with covering numbers C(v), v=0,1,2 ..., Let

n n. :
o =[pg, @ee) be the experiment direct product of n copies

£ ¢, Let gﬁp be the accompanying Poisson experiment and

——

et K be the maximum of unity and

sup{C(v); v < (1::-32 n)-4}.
v

M
Then both &% and P¢ yield estimates © such that for

all @e8 one has

Eg{nhzfg,ra]} < 16 log,(17 K)

Note. For arbitrary © the word "estimate" may have
to be taken with the general meaning of Section 2.

Proof. In accordance with the above Note and the

definitions of Section 2, ene may acsume that © is finite.

Consider then an integer v such that r = 2V < n. Let &1

and AE be two sgets of diameter at most a containing points

iEAi such that h[ﬁl,sej ¥ hv* Let 3 denote any one of
e¥ or %% and let n denote the corresponding error sum

]

for tests. The inequality h{sl,se} > bv implies that

ﬂr[[sl},[sEJ]_i exp{~- r bﬁ]. For the Hellinger distance
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defined by L the square diameter of Ei is at most
1 - f1~af}r. Translating thic into L,-distances, one

obtains the inequality

ﬂrfﬂl.ﬁE} < exp({- rbf} o 2[1-[1~af)2r]1f2

o i %
e 4N,

A standard argument shows then that ﬂn(ﬁl,AE) <
i =
2, ¥ s
F%% with m_ equal to the integer part of n2 '.

To construct the desired estimates, one can then proceed
as follows. Suppose that the construction has been performed
for the integers 1,2,°** v-1 yielding a confidence set
B of diameter at most b_ .. One can cover B

v-1 v-1 v-1
according to the procedure of Lemma 5 and obtain a new
confidence set B, of diameter at most b~ such that, if
gEBv-l then

m

r
Prob(e ¢ Bv} = 2 C(v) '[\;J—EE}

The construction can start at v=1 sgince bf-l = 1 so that

the diameter of © itcelf is not larger than bv-l‘ Froceeding
in this manner, let us shrink the successive sets Bv up to
some integer v = k. The probability that the last set
obtained does not contain the true © 1is at most the sum of

the probabilities of not covering encountered at each step.
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M
Taking an arbitrary point © in Bk yields

k o
=2 & ¢(v) 20 ¢ ,

28 -
Folh™(e,8) > 2 <
l<v<k

This implies

E.’\ g 2""
E,(h"(8,0)) =< 2 kPg[h (6,8) > 0]

B . A
¥ .5, gt Pg{hE(G,G} > E'k*jj.
j=0

In the second term on the right, one can replace
A -

Pg[h‘?(g,@} > 23 k} by the bound
l<y<k-j

2 C(v) exp[ﬂnE_v},
where p 1is defined by 4B = log 2.

This second term is therefore smaller than the sum

3294 3 C(v) pd-k exp(vpn2"")
0<j<k

213/% = ev) 2 expl-pn2"}.

1<v<lk

-

Restrict the possible renge of k to values such that

pn2”" > 2. 1In that range the function £(x) = 2 exp(-pn2™)

is convex. Thus, one can bound J by an integral, giving
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the inequalities

L1374 -k

J =

K(2 exp[-EnE_k] + f:_% £(x)dx},

provided that K > sup{C(v); 1l<v<k}. This yields

J < 1T K E-k EJ:P[-EnE'k].

~k M
Adding the term 2 EGEhE{Q,G} > 0} and taking k equal

to the largest integer for which

!
K

n
Z5F log, (17 K)

gives the bound of the theorem.

Remark. In Euclidean spaces the number of sets of

diameter a needed to cover a set of diameter b is
v b d v-1
approximately of the form C(v) = G(milli , Where d is the

v

dimension of the space. Since we have chosen the a and

b, to maintain a conctant ratio, it follows that the co-
efficient log 17 K of Theorem 1 is roughly proportional to
the "dimension" of € for the distance h. However, note
that the covers used never involve any set of diameter smaller
than g0 =3 ii%igl with v at most 1032n. Thus, © may
be allowed to have arbitrarily large topological dimension

provided that the =ffects of this large dimension occur only

in neighborhoods of diameter smaller than [E'Sfxﬁ;j.
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Corcllary. Let & be an experiment satisfying the

conditions of Theorem 1. Then, for k > 0

n(e™™) < 4 /B log, TTR/E

This follows from Proposition 3.

The result may be compared to the expression obtained
for Gaucsian experiments in Section 3. It was shown there
that n(En IH ) x = exp(- %;llvff_ if r denote the
Euclidean dimension of the Gaussian meacures, Here we obtain
only qfﬁn,8n+l} < 4 .2 \/XE for a "dimension coefficient"

r = lngE 17 K, but the expressions are obviously similar.

The above corollary could alco be stated for the Poisson
experiments (7" and f?n+k. To compare ¢ and {?n, we
shall use an additional experiment better than either one.

For this purpoce, construct a space 7 in the following

way. Assuming that the measures are probability measures

Po
on a cpace (¢,a), we shall denote ™ the direct product

of m-copies of ¢ with the product o6-field ¢". If

m=0 thiz will be interpreted to be a one point set with

2

a trivial s-field.

For each integer j=0,1,2,*** let nj be the product

%j b4 Zj. where

i) 1if j < n, the space fj is the product Ug
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and Z, is the product ™)

k|
ii) 1if j > n, the cpace ’%ﬁ is the product -

¥

n

and Zj is the product 7T,

T.et 7 be the direct sum of the cpaces Q..

]

For ©¢8 construct a probability meacure Qg on 0

ac follows, First czelect an integer j according to the

o nd
Poisson distribution so that Prob(N=j) = e = %T .

Once j 1is ascertained, select an element ¥y in

%a according to a di:tribution F direct product of the

j,e
required number of copies of Py Similarly, select a

zeZ. according to a distribution C.

] j,e
the required number of copies of Pg: Thus, on 0, the

j
_ ]
induced measure is the measure e n.g_ F, %G, .
jt " j3,e j,e

direct product of

In words, the experiment § o obtained is describable
as follows. One observes the Poisson variable N and then
take a number of observations equal to max(N,n).

On the space 7, one can define two projections f and
g which yield experiments respectively equivalent to the
experiment &" and the Poissonized version (M. Specifically
if j<n, themap f is the identity map of Qj on its
first component

45"
pProjects Qj onto e If j>n, themap g iz the

Similarly if 4§ < n, the map g

identity map of &j.
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Observing f amount to observing N and taking n
observations from P, anyway. This is an experiment ik
equivalent to £ However, note that e also provides
the value j of the Poisson variable.

Let 7% denote the ¢-field constructed on the entire
space 0 for the experiment T and let -E% and E% be
the subfields induced by the projections f and g.

dpplication of Proposition 3 and Theorem 1 yields the

following.

Proposition 5. Let A = 4‘j§{logg 17 K]lfg, where K

is the number occuring in Theorem 1 for the experiment
& ={pg; @e@}. Let B ={QQ; 2e@} be the experiment defined

above on the s5-field (Z. Then

i there are probability measures ' on (& such
1. on (F sguch

that Lﬁf igs sufficient for [Qé; ©@c@}, and such that Qg

i ca . 1 t -1/4
and Q, coincide on Cﬂf and otherwise E'qu_QG|F < An
on f;

ii) there are probability measures Q; on (X such

that {ﬁg iz sufficient for [Q;; 6e®), furthermore

Ll1g-qul] < an™

4 1 : 3 i
and Qg coincides with Qg on ;ﬁg.

Corollary. Under the conditions of Theorem 1, ocne has

ATED. Ty G

In fact, Propocition 5 gives a result somewhat stronger
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(see Torgersen [12]) than the above Corollary, since it

yields the existence of measures Qé and q; with

; y R - 1/4
appropriate marginals such that §1|qg-qgf| < zhn” Y%,
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