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1. Introduction, This is a sequel to the papers [1] [2] [3]
of J. Hajek and to the papers [4] [5] of the present aﬁthnr.
Sometime before [4] appeared, but too late to make revisions,
Hajek communicated to me two results which would have simpli-
fied and improved the statements of [4].
In the Summer of 1973, we debated the subject briefly.
Hﬁﬁek expressed the wish that someone should write it out
properly. His premature disappearance may well delay
realization of this wish for some length of time. In the hope
that the present paper may help in the eventual fulfillment of
Hﬁaak'a desire, I have attempted to summarize the situation,
indicating in passing where additional research seems
necessary.

For simplicity, the paper deals only with "local"
asymptotic properties, as described in [1] [2] and [3].
Problems of a global nature, such as the existence of consis-

tent estimates, will not be mentioned.
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Within this restricted framework, the paper consists of
two distinct parts. The first refers to the local admissibility
results of [3], extending them to two dimensional parameter
sets, and, to a certain extent, to higher dimensions. The
second part refers to [4] and to the conditions under which,
fpr independent identically distributed observations, the local
asymptotic normality requirements of [3] are satisfied,

More specifically, the contents are as follows. Section 2
recalls some definitions and propositions from decision theory,
following essentially [5]. The main results are two proposi-
tions which can be regarded as abstract versions of Hajek's
Theorem 4.1 in [3]. The theorem in question consists of two
parts, The first part, relating to minimax properties or
analogous statements, is covered by our Proposition 1., The
second part of Hijek‘a Theorem 4.1 says that all sequences
which have the required optimal asymptotic behavior must be
asymptotically equivalent in probability. A general version
of this statement is the subject of our Theorem 1. It should
be noted that the framework of Proposition 1 or Theorem 1 does
not in any way refer to asymptotic normality. Thus, even
though the arguments are abstracted from Héjekis proof, we
bypass entirely the fine machinery represented by Héjekfs

Lemmas 3.1, 3.2 and 3.3 in [3].



Section 3 describes Gaussian shift experiments and asymp-
toticaily Cauesian experiments. The results of Section 2 are
applied there to clarify the situation described by Hé}ek ir
[3].

Section % returns to the independent identically
distributed case and improves the results of [4] according to
remarks made by J. Héjek.

Section 5 deals with a definition of Fisher information
and differentiability in quadratic mean. It refines some

results of [3] and [4].




Section 2. Experiments and limits of experiments.
Let © be a set, One can consider that an experiment
£ 1indexed by © consists of a o-field Q@ and of a map
@ ~> P9 from © to the space of probability measures on 2 .
The set f%b which carries the o-field @ will not play an
essential role here. The L—space L(&) of the experiment
€ 1is the smallest band which contains all the Pg ;
To specify a decision problem one needs an experiment &,
a space Z of possible decisions and a loss function.
Tt will be assumed that a decision space consists of a
set Z and of a uniform lattice I of bounded functions
from Z to (-w, +»). The set I is a uniform lattice if
it is a vector lattice for the pointwise operations, contains
the ccnstantlfunctinns and is complete for the uniform norm,
The loss function W 1is a function from © x Z to

(== ,=] subject to the restriction that, for each ©, one has
igf {Wb(z} s Zel)> ~w,

The space 4ﬂfs,r} of decision procedures available on
g for the decision space (Z,I') will be taken equal to the
space of all transitions from L(£) to the dual TI'™ of the
uniform lattice I'. Equivalently, a decision procedure p
is a bilinear map from I' x L(€) to (-«,+«) such that, for

all pairs (v,u) € T x L(€) one has w+p ut > 0 and




1p Q+ = I|H+]l . This last symbol designates the ordinary
(total variation) norm of p e L(&).

On ii?i&,r} we shall consider two topologies. The
simple topology of convergence pointwise on I x L(&) and
the topology of convergence in measure defined by the
property that p, ™ p in measure if {|‘f|‘.}v -yplsp> =+ 0 for
each >0, w e L(€}) and each <y e I.

The nonrandomized procedures are the extreme points of
e, T). It is easily verified that they are characterized
by the property that they correspond to multiplicative maps
of T into the dual M(€) of L(&). Equivalently, p is

nonrandomized if
2 2
Yp - () =0 for all vy eI .

Suppose that W 1is a loss function on the decision
space (Z,T). We shall define the risk R(@,p) of a

procedure p e/J(€,I') at the point © by the relation
R(O,p) = sup {¥pBg ; vel , ¥y = W,).
8

With this definition, the function p ~> R(6,p) is always
lower semicontinuous on the space /) (&,T) topologized by
pointwise convergence on I x L{€). For this same topology
Jﬁi&,rj is a compact Hausdorff space,

Let € be an experiment and let (Z,',W) be a decision

space with a loss function W. We shall denote &(&,I,W)



the space of all functions £ from ® to (-« ,+w«] which
are such that there is a p e/ J(€,I') satisfying
f(e) = R(©,p) for all €@ € @& If m is a probability
measure with finite support on @ , let x(&,[,W,m) =
i%f{:f £(@) m(do) , £ ¢ /(€,I',W) )} . The minimax theorem
says that a function g from ©® to (-, += ] belongs
f(E€,I',W) if and only if

[ gdm > x(&,I',V,m)
for all probability measures in which have finite support
on @,

Consider now two experiments & = (P 8 ¢ ®] and

8’
¥ = {Qg : 8 ¢ 8] indexed by the same set @ but correspornding
to different o-fields @ and & respectively. The

deficiency ©&(€,3) 1is the smallest e ¢ [0,1] for which

there is a transition T from L(&) to L(%) such thar
L -

sup 3 ||TB = Qll < e .

e
Equivalently, 5(&,%) < ¢ if for all decision spaces (Z,T)
and all loss functions W such that 0 < W = 1, for every

there is an fer(E,I',W)

g € R(¥,T,W)/ such that £ < g + € . For the purposes of
this kind of definition one can restrict the triplets (Z,I',W)
drastically without modifying the resulting number G(€,%).

See [6] for instance.

The "distance" between £ and ¥ will be taken equal to




a(€,%) = max ( 6(&,%), 5(5,e) ] .
This is only a pseudometric. If one says that & and § are
equivalent, or are of the same type, when A(€,3) = 0, the set
ﬂ;i@} of experiment types becomes a complete metric space
for A.
Suppose that € = {Pﬂ ; © e ® 1is an experiment indexed
by © and that A is a subsat of ©@. Denote &(A) the

restriction £(A) = (P @ e Al of € to A, The weak

g}
topology of E:[B} is the weakest which renders continuous
the restriction map € ~> €(A) from IE{@} to [E{AJ for
each finite A, For this topology E;[E] is compact.

Assuming ©, Z and I' fixed, let W and V be two
loss functions on (Z,I'). The inequality V < W will mean
that vb(zj 5_wg{z] for all pairs (0,z) € @ x Z .,

A loss function V will be called special if for each
@ the function z ~- vg(z] is an element of T.

The following proposition strengthens the statement of
Proposition 5 in [5]. Since the argument in [5] is inadequate,
we give a complete proof. As mentioned in the Introduction,

the intent of this Proposition is essentially the same as that

of the first half of Theorem 4.1 in [3].

Proposition 1. Let ¥ be an experiment indexed by . Let

(Z,I',W) be a decision space with a loss function W. Let £




be a function from @ to (-» ,+w] which does not belong

to R(¥,I,W).

Then, there is a special loss function V such that

V < W, a probability measure m with finite support on @ ,

a number o > 0 and a weak neighborhood U gof ¥ in

EE(EJ such that

J l:f+ﬂ:ldm . J(.[E':F.-V:m}

for all £ e U .

Proof. let ¥ = [QEI ; © € @), Since f does not belong to
®(5,I',W), there is an m with a finite support S such that

J fdm < x(%,I,W,m). Take two numbers a and b such that
fdm < a<b < x(%,I,W,m) .
J X

Let ETQ ; 8 ¢ S} be any set of elements of I' such that

Yo = Vg for ® ¢ S§. The set of procedures p e 8,T)

such that | {Tgpqgjdm > b 1is open for the pointwise topology
of gﬁjfﬁ,F}. Since R(©,0) = supT{T{IQE st v el , ;ﬂwg}

the open sets in question cover the entire compact gﬂ?iﬁ,P} "
Thus one can extract a finite subcover, yielding a finite

family (vy ; ; i € I) such that if o e (5,T) then

2

IRt Yo,i © QE}dm > b for at least one i e I. Let V, be

Uﬁ = sEp[ngi ; 1 e I}] if © € S. For values © ¢ S take

for V, any element of I' such that Vg, < W,. Then V < W,




Furthermore V 1is special and such that [ Vg @ Qg}dm > b
for all o .

Let K= sup(|Vg(z)] ; @ e S,2¢€2) and let U be
the subset of EE[E} formed by those & whose restriction
to S satisfy the inequality

ale(s) , ¥(s)] = 2.

S
This set is a weak neighborhood of & in [[-(@). For each

& = {P

e’ 6 c®), £ e U one has

(b-a) _ atb
2 - 2

i [‘Igpngdm > x(%,r,v,m] -
for all p Er,{f;'/(ﬂ, I'). Therefore, the function £ + [E;—a}
does not belong to ®R(&,I',V). This completes the proof
of the Proposition,

It was shown in [5] that certain results of [3] can be
obtained by application of this Proposition. However the
second statement of Theorem 4.1 in [3] does not follow from
this. To obtain it we shall first prove the following
abstract version of Héﬁekls argument.

Consider a given system (&,Z,I',W) and particular

experiment ¥ = EQB ; 8 e B) .,

Theorem 1. Let f be an admissible element of &(%,I,W).

Assume that there is only one procedure o ¢ Jﬁfﬁ,?} such

that R(@,0) = £(©) and that this ¢ is nonrandomized.
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Assume that Ev-ﬂ § weakly and let Pv,il ;s 1= 1,2

be two elements of ﬁijiav,r). Suppose that for all special

V=<W and all © one has

loss functions

lim sup Vo Py, i Pg,v < (o)

v
and this for i =1, 2 .
Then for every v e I' and © ¢ @ cone has

lim lTI%,E h Tih,llPﬂ,v Diia

and each finite subset S of © , let

Procof. For each v
a(v,5;, be the deficiency E[E[S},Ev(S}] of the experiments
There are transitions Tv S from
2

restricted to 8S.
L(%) to L{Ev} such that

%Hijs QQ = PQ,‘H‘“ = {1{1":5}

Let o(v,5,i) be the element

5 of ;CTEE,F}.

*Uf*thiB«p:a9ET—limitﬂ*wiii‘ﬁﬁ‘fﬁﬁﬁﬁ‘ﬁE’T
f

For the o(v,S,i) this means

for all 8 e 5.

o(v,8,1) = Py iT‘u,

d S increase.

both v
limits along the filter whose base are the

| that we consid

sets

ool - :)5 s 5’ fi te--] e
- |

folv?,8',1) : v
this filter?/ Let V be a

! Let o, be a cluster point o
special loss function smaller than. W and let [i?[]s be
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[19]]g = sup(|Vg(z)| , @ ¢ 5, z € 2] .

Then

Yo Py,1 Ty, s W= Vg Py 4 By + IIVIIgalv,s) .

It follows that
lim sup Vo U(v,s,i)qg =< (o)

and consequently Vo criqg < f(0) . Since o was admissible
and unique this implies o; = 0 . Equivalently, o(v,8,1) = ¢

pointwise on T x L(%).
£ L
One can also introduce a procedure Py,3 = g[pv,1-+p“’2]
and the corresponding o(v,S5,3). For the same reason
o(v,5,3) +o.
It has been assumed that ¢ is nonrandomized. Thus,

for every < € I' one has TEU = {TU}E in the dual M(%) of

L(5) . Note that ~° o(v,S,1i)

[y o(v,8,1)]° =0 .
This yields

0 = [vo(v,s,i) -"fl:r]2
2 - z
= v o(v,8,i)+ v o - 2[vo(v,8,1)lveg

Since TEG{V,S,i}‘* ?20 and <y o(v,S,i) = vy o for the weak
topology w[M(%) , L(%)] one concludes that the right side
of the above inequality tends to zero for this same weak
topology. However, since it is nonnegative, it must then

tend to zero in measure. It follows that both wz{v,ﬂ,ij
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and [v 1:r[_1.4,5;.ij]‘E converge in measure to the same limit
2 2
Yo=(ys)" .

One can also write

TE U{V,E,i] e [-:I" g('v,S,ij ]E

e r )

2
= Py,i Tv,E - (v Py,i v,S

2 2
R R TS i

In this identity both brackets on the right are nonnegative.
Thus both of them must tend to zero in measure, and thus
fﬂr 1 = 1 ) 2 ] 3 -
1 !"'C = - I
Let ¢, be the difference ¢ %[pv,E pv,ll , and

consider the identity
a 2 2 £
[y Pv,3] + [vo,1" = % [v Pv,l] + Ly pv,EJ Yoa

Apply the transformation Ty to both sides of the identity

s D
and pases to the limit, Since all the {Tiﬂ.i_]z T s

» L
converge in measure to TEG the remaining term P, < tends

to zero, Explicitely [?q%]E Tv 5 Qg-ﬂ-ﬂ . However

[vo,1° By, = [v9,1% T, 5Q+ ||7]] a(v,8) .

Hence [+ ¢v]E Pg,v and a fortiori |v $v]PQ,u must tend

to zero for each © ¢ @ , This completes the proof of the

theorem.
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As can be seen, the argument relies heavily on the fact
that the limit o is nonrandomized. We do not know what
can occur when this condition is not met,

It should be obvious that Proposition 1 and Theorem 1
could be applied to situations which are remote from the
usual Gaussian limits. However, because of its special
importance we shall now illustrate their application to the
Gaussian case, limiting ourselves to a strictly minimal

elaboration.
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Section 3. Gaussian shift limits.

Consider the k-dimensional vector space Rk, and an
experiment ,E?n {Gt . Rk] indexed by Rk. Such an

experiment will be called homogeneous if the measures which

constitute it are mutually absolutely continuous.

One can say that ;gj is a Gaussian shift experiment
linearly indexed by Rk if it is homogeneous and if the
logarithms of likelihood ratios A(t) = log [dﬂtjdﬂﬂ} have
the form A(t) = tS - tKt' for some statistic S and
some matrix K,

There are, of course, other kinds of experiménts in
which the observations have Gaussian distributions. In the
present formula, the covariance system does not depend on the
parameters and the expectations are linear functions of
t e Rk. These are the only Gaussian experiments considered
here.

In the formula A(t) = tS - 2tKt' , if tKt' = 0 the
measures GG and Gt are the same. One could then reduce
the dimension of the indexing space Rk. Also, when K is
nonsingular, a simple change of wvariables will reduce K to
the identity matrix.

Taking this into account it will be convenient to define

a standard Gaussian shift experiment as follows.
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It will be assumed that Rk carries a Euclideaun norm,
denoted |.|. With the corresponding notation for inner
product and transpose, the standard Gaussian shift experiment
of (RF, |-+]) 1is an homogeneous experiment 8@ = [Gt i ER#1

such that

d G

2
log E—EE = tS5 - 2]t
0

for a certain statistic S which takes wvalues in the dual
(R)' of r*.

It is often necessary to consider restrictions of /2%7
to subsets of Rk. Here, we shall only consider restrictions
to subsets C EF which are convex cones, with a nonempty
interior and with a vertex at the origin of Rk.

For such a cone one can say that [Gt , £t e C} 1is the
standard Gaussian shift experiment restricted to C if it is

nomogeneous and if the equivalence classes

d G

L(t) = 105{;3:) + el?

are such that

L{s+t) = L(s) + L(t)

for all pgirs (s,t) e Cx C .
It is true that the experiment 4&3713 not entirely

specified by the above description. However, its type is
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entirely determined. One version of &7 is given by the

Gaussian measures

G, = n(t,I) on R

Many statistical problems lead to the following situation.
One has a sequence , or net {Ev} of experiments

Ev = {Pﬂ,v
there is a map o ~» Ev[aj of A into the Euclidean space

(R®

e Av} indexed by sets ﬂv . For each

, 1.1) and a distinguished point A - ﬂv . For

simplicity of notation we shall write o 1instead of a
3
k

and assume that ﬁv(u )=0 in R,

o,V

In such a case one can define sets ﬁv[c} by the

relation

Afe) =(a;aech , [E(a)] 2ec] ,

and let Ev be the experiment Ev = (P fin e ﬁv{t}] "

L _lc' ﬂ-,‘lr'

*
One can also construct experiments éﬁ; - [Qu y ;aisﬁv{c}]
in which Qﬂ,v is the Gaussian measure Gt ; & = Ev(u) of

the standard Gaussian shift experiment of [Rk, [21) -«

Definition. The net {Ev} satisfies condition (G) for the

maps [gv} if for every c¢ ¢ (0,») the distances
*

ﬁ(&u,c - ébv,cj tend to zero,

The image Ev{Av} of A, 1is some subset B of RE .

It may vary rather arbitrarily. The following assumption is
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intended to insure that By stabilizes itself and is not too

small,

Assumption 1. There is a convex cone C with vertex at the

origin of Rk and with a nonempty interior satisfying the

following requirement: Let U(c) be the ball of radius c

centered at the origin of Rk. Then the Hausdorff distance

between viﬂ U(c) and C/1U(c) tends to zero as v

increases,

When Assumption 1 is satisfied the asymptotic normality
requirement (G) can be replaced by a variety of equivalent

statements. Two possibilities are as follows.
d P

Denote ﬂv(a] the logarithm of the density E—?ELE
o

L

of that part of Pu which is dominated by Ph
]

v

?

1f Sy is a Euclidean valued statistic available on

Ev’ let L[Slea v] be its distribution for the measure

*

P -

Requirement A. There are statistics Sv available on €, »

k
taking values in R~ and such that when Isviuvjl stays

bounded, the difference

{8 | P
v a'ﬂ’

tends to zero vaguely. Also, for bounded {gy{av)] , the

J) = (e (@), 1)
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deficiency of the binary experiment ({n(o,I) , n(¢& fc )}, 6 T;°

VeV
with respecF Lo (Pn,v . Puv,v] tends to zerc.
Regulirement B. If {Ev[uv}] stavs bounded than {PO v} and
[Pu y) are contipuous. Furthermore, letting Lh{a} =

v.’

2
v ) e = :
hla) + %l&v{uvj| 4o LE ““{ﬂv,ij} , 1=1, 2, 3 stavs

bounded and ﬁv{quB} - [gv{uv,ij + ﬁv(ﬂ
Lv(ﬂula} e [L‘,F{u‘.l,l} + L‘lﬂ'[:q"r' 2.1']

tends to zero in probability.

The three conditions (G) (A) and (B) are related as

folluws,

Lerma 1. One has always (A) => (G) => (B) . When Assumption 1

is satisfied all three are aquivalent.

The proof, which is not difficult but somewhat long,
will be given elscwhere,

Whenn (G) and Assumption 1 are satisfied, one can
rerlace the experiments Ev indexed by ;!5..‘iIII by other experi=-
ments ¥ indexed by € itself according to the following

¥*

scheme, Lot hrjn be the distance 5an = &{Ev,n ’gjv,n]

-n ) -
and let Ev = % rd av oo If there is a v, such that

b
Fs

=

3
=, implies B, = @ one can, from v_ on, lat

k]

gy ® Fu,v if there is an o such that gu{u} =t ., For

other values of t one can define Ft a by the obvious

¥
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relation involving likelihood ratios. If there is no v_  sucl
that v > v_  implies p, = 0 , one can take for uv{t} any

o
point av{t] € A, such that

€ - & (a,(€))] <8, + inf(|t - € (a)| ; aeA) .

]

One lets F be the measure P . This construction

P uv[t},v
gives experiments %% which enjoy the following property.

Lemma 2, Let Assumption 1 and (G) be satisfied.

Let Ev,c = {Ft,v s teCy, || ¢}
and é£%,c = {Gt : teC, |t] <e ) . Ihen for all

¢ € (0,») the distances ﬂ{ﬁv c Ag% :} tend to zero as Vv
» 3

increases.

The above conditions (G) or (A) are related to the
(LAN) assumption of [3] and the corresponding assumption of
[2] as follows, The paper [2] uses a stronger condition,
requiring a kind of uniformity which is pleasant, but happens
to leave out several interesting cases. Using the notation
of the present paper, Héﬁek requires in [2] that there.be

statistics Su such that

sup ( |8, (a) - &,(a)S, + 31&,(a)1%] 5 a e A(e) )

converges to zero in probability. It is however clear from
the context that such a strong requirement was used only for

expository convenience.
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On the contrary the (LAN) assumption of [3] would
correspond essentially to the weak convergence of 3, to
Q%?. This is weaker than our assumption (G). The difference
is not negligible, but not extreme, as can be seen using the
results of D. Lindae [7].

We have kept here a formulation which may be deemed more
restrictive than absolutely recessary because the metriza' le
nature of the convergence used lends itself more easily to
statements which involve approximations instead of limits.

Let us consider now some of the implications of (G). The
foilowing are only meant by way of illustration. For instance
we shall use repeatedly quadratic loss functions. However, if
as Héﬁek did in [3], one proves for the Gaussian case and any
specified loss function a unique admissibility result, then
Theorem 1 can be applied readily.

For the notation, let us agrce that if T, 1is any
statistic available on €, the symbol L[T§|t} denotes the
distribution of L, for the measure Ft,v involved in
Lemma 2.

Also Su will be any statistiec available on Ev 5
taking values in Rk and having an asymptotically normal

distribution as provided for in Lemma 1 and Requirement A.

Proposition 2. Let Assumptions 1 and (G) be satisfied, for a
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cone C which is the entire Euclidean space (Rk, 1.1) with

k<2, Let T, be any statistic available on €, Suppose

that for all t € C and all b e (0,») one has

2
lim su min(b T -t dF k .
¥ P J. (b, | v [7) t,v =

Then

lim [ min{1, ITv-Sv]}dPuv,v - 0

for all {a } such that sup [¢ (a )] < = .
e oSSR v Ty

Proof. For the lattice I' take the space of bounded
continuous functions on Z = Rk. Let W be the quadratic
loss function Wg{z] = |Q-z]2. It has been shown by C. Blyth
[8]) for k =1 and by C. Stein [9] for k = 2 that for the
Gaussian family G, = n(t,I) the observed vector X is the
unique estimate such that | [K-t|Eth <k for all t e Rk.
If V<W 1is a special loss function it is smaller than
min(b,W) £for some b, The assumptions made allow the appii-

cation of Theorem 1 with the result that

[19T,) - ¥s,) | @, = o

for all t ¢ Rk and all vy e I' . This implies the result
as stated.
In the present case one could carry out a direct argument

using the strict convexity of the square loss function, The
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argument is very simple, but it would not extend to the loss
functions used by Héjek in [3]. Note that in any case, the
results involve expected square deviations for limiting distri-
butions instead of the possibly larger limits of expected
square deviations.

One should not expect the result of Proposition 2 to be
valid for k > 3 since then the Gaussian vector X 1is nnt
an admissible estimate for usual loss functions. However,
for k > 3 and for the quadratic loss, there are still
functions X ~> @(X) which are uniquely admissible and almost

surcly continuous. Let then «r(t)

2
[ |le(X)=-t["dG_ and
suppose that Assumption 1, with C = Rk , and Assumption (G)
are satisfied. If T, ¢ ﬁfﬂv*r} and if for every

be (0,o) and t e R one has

lim sup [ min(b, [T -tlE]dF <~ r(t) ,
u v t,v -

then

lim [ win(1, iTv_q:{st”dFt o M
eV L]

As an example where C 1is not necessarily the entire
space Rk , consider the following situation, which occurs
for instance in Neyman's theory of C(a) tests [10] .

In this case C 1is a half-space whose boundary is some
hyperg tane H. The problem is to test H against the

interinr of C.
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Assume that X has the Gaussian distribution
G, =n(t,I) . Let Y be the projection of X on the
orthogonal complement of H . For any fixed aec (== ,+x) ,
the test which rejects H if Y > a has a certain probability
of error Ny for t € H, and a probability of error q(t)
for t e C\NH. Let ¢ be the indicator of the set ([Y>a].
Suppose that Assumption 1 and Assumption (G) hold for the
present C, For each v , let ?, be a test available on

€, - Assume that if t ¢ H then limﬁsup [ mvdFt,v = Mg

and if t € H\\ﬂ then lim sup [ [1-¢v}dFt " < q{t) . These
W L

conditions imply that

la [ o, - #(S )] dE, o = 0
v

Indeed ¢ 1is admissible for the Gaussian experiment. It is

uniquely defined by its power function, since [Gt Lt e C}

is complete. Also the tests @{Sv} have the appropriate

limiting behavior, since ¢ 1is almost everywhere continuous.
Finally, here is an example of application of

Proposition 1 .

Proposition 3. Let Assumption 1 hold with C = Rk . Suppose

that (G) holds and that € > 0 is a given number, Then

there is a Vg s 8 finite set S(C ©® anda b e (0,=) such

implies sup [ min{b, |T -t|2}dF > k=g
tesd » Es¥

that v > vD
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for every estimate T, € Jﬁiﬂv,r} .

This is a direct application of Proposition 1 using the
fact that the minimax risk for the quadratic loss function is
equal to k . It resembles the statement of the first part
of Theorem 4.1 of Hﬁﬁek in [3] or the statement of P, Huber
in [11].

The application of Proposition 1 makes it clear that tha
pair (S,b) depends only on k and & . The element Yo
depends on the rate of convergence of the e, - There is no
dependence on the estimates Tu . This was not made clear in

[3] even though a careful reading of Hﬁjek proof would

suggest that the fact was known to him,
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Section 4. Independent identically distributed observations,

The asymptotic normality requirements of Section 3, aad
a fortiori the weaker (LAN) requirement of ﬂijek in [3] are
gatisfied in a large variety of cases, Examples can be found
in Hﬁaek [12], in the regression models of Héjek and S$iddk
[13] as well as in %he papers [14] , [15] in which independ:nce
under the hypothesis is used to deduct results wvalid undex
dependent alternatives. However, it appears that the standard
iauependently identically distributed case is still not
completely understood. It is about this particular case that
Héjek expressed the wish that "someone should write it
properly." As will be seen below, we are still fa~ from a
definitive theory.

By the standard i.i.d. case will be meant the following.
Une has a fizxed parameter set © and a family {pEI ;9 € 9]
of probability measurcs on a o-field @ carried by a set A2,

n
For each integar n, one takes the direct products Pr = X Pg

e
on the direct products {’Ln : fln} of the pair {%, a) .jZI
The family [pg ; © € ®] ctays fixed and limits are taken
as n=—w ,
In words, one takes n independent identicalliy distributec
nhservations and let their number n tend to infinitv:

For simplicity we shall assume that P, =P implies

£t




26

s =t , so that O can be considered just another name for

Py - In addition, it will be assumed that a particular
GD € & has been singled out for special attention., Instead
of Py Ve shall write simply p .

0
Situations where the individual observations are still

independent, but with distributions which depend both on n
and on the label of the individual observation, can also be
handled as indicated in [16] and [13], but we shall not
consider these situations here except to say that some of the
results used below are specializations of results available
in the more general cases.

Also we consider here only local problems, as indicated
in the Introduction. This means that the sets of interest

are of the type (O : %1|F; - Pg || =1~ €] for some e > O,
0

An equivalent and more convenient formulation uses an
Hilbert space representation as follows. Let h(s,t) be the

Hellin_er distance defined by

T -
ho(s,t) = % J (Vdp -v@p_ ) .

With this metric @ can be identified with a subset g of a
Hilbert space H ., It will be convenient to assume that the
image of QD is the origin of H . The image of t ¢ @
will be denoted t .

The sets of interest are then the sets of the type



27

B( =) = Tak:: (== ) , the symbol H(b) denoting the
/n /a

ball of radius b centered at the origin of H .

It will also be convenient to use representations of H ,
or subspaces of H, by spaces of square integrable functions
as follows. Let 'E}D C ® be a part of ©® such that

QD € @ﬂ and such that {pg 1 B e E{}} is dominated. There

is then a probability measure p such that p(A) =0 if

and only if pg(&} = 0 for all © ¢ Efﬂ . One can take Radon-

Nikodym derivatives fg = dpg/du, with fgiﬂ « These £

belong to the space LE(JJ,) and the map t e[l‘,{/.’.-.?}{ £ - £)

e

with f = dp/dp 1s an affine isometry of the set

(£ :Qe‘BD] of LE{p.} into. H.

e
The following condition is analogous to condition (G) of

Section 3. The two differ in that the set B{c/{/i?) used here

is not exactly the same thing as the An{:cfz_} of condition
(2) .

Condition {G’}. There are maps [En} to a Euclidean space

(RS, |-1) such that € (8,) = O and such that for every

¢ € (0,o) the distance between the experiment

E’n,c = {PE ;3 @ € B{cj..,/ﬁ} } and the Gaussian shift
experiment
* —
Do = (UE(0),1) ;5 0 c Blep/R) )

tends to zero as mn—*cw .,
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In view of the results of [l] and [3] it is of interest
to know when [G’) holds. A possible answer to this question
is provided by specialization of statements to be found in
[16]. It will be convenient to use a condition weaker than
(G') as follows.

Let us call the experiments g [Pg ; 8 ¢ ] pairwise
asymptotically normal (at QG} if for every c¢ e (0,=) and
every sequence {sn}, gn € B(cj;fz} there are pairs of
Gaussian distributions (E;ilc=[n{0,n§} : n(an,ui)], g € (0,e0]
such that the distance ﬂ[C;L , (PE ,P: )] tends to zero

n

dag n-~*+rw .,

Decompose each p, as a sum p. = p! + p: of a part

t
p; which is dcminatgd by p and a part PE which is
singular with respect to p . Let Sglr(t) be the mass of
the singular part p: . Write the Radon-Nikodym density of
p! in the forn dpl/dp = [1 + Y(t)]° with 1 + Y(t) >0
considered as random variable for the distribution induced
by p .
Finally, let K be the covariance kernel
5

K(s,t) = h(s,0,) + h(t,0,) - h°(s,t) .

Lemma 3. The experiment e are pairwise asymptotically

normal at QD if and only if the following two conditions

hold :
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(G1) If sup i[ﬁ:ﬂ” < ® , then
n

1im n Sglr(s ) = 0.
= n

(G2) If sup ||,/;I'é‘n1| < =, then
n

2
lim n EiY(sn]l I{|Y{sn) e} = 0,

For maps {aﬂ], the conditicn (G') 1is equivalent to the

combination of (Gl) (G2) and of (G3) as follows

(e3) If sﬁp{n.,ﬁ"é'nuﬂw?nnj < w , then

Lim [n Kis,t )] - § & (s)[g ()] = 0.

Proofs of statements which imply Lemma 3 can be found in
[16] , pages 91-95.

In this Lemma 3 the only condition which involwves the
maps En or dimensionality considerations is (G3). We shall
return to it later. For the present note that the Lindeberz
condition (G2) and (Gl) are independert requirements, even
in the presence of (G3). Also, the combination (Gl) (G62) (G3)
does not imply in any way that the sequences 1‘,»*’-1:1 :; are
strongly relatively compact in the Hilbert space H, Cases
where they are must be deemed very special even though the
conditions of differentiability in quadratic mean of [12]
and [4] imply such a behavior. The relatively common occur-

rence of these cases lends some interest to the following two
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Pt
lemmas. We recall that s 1is the image of s € @ in the

Hilbert space H .

Lemma 4. Let {tn} be a sequence of elements of & such

that V‘E:’En converges to a limit t in the Hilbert space H.

Then the corresponding random variables Y[tn] satisfy the

Lindeberg condition (G2).

Proof. The only part of H involved here is the closed
linear span of the sequence En. Thus, there is no loss of
generality in assuming that {pg : 8 ¢ @ 1is dominated. In
this case take a probability measure pu equivalent to

{pg : 8 € 8} . Form the space LE{H} and let £_ > 0 be

= dpt /au.
n n

Similarly, let fE = dp/dy . Let J be the indicator of the

Mg

that element of LE{U.] defined by the density £

set (x : x E,%j, fE{x} > 0} . One passes from LE(LL'J to
H by the isometry ‘- (L4/2) {ft-f} . Multiplication by J
is an orthogonal projection of LEl.L} onto a ribspace L
LEf_p,’) with dp' = J dp . Thus, if \;’E?:n—rt , the images

1,/'H.]{ft -f) converge in LE{u'J .
n

The map g ~> gf_l is an isometry of LE{p,'] onto
LE(p} . Therefore Zn =,,-—’E .]‘{ft -—f}f-l converges in
n
LE{p) . This convergence implies uniform integrability of

the Zi . Explicitely, for each e > 0 there is a
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b e (0,0) such that
2
J 2z I{onI > b} dp < e,

for every n. In terms of the random variables I(tn} this

can also be written
n B [¥(e )| 10]¥(t )| > bi/m) < e .

This condition is stronger than the Lindeberg condition (G2).

The preceding Lemma 4 is essentially a version of Lemma %
in [4].

The next Lemma is intended to replace Proposition 1 of
(4] which asserts that differentiability in quadratic mean
implies a condition like (Gl) almost everywhere. The proof
given there is awkward. It is also garbled by inadvertent
substitution of indicators J where I - J should have been
written. The following argument is a version of an argument

transmitted to us by J. Héjek.

Lemma 5. Let En and tn be two elements of ©. Assume

— -— e
that .¢ﬁ1sn converges in H to a limit s and that ./n t

converges to t = -fs with B > 0 . Then [sn] satisfies

condition (G1l).

Proof. Since only sequences are involved one can assume, as
in Lemma 4, that {pg : @ € @ 1is equivalent to a probability

measure (. In the space LE{u} the assumptions of the lemma
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say that there is a ¢ ¢ LE[p} for which
e 2
1) [ v/n (€ -£) - ol% au=0
n
ii) if 11,5 {ft -f) + ﬁq}lz dp=—0 .
n

Let Z, be the indicator of the set {x : ¢@(x) =<0, £(x)=0]}

and let Z, be the indicator of [x: o({x) >0, £(x) = 0]

I

so that Z =2, + Z, 1is the indicator of ([x : £( x)

The first relation yields

o).

o 2
Jrz]_ |V fs -¢|” du=20
n

s 2 2 s
However Z, Lv&lfs -p| >n zlfs +2Z, 9 . Thus

n n
2 2
n [ Zy fsn dpo—+0 and [ Zy 9 dp=0. Similarly the second
relation implies that [ Z2 @E du = 0 . It follows that
J 2 ¢2 dp = 0 . Returning to relation (1) one sees that

JZlVA(E, -f) - ol® du=Jzl/ag, |° a
1 n

must also tend to zero, Hence the result,

A fairly common case in which the preceding lemmas apply
directly, is the situation where © itself is a subset of a
k-dimensional space Rk and where the map from © to 5 is
differentiable. This can alsoc be described as follows,

Suppose © (_ Rk and let £ be a stochastic process

whose covariance is given by E L (s) {(t) = p(s,t) = jﬁtdps&F:.
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Take ED € ® equal to the origin of Rk . The process (
is differentiable in quadratic mean at GG = 0 if there is a
vector £ = {gi,---,qi} of random variables such that

2

lim sup EI-I%T[[a:(t)-C{D)J-t{c'J'I] -0.
e—=0 |t|<e,te®

A ray {au ; a> 0} of Rk is said to belong to the
contingent of @ at zero if there are elements tn e B

-1
such that t_ =0 and t |t | " —u.
I n n

Proposition 3. Assume that the process ¢ 1is differentiable

in quadratic mean at zero. Then conditions (G2) and (G3) are

satisfied, If in addition the contingent of © at zero

contains straight lines [auj ; @ € (~w,4+w)] where the 1.:|.j

form a basis of Rk , then condition (Gl) is also satisfied.

This is an immediate consequence of Lemmas 4 and 5. We
shall return to differentiability in quadratic mean in
Section 5. For the present, note that it is not enough to
assume that the process t ~> Y(t) of Lemma 3 is differen-
tiabie in quadratic mean. An example can be constructed as
follows. For © e (- 2,%) 1let qg be the Gaussian
distribution n(©,1) on the line. Let s be a probability
measure which is singular with respect to Lebesgue measure.
Define measures pg by pg = {I—QE}qE +6°s , It is easily

checked that for this family the process t ~> Y(t) is
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differentiable in quadratic mean at zero. Also the process
t(t) admits one sided derivatives in quadratic mean. However
the singular masses Sglr(t) are exactly equal to ¢ so
that (Gl) £fails to hold. Returning to the general case
where © had no structure of its own, note that the condition
(G3) expresses the fact that the maps 32 t, are approximate
isometries for the convex hulls of the sets E[c;&%ﬁ in H.
This suggests that (G3) can be expressed as a condition
of a purely geometrical nature on the sets B(CAXPE] . The
following condition (C,) is of such a character. It implies

(G3) and is implied by a combination of (G3) and of a condi-

tion slightly weaker than the Assumption 1 of Section 3.

Condition {Cn}_ For each integer n, there is a

k-dimensional linear subspace Hn of H and a convex cone

G“(: Hn which has its vertex at the origin of I-In . For

every b e (0,o) the Hausdorff distance between H(b)/ ) C.

and H(b)/) I[.,/Eg) tends to zero as n == , In addition

the solid angle spanned by Cn in Hﬁ stays bounded away

from zero.

As mentioned above, it is easily verified that condition
(Cn] is equivalent to (G3) reinforced by an assumption of

nondegeneracy similar to Assumption 1, Section 3.
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It is also easily verified that the sets Cn must satisfy
the following slow variation requirement, Let (ml, mz} be
a fixed pair of integers. Then, for any b , the Hausdorff
distance between H(b)/[) {Gnmlj and H(b) [ (Cnmz} must
tend to zero.

This slow variation does not imply in any way that the
'En have a limit. The case where they can be taken fixed
and all equal to a given C is closely related to the
condition of differentiability in quadratic mean discussed
above. It must be regarded as a wvery special case.

Several examples which satisfy (G') with variable cones
Cn have been known for a long time. One may mention for
instance the shift densities [l - |x-8|]" or
C exp{ - |z-9]£] on the line, See [16] pages 108-111 and
[17].

Unfortunately a theory describing which sequences

[Cn] may arise, and when, is not yet available.
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Section 5. Differentiability in gquadratic mean.

As mentioned in Section 4, the situation covered by
Condition (C) , that is condition {En} with cones C_ all
identical to one given C is closely related to the situation
where @ 1is itself a subset of Rk and where the process
t ~> E(t) is differentiable in quadratic mean.

The present section is an elaboration on conditions which
imply this differentiability in quadratic mean and are often
easily verifiable,

Consider first the case where © 1is an open interval
of the real line.

In many statistical problems the measures Pg are given
by specifying their densities with respect to a common
dominating measure p . Explicitely one gives a function
(%,0) ~> £(x,0) defined on iEﬁx ® such that £(x,8) > 0
and [ f(x,0)p(dx) = 1 for each 0 ¢ @ ,

It is common practice to take derivatives with respect to
© for each fixed x and to call Fisher information the
number i(0) = [ (1/£(x,0))[3/00 £(x,0) ]E dp . Unfortunately
the literature is rather wvague about what happens when there
are points © possibly dependent on x at which the
ordinary derivatives fail to exist,

This author tried to clarify the situation in [4].

However, the statements made at the end of [4] could be
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interpreted to mean that one must check directly the absol.Ce
continuity of the images © ~> ./ f(x,0 . It was shown by
Hé&ek in [3] that one can instead check absolute continuity
of the maps © ~> f(x,0) themselves,

The following argument gives a precise result applicable
to many situations., Instead of absolute continuity we shall
use Lusin's condition (N). A function ¢ from an interval I
of the line to the line satisfies Lusin's condition (N) if
for every set S I which has Lebesgue measure zero, the
image o@(S) of S also has Lebesgue measure zero. This
condition is very much weaker than absolute continuity.

For any function ¢ defined on an interval I of

”E = (=w, +o) we shall use a derivative ¢ as follows :

&{t} is the derivative o'(t) of ¢ at t 1if this
derivative exists and is finite, Otherwise ¢(t) is zero .

Suppose that ¢ maps an interval I into an interval J
and that ¢ is real valued defined on J .

The composed function g = @ - ¥ has a "derivative" g
as above. It has also a "chain rule" derivative Er which
can be written g (t) = ¢ [¢(t)] &(t) . In other words
g(t) 1is zero unless both derivatives exist and are finite.

The following lemma asserts that, under suitable restric-

tions, the function g 1is the indefinite integral of g
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Lemma 6, Let ¢ be a function from an interval I to an

interval J and let ¢ be a function from J to the line.

Assume that ¢ and ¥ are continuous and that they both

satisfy Lusin's condition (N) .

Suppose also that ¢ admits a finite derivative almost

everywhere on J and let g = ¢ + ¢ . Then for any interval

[a,b] C I one has

b
lg(b) - gla)| =< [ |[g(t)] dt .
a

Proof, Let s = ¢(t) be a point of J at which the

derivative ¢l{s} exists, is finite and not zero. At such

a point one must have g(t) = é{t] . Let S be the subset

of J where @t exists but is zero and let T be the subset
where the derivative does not exist or has infinite absolute
value.

Denote the Lebesgue measure by A . We have assumed that*
MT) = 0. Thus, since ¢ satisfies (N) one has
ale(T)] =0 .

According to Theorem 6.5 page 227 of [1l8] , one has also
Alp(S)] = 0. Thus, one has g(t) = g(t) , except for some
set of values of t whose image by the map g = 9 - ¢ has
Lebesgue measure zero, The map g itself satisfies
condition (N). The desired result is then a consequence of

Thevrem 6.9 page 281 of [18].
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With this we can return to the Fisher information. For
this purpose, let (52% @) carry a positive measure pu and
let f defined on %x Lo Rl ﬂ? be such that
f(x,t) >0 and [ f(x,t)u(dx) = 1 . Let g(x,t) =/ E(X,€)
For each fixed x define a derivative g (x,t) as follows.
If f£(x,t) > ¢ and if the derivative f£'(x,t) = df(x,t)/dt

exists and is finite then

1
g(=x,t) = 2 £ixt) | otherwlse g(x,t) = 0.
< JE(%,E)

Let s(t) = 0 be defined by

s?(t) = [|s(xt)]® w(dx)

The map which associates to t the equivalence class of

g(x,t) in the space LE(u} will be denoted t ~> G(t) .

Proposition 4. Assume that for almost evervy x ¢ ;%Ei the

map t ~> f£(x,t) is continuous and satisfies conditiom (N) .

Assume also that for every compact interval [a,b] (C I one

b
has [ s(t)dt < o , Then the map t ~> G(t) is strongly
a
Ao F
differentiable at almost all points of I . For epewt all t

the function x ~> Etx,t) is in the class G'(t) . Further-

more G 1is an indefinite Bochner-Lebesgue integral of its

derivative G'(t)
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Proof. The continuity of t ~> f(x,t) implies that £ ir
jointly measurable and that the family of probability measures
Py with densities dpt = f(-,t)dy is dominated by a proba-
bility measure. The value BE{t} does not depend on which
dominating measure is used. Thus it is encugh to prove the
result assuming that pu itself is a probability measure.

The derivative 'E is also jointly measurable. By

Fubini's theorem one may write
- b
FUf le(x,t) |ae} u(ax) < [ s(t) dt .
a a

From this follows that for almost all x we have
 —
J le(x,t) |dt < » .. One concludes from Theorem 7.7 page 285
a
of [18] and Lemma 5 that for almost all x the map

t ~> g(x,t) 1is absolutely continuous and such that

g(x,b) - g(x,a) = | BE(xt)de .
a

To proceed, take a fixed element u of LE{p} and

let

<u, G(t)> = [ u(x)g(x,a)u(dx)
b flu) L Blxt)de ) u(dn)
= [ u(x) g(x,a)u(dx)
+ f:[ J u(x) 8(x,7)u(dx) ) dr .

This equation shows that G is the indefinite Pettis integral
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of g . However since 'E is jointly measurable and since its
norm is integrable, the Pettis integral is also a Bochner
integral. Hence the result,

The foregoing proposition can be complemented by a
remark as follows. Let us say that © 1is a Lebesgue point

of s if s(0©) <« and

13 1 +E

1lim 7= I |s(@+1) - s(@)|dt =0 .
=

ge—+0 -E

The following Corollary is analogous to Proposition 7 of
[4]. However here we have a special choice of "derivatives"
g . This replaces the o(t) of [4] by s(t) and allows
removal of the extra assumption of differentiability in

measure,

Corollary. Assume that p is finite and that for almost all

X the map t ~> f(x,t) is continuous and satisfies condition

(N) . Let @ be a Lebesgue point of t ~> s(t) . Then the

map t ~> G(t) is differentiable at t = © and the deriva-

tive G'(®) is the class of E{x,ﬂ} 2

Proof. Let P be the function mTUﬂ = %[g{x,ﬂ+T)-g{x,ﬁ}} .
Write g(x) for g(x,0) and let A be the subset of

on which {E% mT(x} = g(x). The definition of g implies
that ’

- 2
¥ a THARE | l2 = lgl
T T
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An application of Fatou's lemma shows that
lim inf | iq} IEdI.L > [ v du = [ [E]Edp,
T T Ze s )

The fact that © is a Lebesgue point of t ~> s(t)

implies as in [4], that
2 2 g
lim sup [ |o_["dp = s™(€) = [ [g["dp .
T

Let qblf be the function

¥> = inf |o

[E
T elzx

The above relations imply that
2
0 el

In addition |1,.{rT§E increases to a certain function vE

- ]‘FT|2 ] dp tends to zero as T =0 .

which is equal to |E[E on A, Since fvEdp. = | l-g-lgdu
and since E is equal to zero outside A , we conclude that
vE itself is almost everywhere zero on A% . Therefore

I [q:-_rizdu tends to zero as t— 0 ., It follows that
c
A
¢ 8 in measure and that [ lq:r_r!?"du—'- / igizdu . The

usual argument shows then that | Eq:I-T --g-lzdu, must tend to
zero. Hence the result.

The above statements admit a variety of converses. For
instance, suppose that the map t ~> G(t) admits almost
everywhere on I a weak derivative G'(t) . Assume also that

t ~> G(t) 1is the indefinite Bochner integral of G'. Then
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there is a version g(x,t) of G(t) such that t ~> g(x,t)
is absolutely continuous for almost all x and to which all
the preceding arguments can be applied.

Note that in this one dimensional case differentiability
in quadratic mean, and a moderate amount of integrability
leads immediately to densities f£(x,t) which are continuous
in t for each x . We are indebted to R. M. Dudley for
several examples showing that differentiability in quadratic
mean does not necessarily imply continuity of the trajectories
t ~> f(x,t) when the integrability conditions are removed.

However, one should specially note that continuity of
trajectories is not at all implied by differentiability in
quadratic mean as soon as the parameter space © is allowed
to have more than one dimension., This is true even for shift
families under rather severe integrability restrictions. For
instance, in RE, one can take, with respect to Lebesgue
measure, a density £ which is extremely smooth except that
ﬁear X = 0 it behaves like 1log log(l/|x|). The family
f(x-8) satisfies all due requirements of differentiability
in quadratic mean, but the trajectories are not continuous.
Similarly, for R3 one can take densities f which are

1
smooth, except that near zero they behave like |x| ° .,
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These examples, communicated to the author by
J. B. H. Kemperman, show that although differentiability in
quadratic mean entails a wealth of statistical consequences
it does not in any way imply proper behavior of certain
standard techniques such as the maximum likelihood technique.
It is to be hoped that the mystique surrounding these

techniques will eventually fade.
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