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1. Introduction. The purpose of the present paper is to answer a

question about joint asymptotic nmormality of random variables {Kn;ﬂg
when the marginals are asymptotically normal. The result given here
is easy, but we do not know of adequate references. It answers a
question that continues to be asked by students year after year.

Simple examples will show that a pair of variables (X,Y) may
have Gaussian marginals, be uncorrelated and yet be far from jointly
Gaussian. So, to obtain joint asymptotic normality one needs some
restriction. The one used here is approximate infinite divisibility.
This occurs often for sums of independent or nearly independent
sumnands and is obviously necessary.

2. Notations and Definitions.

We shall work in the plane metrized by the maximum coordinate norm.
Extension to higher dimensions is easy. If P 1is a measure on the plane,
its first coordinate marginal will be P' and the second marginal will
be P, For two measures P and Q their (Kolmogorov-style) distance
will be K(P,Q) = 5upA1P[AJ - Q(A)! where A ranges of the class A
of all rectangles with sides parallel to the coordinate axes. For
A€A and € > o0, let A° be the set of points whose distance to A

does not exceed €.
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The (Lévy-style) distance of P,Q is a number L(P,Q), infimm of the
e >0 such that P(A) < Q(A®) + ¢ and Q(A) < P(A®) + e for all
AEA,

We shall also need a cross between the metrics K and L. To define

it if A€ A, let Afo,e) be the set of pairs (x,y) such that there
is a évair (x,v) € A with ly-vl < e, Take for KL(P,Q)
the infimm of the numbers € > o such that P(A) < (fA(o,e)] + e and
Q(A) < PlA(o,e)] + e for all AEA.

3. The theorem for the Kolmogorov distance.

THEOREM 1. Given an € > o there isa & > o with the following property.

Let P be a probability measure on the plane such that

a) There is a Gaussian measure G' such that K(P',G') < 6.

b) There is a Gaussian measure G' such that K(P",G'") < &.

c) There is an infinitely divisible @ such that K(P,Q) < &.

Then there is a Gaussian G such that K(P,G) < e.

Proof. Assume that the statement is incorrect. Then there is some

e, > 0 for which it is violated. If so, for each integer n one can
find a measure P such that max{K[PI‘l,GI"}, K[P]'{,GH}] < 1l/n for some
Gaussian measures GI'l and G;_: but K{Pn,G] > e, for all Gaussian G.

The distance K is invariant by shifts and by scale transformations
on the separate coordinate axes. Thus one may assume that {GI']L and G
are both N(0,1). If so, the sequence {Pn} is relatively compact for
the Lévy distance L. Taking a subsequence if necessary, one can assume
that L[P'n,P] =+ o for some P. By construction P' and P" are

N(0,1). Given any £ > o one can find an o > o such that

P(A) < P(A) + ¢ for all rectangles A€A. Thus L(P,P) > o implies




that K(PH,P‘] =+ 0. Since K(Pn,ﬁ]_:: Eo for any Gaussian G one
concludes that K(P,G) > € for all G. However P is infinitely
divisible with Gaussian marginals. Thus it must be a Gaussian measure.
This contradition proves the desired result.

4. The theorem for the Lévy distance.

THEOREM 2. The statement in Theorem 1 remains valid if the Kolmogorov

distance K is everywhere replaced by the Lévy distance L.

Proof. The Lévy distance L is shift but not scale invariant. Proceed
as in the proof of Theorem 1, obtaining a sequence Pn with
L[Pn,q_l} < 1/n for some infinitely divisible Q, L(Pﬁ,G!;) < 1/n,
L[P;{,GH} < 1/n but L[PH,G} >, for all Gaussian G. Here we can
assume that G'r!\ is H[D,Eﬁi] and G;l' is H{o,frzl}. Now suppose that
there exists a mmber b > o such that min{crn,"fn] >b for all n.
Then, just as in the proof of Theorem 1, convergence in Lévy distance
implies convergence in Kolmogorov distance. Thus this case is covered
by Theorem 1.

A second possibility is that one of the two variances, say ”121’

stays larger than a fixed b > o but Ti =<+ 0. (The o_ may tend to

n
infinity.)

In such a case convergence of L{Pn,qn} to zero implies that the
cross metric }G.[Pn,t}n] also tends to zero. Since KL 1is invariant by
scale changes on the first coordinates, one can change scale and
assume that o, = L. Thus one is again reduced to the relatively compact
case and the argument of Theorem 1 applies. If both o o and
T "> 0 the situation is trivial. This completes the proof of the

theorem.



5. Concluding remarks.

Note that Theorems 1 and 2 have been stated as approximation theorems,
without assuming existence of limits. Of course convergence to normality
of marginal distributions does not imply convergence of the joint
distr‘ibution, because the covariance of the approximating Gaussian may
vary. However convergence of the marginals implies relative compactness
of the joint distributions. Then the Lévy distances can be replaced by
any topologically equivalent metrics, such as the Prokorov or the dual
Lipschitz metrics. We do not know however whether a result such as
Theorem 1 holds for these metrics. A result such as Theorem 1 or Z can
be formulated for classes other than the class A of rectangles with sides
parallel to the coordinate axes. We do not know for what classes the
theorems are true.

In some cases one wants to know the covariance structure of the
approximating Gaussian measures. A simple result is as follows.

Suppose that the marginal P' is approximated by a Gaussian G’
that has the same mean and variance as P'. Suppose that the analogous
result holds for P". Then the joint Gaussian G approximating P can
be taken with the same means and covariance structure as P.

To show this one can argue as in Theorems 1 and 2 that it is
enough to look at relatively compact sequences. Then the variances of
the approximating Gaussian marginals can also be replaced by truncated
variances of Pﬂ and P‘r: respectively. The approximability of the

covariances then follows from the inequality Ixyl < %{XZ_'_};] '



Theorems 1 and 2 are expressions of the fact that an infinitely
divisible distribution camnot be close to Gaussian unless its Lévy
measure is concentrated near the origin. One could attempt to make
this more precise and give a relation between the ¢ and & of
Theorem 1.

We conjecture that it may be possible to prove a result of the
following nature:

Conjecture. There is a constant C such that if (a)(b)(c) of
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Theorem 1 hold and if o < § < Ce~ then K(P,G) < e.

(This is based on a rough argument to the effect that the Lévy

measure M' of Q' satisfies

M' {x; |x]|=1} < C, st

for T €(0,1]. We have not actually carried out the proof because we

do not lnow what are the best achievable results.)




