14. Suppose that under \(H_0 \), a measurement \(X \) is \(N(0, \sigma^2) \), and that under \(H_1 \), \(X \) is \(N(1, \sigma^2) \) and that the prior probability \(P(H_0) = 2 \times P(H_1) \). As in Section 9.1, the hypothesis \(H_0 \) will be chosen if \(P(H_0|x) > P(H_1|x) \). For \(\sigma^2 = 0.1, 0.5, 1.0, 5.0 \):
 a. For what values of \(X \) will \(H_0 \) be chosen?
 b. In the long run, what proportion of the time will \(H_0 \) be chosen if \(H_0 \) is true? What is the probability of \(H_0 \) being chosen if \(H_0 \) is not true?

15. Suppose that under \(H_0 \), a measurement \(X \) is \(N(0, \sigma^2) \), and that under \(H_1 \), \(X \) is \(N(1, \sigma^2) \) and that the prior probability \(P(H_0) = P(H_1) \). For \(\sigma = 1 \) and \(x \in [0, 3] \), plot and compare (1) the \(p \)-value for the test of \(H_0 \) and (2) \(P(H_0|x) \). Can the \(p \)-value be interpreted as the probability that \(H_0 \) is true? Choose another value of \(\sigma \) and repeat.

16. In the previous problem, with \(\sigma = 1 \), what is the probability that the \(p \)-value is less than 0.05 if \(H_0 \) is true? What is the probability if \(H_1 \) is true?

17. Let \(X \sim N(0, \sigma^2) \), and consider testing \(H_0 : \sigma = \sigma_0 \) versus \(H_A : \sigma = \sigma_1 \), where \(\sigma_1 > \sigma_0 \). The values \(\sigma_0 \) and \(\sigma_1 \) are fixed.
 a. What is the likelihood ratio as a function of \(x \)? What values favor \(H_0 \)? What is the rejection region of a level \(\alpha \) test?
 b. For a sample, \(X_1, X_2, \ldots, X_n \) distributed as above, repeat the previous question.
 c. Is the test in the previous question uniformly most powerful for testing \(H_0 : \sigma = \sigma_0 \) versus \(H_1 : \sigma > \sigma_0 \)?

18. Let \(X_1, X_2, \ldots, X_n \) be i.i.d. random variables from a double exponential distribution with density \(f(x) = \frac{1}{\lambda} \exp(-\lambda|x|) \). Derive a likelihood ratio test of the hypothesis \(H_0 : \lambda = \lambda_0 \) versus \(H_1 : \lambda = \lambda_1 \), where \(\lambda_0 \) and \(\lambda_1 > \lambda_0 \) are specified numbers. Is the test uniformly most powerful against the alternative \(H_1 : \lambda > \lambda_0 \)?

19. Under \(H_0 \), a random variable has the cumulative distribution function \(F_0(x) = x^3, 0 \leq x \leq 1 \); and under \(H_1 \), it has the cumulative distribution function \(F_1(x) = x^2, 0 \leq x \leq 1 \).
 a. If the two hypotheses have equal prior probability, for what values of \(x \) is the posterior probability of \(H_0 \) greater than that of \(H_1 \)?
 b. What is the form of the likelihood ratio test of \(H_0 \) versus \(H_1 \)?
 c. What is the rejection region of a level \(\alpha \) test?
 d. What is the power of the test?

20. Consider two probability density functions on \([0, 1]\): \(f_0(x) = 1 \), and \(f_1(x) = 2x \). Among all tests of the null hypothesis \(H_0 : X \sim f_0(x) \) versus the alternative \(X \sim f_1(x) \), with significance level \(\alpha = 0.10 \), how large can the power possibly be?

21. Suppose that a single observation \(X \) is taken from a uniform density on \([0, \theta]\), and consider testing \(H_0 : \theta = 1 \) versus \(H_1 : \theta = 2 \).