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Let © be a parameter set and let {Kj; jed} be independent
observations such that, when 8e 8 1is the true value of the parameter,
the distribution of Kj is given by a measure Pe 5 on some space

(xj,Aj}. Let hj be the distance defined on © by

] - 5 2
hils,t) *gf{#dps_j A, )

Let H*(s.t) = E h;{5|t}. Metrize @ by H and take a prior measure
u on the Borel field B of 8.
Take for estimates functions x + 8(x) which minimize the posterior
expected risk E{H®[8.8(x)]|xl.
It is shown that if © has for the metric H a finite dimension
D and if the measure u is suitably related to the metric H then the

estimates described above satisfy an inequality of the form

sup E{H?[8,6(x)]|8} < C,+C,D+C0 Tog D

2 3

where the coefficients Ei depend only on the measure p. Selecting
this.measure appropriately one can give for the Cf numerical values
independent of the probabilities pB,j under study.

The result improves a variety of previous results about the rate

of convergence of Bayes estimates or maximum probability estimates.
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1. Introduction

In a previous paper [1] the present author considered the asymptotic
behavior of Bayes estimates for the case of independent identically distributed
observations and for parameter spaces subject to a dimensionality
restriction.

In the present paper, we consider independent variables which are not
necessarily identically distributed. The parameter space © 1is metrized
by a certain Hilbertian distance H obtainable from Hellinger distances on
component spaces. It is assumed that for H the space © has a finite
Kolmogorov dimension D.

It is shown that if a prior distribution u is sufficiently well
spread out on 2 then the corresponding Bayes estimates @ satisfy an
inequality of the type E[Hzﬁﬁ,ﬁlla] < C(D,u) where C(D,u) is a number
which depends only on the dimension of the space £ and on certain features
of the measure yu.

It is also shown that one can select prior measures u for which the

quantity C(D,u) 1s bounded by a term of the form
E1 e EED + CS DlogD

where the Ei are universal constants. This can be compared to the minimax

risk value given in [2].

*Suppnrted by the U.5. Army Research Office-Durham Grant
No. DA AG 29 76 G 0167.



The contents of the paper are as follows. Section 2 recalls general
inequalities on posterior distributions, relating posterior probabilities to
power functions of tests.

Section 3 describes the specific assumptions made for the present
purposes. It also recalls briefly a construction procedure analogous to the
one used in [1] to obtain test functions.

Section 4 deals with evaluations of Bayes risk for a specially
constructed prior measure.

Section 5 gives inequalities for more general priors.

2. General inegualities on posterior probabilities

Let © be a set with a o-field B. For each 8 €0, let P, be a

B
probability measure on a space (X,A). Let u be a positive finite measure
on the o-field B.

It will be assumed throughout that for each A € A the function
g ~—~ FB(A} is B-measurable. If so one may define on A a marginal
measure S such that S(A) = Jpﬂ{ﬂ}u{dﬁl+ One can also define a joint
measure on AxB by the integrals JBPB{A}u[dB]. This joint measure will
be represented by the symbol P,(dx)u(de).

If (©,B) is sufficiently regular the measure Pyldxu(de) can also

be disintegrated in the form
P (dx)u(de) = s(dx)F, (de)

where Fy is a probability measure on (5,B) called the posterior
distribution of 6. Although we shall not assume that such a disintegration
exists, we shall often proceed as if it was available. In all the arguments

given below we shall need only fixed sequence of disjoint sets {AU} and



the conditional expectations Fx{Au}' For such fixed sequences one has
always FH{UAu] = E Fx[nu} almost everywhere. Thus genuine countable
additivity of the Fn is unimportant.

In the sequel the space © will be a metric space, with a distance
called H. We shall be interested in a particular point Eﬂ, a neighborhood
B = {8: H(8,8,) <b} of 8, and the values F (B°).

For any set B €B such that u(B) >0 let P, be the measure
PE = ii%j-jﬂpﬁu{dﬁ}‘ Then the marginal measure S is equal to
u{B}PB-Fuggﬁ}PEc so that FE is dominated by S and the Radon-Nikodym
density Tﬁ? is well defined up to an equivalence.

A first remark is as follows: For every set B €8 such that u(B) > 0,
the posterior probability function x --=+ Fx[E} is equivalent for S to

dp
the Radon-Nikodym density u{E]7ﬂ?+ Indeed for every A € A one has

dPE
[ Fa®s@0 = [ pgmen) = uw)| s .

B
Thus, if V 1is a measurable neighborhood of some element of © and

if C is a measurable subset of VY one can write an inequality

r(C)dP.
fol®) < SreyargFavIEP, -

Now let 0 be another probability measure on (X,A) and let w be

a test of PE against (. (By this is meant that one tries to make
!l['l—m}dt}+Jm:lPt small.)
The above inequality yields immediately that
JFI{E}q[dH} < J[1-m|{:}]Fi{Em[dx} + %—va-m + !m{x]lFx{E]F.u.{dx}
i%IP,I,-DI + [['I—m{x}]f]{dx} + ﬁ%} Im{x}Pc{dx] :



To insure that the left side of the above inegquality is small it is
sufficient to insure that each of the three terms on the right is likewise
small. For the term IFv-QI, with Q = Pﬁﬂ’ we shall make IP?-FBDI
small by taking the neighborhood V small enough. This will unfortunately
make the ratio w(C)/u(V) large. However even though the inequality written
above is rather wasteful in this respect, it will still be possible, in the
next section, to find tests w which are sufficiently good to insure that
all terms are small.

From bounds on Fx{C}‘ when C s the complement of a ball
B = {8: H[E,Eul_iii, one can obtain bounds on certain risks by integration
by parts.

For instance, let #(x) be any point of © such that JHE[E.E{I}]FH{dB}

is minimum or almost minimum, so that
2r. = 2
[#re.80x)1F,1d6) < [Ho(0,00)F, (d0) .
X
The triangular inequality implies then that
H2le,,8(x)] < & [H2(8,8,)F, (do)
0* - 07 x :

a8 J;Fx{EtJtdt :

for C, = {e: H{E,ﬂﬂ} >t}. Therefore

ELH®(8(x),8)9,] < 8 J;{fo{ct}an{dxy}tdt .

Remark. In some cases one wishes to use instead of a finite measure u
an infinite positive measure. The above arguments remain valid as long as
the marginal measure § = IPHu{dBJ is o-finite. However the ineguality
given just above refers then to what is called the "formal Bayes estimate"

which is obtained by minimizing the posterior risk.



3. Tests for independent observations

In this and subsequent sections we shall consider an experiment
E = {Pa; 6€8l, given by probability measures on a space (X,A).

It will be assumed that (X,A) 1s the direct product of spaces
{Kj,hjl; j€J and that Py 1s a product measure P, = x Ps.j where
Pe. j is a probability measure on {Hj,ﬁj]. The set of indices J 1is left
entirely arbitrary. It may be finite, or countable, or uncountable.

For each j €4J, let hj{s,t] be the Hellinger distance defined by

2 B 2
né(s,t) = 5 J[.r’dpm - iy 5)

Let HZ(s.t) = § h(s,t).
i J

Our first assumption refers to this function H.

Assumption 1. The function H is a metric on the set &,

—

By this is meant that H(s,t) = 0 implies s =t and that H(s,t) <=
for all pairs (s,t). The first condition can always be achieved by suitable
identifications. The second is automatic whenever J 1is a finite set
since each hj is such that 0 < hj <1

Give to spaces of measures such as Py 5 BEB or {Pﬂ; BER} a
metric induced by the L,-norm denoted IPE_#tI'

It is clear that for H the maps 6 ~-+ F‘B and B ~~+ pa,j; JEJ
are uniformly equicontinuous. In particular they are measurable with
respect to the Borel field B of © for H.

Thus, if u 1is any arbitrary probability measure on (©,B), the

measures Pa{dn}u[dﬂl mentioned in Section 2 are well defined.

The main restriction to be imposed on (©,H) ds the following.



Assumption 2. The space (@,H) has dimension at most D in the sense

that, for any finite number b, every subset of © which has diameter 2b

or less can be covered by 20 sets of diameter b.

This assumption is stronger than the corresponding assumption in [2]
since there only covers by sets with diameters larger than .025 were
considered. It implies that every bounded subset of © is precompact. For
many other implications of Assumption 2 see [3].

The following Proposition is a variant of a result given in [1]. The
proof sketched here incorporates some improvements over that of [1]. The
improvement was noted by D. Dacunha-Castelle. The present author had also

used a similar method independently in lectures given in the Spring 1977.

Proposition. Let Assumption Z be satisfied. Let a be the number
a = .05 and let ¥ =]§Tug[l - (v -E-E-E]E] & %—

Let A be a subset of & such that (1) H(t,8;) > b for every

tE€A and (2) A can be covered by N sets of diameter at most a. Then

there is a test function w available on E such that
i) [E]w}dPaﬂ < HEETE:[I[-TIJE]',
i) Impt < eexp{-yb’} for all t€A.

Proof. Cover A by sets UI-:" k=1,2,...,N each Uk having diameter
at most a. For each U, take a point s €U, so that H(s..8,) > b.
Consider disjoint subsets JITI gr m €M of the set of indices J

such that for each m
2 o
2 EE{hj{ED’Sk]’ JEerik} < 3,

If [bE.."El] is the integer part of {hzfﬂ}l, it is possible to find at



Teast [bgfﬂ] such disjoint sets.

Let P[S’Jm,k] be the product measure P[s,Jm,k] = H[ps,j; jEJm,I-:]
on the product o-field A[Jm k} = K[Aj;,jEd“]k]. The affinity between
P[Bﬂ’dm,k] and F[sk,dm,k] is at most E-E.

In the space of probability measures on Al[-.lm I:J' let B(m,k) be the
ball which is centered at P{sk,dm k} and has Hellinger radius a.

For any element = of B(m,k) the affinity between = and
P[Eﬂ,Jm k} is at most 1- {Jine'z— a}z. The ball B(m,k) is a convex set
s EU,.

,k}i k
Let J' be the unfon J' = U[J ; mEM]. The closed convex hull

which contains all the measures P{s,Jm
k
of {P(s,d'); €U} is contained in the product of the B(m,k).

It follows that the affinity between P(8,,J') and any element of Uk

is at most

n
[1-(A-e2-a)21k < expl-3yn }

where e is the number of sets meE M.

myk?
Thus there is a measurable function W s 0 =< w, < 1 such that

r
J{]-mk}dpﬂﬂ-rjmkdps g_exp{~3vnk]

for all s € Uk.
Now let w = inf W, and replace the integer Ny by the lower bound

k
{hEIE}- 1. This gives the result as stated.

Remark 1. In order for the bound of statement (i) of the Proposition
to have some content it must be that N exp[-vhzj <1 or equivalently

sz > log N.
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Remark 2. The number < wused here is very close to 3 but slightly
g

larger. Thus one could replace it by (1/6) and replace 3y by the

approximate value EET < 1.65 .

The following corollary will be used in Sections 4 and 5. Take a

number z = 0 and let Bn be the ball
- fa- Ho _
B“ = {6: H {B,Eul-cz+ﬂ}, n=0,1,2,... .

Let A, =B ,\B .

Corollary. Let Assumptions 1 and 2 be satisfied. Then there exists a

test function ¢ such that
0 o <@ § @™ ey,
n:

‘
ii) JdadPSiEETEKP{—T{Hn]I} for all s€A .

Proof. Let w be the test constructed in Proposition 1 for testing

A“ against FE| . Take ¢ = inf W The result follows by simple algebra.
0

n
Remark. Let V be the ball of radius a/2 centered at Hu. One can
easily modify the construction of Proposition 1 to insure that (ii) of the
above corollary holds but (i) is replaced by the assertion that
=
f“_q}]dpt = E“{EJD E] (z+n)% Zexp-y(z+n)]
"I

for all t € V.

4, Bounds for a special prior measure

The notations and assumptions used in the present section are the same

as those of Section 3.



On the Borel field B of © we shall construct a measure 2 as
follows.

Assume, according to Assumption 2 of Section 3, that © has dimension
at most D. For each integer n =1,2,... let a = exp[-%%& and Tet B
be the number B2 n'zexpf-%wn].

Let Hn be a maximal subset of © such that any two distinct elements
s and t of Hn are at distance H(s,t) > o

To each element of Hn give a mass equal to B,- This gives a

certain measure A . Llet A =7] a.
n

Remark. The measure 4 constructed above is analogous to a measure v
constructed by C. Preston in [4]. However there seems to be some difficulty

with the construction described by this author.

Lemma 1. For the measure A described above any set BE B of

4
diameter b has measure at most A(B) 5;%;[2h]" and any closed ball of

radius a has measure at least B

Proof. According to Assumption 2 one can cover B with no more than

EEE}D sets of diameter o . Since each set of such a cover contains at
n
most one point of M the cardinality of M NB is at most (%t-'—}“. Thus

n
2(8) < (20)°% o P and

B

A(B) < (2b)°53 = (2b)P 7L .
na nn

This gives the first bound. For the second just note that any ball of

radius o must contain an element of H". Hence the result.

Remark. Eliminating n from - and B, oOne sees that the relation

between the radius o and the mass £ 4s given by
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b
Bla) = {:;%}EE—E .
(log a)

Lemma 2. Let 5 be the measure defined on A by S(A) = Jpal{ﬁﬂj*

hen 5 is o=-finite.

——

Proof. To prove this we shall use the tests ¢ provided by the
Corollary of Proposition 1, but modified according to the remark which
follows it.

Let M be a maximal element among subsets of © whose distinct points
are at distance at least a/2.

Let 8,5 1=0,1,2,... bea listing of M. For each B let Vs
be the ball of radius (a/2) centered at B;- For each integer k and
each i the corollary of Proposition 1 modified as explained provides us
with a test function 4(i,k) such that

1) [0-e01,601p, < c, n;{km}wzexp{-ﬂk*rn}}, for all s €V,.

if) J$L$.k}dFt <G exp{-y(k+n)} for all t such that

k+n < HE{t,BT} < k+n+l |

Let ¢, = m%x{¢{i,k]; 1€1;1 where I, is the set of indices i such
that Hzﬁﬁirﬁu},i k.

It is easily verified that b is integrable with respect to 5.

One can also assume without loss of generality that ¢E = ¢k so that
by is the indicator of a set.

To conclude it will be sufficient to show that any set A such that
IJnl EED ¢, =0 has S measure zero. However according to the inequality (i)
written above JEIAdPsl[dSJ = 0 for every bounded set E. The result

follows.



11

Returning to the situation described at the end of Section 3, let A“

be the annulus An = {@; 2+nf;HE[E,Bu} < z+n+1}.

Lemma 3. Let Assumptions 1 and 2 be satisfied and let A be the

measure described in this section. Let x ~-= F!{An] be the posterior

probability of A . Then

[Fytan., Py (1) < (zwn)

!TD D/2

= 2e"expl- 200y 4 E¢T{§JD{1+H?
2
. E-Ih* %_ 4D[I+H]E+{DIEJ

expi-v(z+n)}

Exp{-%{z+n}}

Proof. Let m be the integer part of z+n. Let V be the ball of

radius L centered at Bg- The inequalities of Section 2 yield

fFH{AM}PE (dx) < $IP,-P, I + j{l-q}}dF’H + ?l—T{'}.,—‘Jﬁ}r:de :

0 0 0 An-1

Here %1Pv'PBﬂH E_Eﬂm. This yields the first term in the above inequality.
The second term is the bound given in Proposition 1. The third term is
obtained by replacing h{An_1} by the upper bound given in Lemma 1 and
replacing A(V) by the lower bound B

This leads to the following result.

Theorem 1. Let Assumptions 1 and 2 be satisfied. Let A be the

measure constructed above. Then there are constants EI_T such that for the

formal Bayes estimate & one has

sup E[HE{Q,B}|E] <€y +C,0+C0T0gD .
3]

Proof. According to the inequalities of Section 2 it will be suffi-

cient to bound the expectation
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£ W0,00) = [([H(0,00)F,(d8)IPy (00 .

Now, select a constant z and observe that since a = .05 one can

bound the function fi{z+n} of Lemma 3 by the simpler

]
2 2
flz+n) = 2 exp{ﬁh}expf— EEF } + E%§v+]}eﬂT{4ﬂ}D{z+n}E+ exp{-%{z+n}} .

Also

r oo
jHEEE,ﬁD}Fx{dEJ <z+ E]{z+n]Fk{An_1} .
n‘:
Thus
E Ho(8,8,) < z + ET[z+n}flz+n} ,
n:
The constant 2z will be selected below in such a manner that the two

terms in f(z+n) are decreasing functions of n on (0,=). Thus the

series can be replaced by an integral, yielding

E HEIE.GU} <z + KExsexp[-%x}dx + 2 exp{gﬁ}Eexp{-%}xdx .

_ ﬂE dvy ] _ D
for K = {T+'I}e (40)° and s = 3+f.

To obtain a bound we can for instance take that value of z which
minimizes the function

g(z) =z + KIGQSExp{-%ﬁ}d: .

z

The value in question is the value 2z > 1 such that z = %?f where y 1is
the solution of the equation y = log y+A with A = l—mgkﬂuq %5 It

follows that
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g
£{A+l0g Al < 2 < ":r,—ﬁ[mﬂ—frmgn] .
At the minimum
= X33 -
alz) = z + I;{Ii-z} expl %ﬁ}dx .

Thus

2z 2 A
¥2-25 — AT

glz) = z +

The coefficient A used above has the form

2
A = log %? + Ei;ﬁ Tog(40) + %[4y~rlnq{1-+%§4] .

=1
It can easily be seen that A > 3.74 so that A{A-1) < 1.4, and
glz) < z+17.

The second integral gives a term equal to

r:ﬂ
jzexp{—%%}xdx = 1%942[1-F§%£]Enp{-¥%}
1o 2D

>

IA

since z > 1. This gives

E H(0,8,) < ::2.1&]{”%[1} +z+17

< 17 + 270 + (3.18)z .

To obtain the result as stated it remains to bound z itself by a
Tinear combination Ei*’EéD4-CiD1ugD. This is a matter of algebra which

will be left to the reader.
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5. Bounds for some other measures

In the preceding section we have used a specially constructed measure X
as prior measure. It should be clear however that a large part of the argu-
ment does not depend strongly on this particular choice.

In the present section we give inequalities for a class of measures

subject to the following restriction.

Definition 1. Let u be a positive measure on (9,B). We shall say

that w is algebraically related to the metric of @ if there are positive

constants [K..T_.I} i=1,2 with the following properties.

M

2

i

i) If B is contained in a ball of radius x > 1, then u(B) < Kyx
T

if) If V is a ball of radius x, small, then u(V) > Kx ©.

For a measure u which satisfies the relations of the definition it is
easily seen that the o-finiteness of the marginal distribution S asserted

by Lemma 2 still holds. One has also an analogue of Lemma 3 as follows.

Lemma 4. Let u be algebraically related to the metric of (8,H)

and Tet Assumptions 1 and 2 be satisfied. Then for the annulus A1 one

has the inequality

JFK{An_llPBﬂ{dx] < f,(z+n)

E

o
+
=

|

FE[z+n} = 2 e:p{-f{‘;T*:l} + eqTHﬂ}D{z-l-n]Iwzexp{-*rl[zm}}
1

K 5T
l:—.l[."'.-lrnll2 ]Exp{-%:{z+nj} .
2

+ ¥

Proof. The proof is the same as that of Lemma 3 except that one takes

nzly.

for neighborhood V the ball V = {&: H[B.ﬁulgexp{— ~
2
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This leads to the following assertion.

Theorem 2. Let Assumptions 1 and 2 be satisfied and let u be alge-

braically related to the metric of © 1in accordance to Definition 1.

Then there are functions Cys €54 Cys €y depending only on the ratio

H]IKE such that the formal Bayes estimate & satisfies the inequality

sup E(H*(8,0)]8) < €, + Cyr, + Cyt + Cy7logT
where T = ITIEK{'E.I ,D)
Proof. Replace the function ‘FE of Lemma 4 by the larger
f(z+n) = 2 exp{-l%f—;l} + eqTH +—E21-J{4'0}D{z+n}”Eexp{—%{z+n}} .

Proceeding as in the proof of Theorem 1 one sees that

M'L-—'l

1

rEl‘.'l
E{H (8,8 o) 18g} < EJ % exp{-L}dx +z 4 Kr exp{-%ﬂdx .

F

K
for a coefficient K* = EdTl:] +H—T]II[4D}D. The first integral gives a con-
P

tribution equal to

ET 7 7
]' '[T+l-lexp{-—"——2 }
T
T2 2
E‘[‘E
which will be inferior to —-_f—+‘| as long as z > 1. The second part of
the right side reaches its minimum as function of z at a value such that

z=g$£x with x = log x+lugl’, }+ ] 1ng]{

At this minimum value the cnntﬂhutmn of the second part is inferior
to z+ [2:?[*(2-{11-2]]'1 since vz > (T+2).
The remainder of the argument parallels the corresponding part of the

proof of Theorem 1 and will be left to the reader.
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6. Supplementary remarks

The results of Section 4, with bounds which are linear in D and
DlogD 1look very similar to the results of [2] giving minimax bounds.
However there is a substantial difference between the two approaches.

In [2] the "dimension” D(e,d) is defined essentially as in Section 3
above except that all the covers considered involve sets of diameter at
least equal to d 3_2_?. Thus the dimension D(©,d) can be very much
smaller than the D of Assumption 2. In fact 0D(©,d) can be finite and D
infinite. Also the fact that D{(@,d) is finite does not insure that the
bounded subsets of © are precompact.

The technical point at which finiteness of D 1is used in the proof can
be seen in the proof of Lemma 3 where one takes a neighborhood V whose
radius may have to become arbitrarily small to render IP¥'PEGI small.

We do not know of any procedure which avoids this problem (except of
course for the cases where one can bound the probabilities F (A ), n
large, directly from other considerations).

A different aspect of the above results is as follows. The argument
of Proposition 1 involves bounding the affinities between measures of the
type P{S'dm.k} and P{aD‘Jm,k} by the quantity exp{—Eh?{s,Eﬂ}; jWEJm,k}.

This last expression is precisely the value of the affinity for experi-
ments where the p&,j are replaced by Poissonized versions. That is
.3 BEO} one first draws

-
a number N at random from a Poisson distribution which has expectation

instead of carrying out the experiment Ej = [pEJ

unity. Then one carries out N independent replicates of Ej‘ This gives
an experiment Ej. It follows readily that the bounds obtained here are

also valid for the product of the EE.
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However the replacement of ?[l-h?} by exp{-Ihg} which is largely
innocuous if all the hj are small can be rather deleterious if one or more
of the h? are close to unity.

This can be illustrated on the Gaussian situation.

Suppose for instance that each pﬂ,j is a Gaussian distribution with
expectation e €0 = Rk and with identity covariance matrix on the Euclidean
space RX. Then h?{s,t] = 1-Exp{-%|s,t|2} where |s-t| is the ordinary
Euclidean distance.

In this case if the set J has n elements then HEES,t} =

n[]-—exp[—%{s-tlz}] but the affinity between P, and P, s Exp{-%15-t|2}+

t
The difference between the latter expression and Exp{-HEEE,t}} is not

too bothersome for very small distances |s-t| but leads to problems when
|s-t| is large.

For instance very small sets of © still have dimension for H close
to k, as explained in [1]. However the same cannot be said for the space
as a whole since for H the space © has diameter n and since it cannot
be covered by a finite number of sets of diameter n/Z2.

This has led R. Birgé and D. Dacunha-Castelle [5] to modify the results
corresponding to our Proposition 1 and its corollaries.

One possibility studied by these authors is to replace the metric H
by the symmetric function W(s,t) = log ifﬁﬁgﬂﬁz' or by a distance d
which is suitably related to W.

This Teads to results which can be used to ameliorate the present ones.

With such modifications, and even without them the results given here
can be used to improve those of [1] since actual bounds are computable,

instead of just rates of convergence.
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Even for small sets, the restriction that © have finite dimension is
a much stronger restriction than the type of restriction used to prove
continuity of Gaussian processes for instance in [6]. However, as the
example of the Gaussian distributions shows, one cannot hope to obtain
inequalities which are much better than those of the type E{Hz[ﬁ,ﬂilﬁ} < CD.

In addition one can easily find examples which show that the
dimensionality restriction does not imply that the likelihood functions are
bounded, much less that they are continuous.

A possible example is given by densities f(x-8), with respect to
Lebesgue measure on R' if one lets f(x) = E|x|'1exp{-xz} and take for ©
the ball @ = {8; |8] <1},

Thus the arguments given here cannot be replaced by direct arguments
on convergence of stochastic processes, although appropriate modifications
may be possible.

Finally, in Sections 3 and 4 we have deliberately allowed infinite
prior measures. This is partly for simplicity and partly because replace-
ment of the loss functions Hzlﬁ.ﬁj by suitable gain functions yields then

a possibility of investigation of maximum probability estimates as in [1].
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