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Fast Evaluation of the Likelihood of an HMM: lon
Channel Currents with Filtering and Colored Noise

Donald R. Fredkin and John A. Rice

Abstract—Hidden Markov models (HMMs) have been used in In this paper, we propose and illustrate an approximation
the study of single-channel recordings of ion channel currents for strategy that can radically decrease the number of operations
restoration of idealized signals from noisy recordings and for es- aqjired to evaluate the likelihood while entailing little loss in

timation of kinetic parameters. A key to their effectiveness from The basic idea is to i tastates that ith
a computational point of view is that the number of operations to accuracy. 1he basic idea Is o ignore metastates that are erther

evaluate the likelihood, posterior probabilities and the most likely @ Priori or a posteriorihighly unlikely. In an example to be
state sequence is proportional to the product of the square of the presented in detail below, the number of operations is reduced
dimension of the state space and the length of the series. Howeverpy a factor of about 400.

when the state space is quite large, computations can become in- The remainder of this paper is organized as follows. In Sec-

feasible. This can happen when the record has been lowpass fil-,. . L
tered and when the noise is colored. In this paper, we present an tion I, we describe the HMM that relates a kinetic model to

approximate method that can provide very substantial reductions an observed noisy digital recording and show how it can be
in computational cost at the expense of only a very small error. We extended to account for filtering and colored noise. We then

describe the method and illustrate through examples the gains that show how the basic recursions of [3] can be accomplished for

can be made in evaluating the likelihood. the extended model and introduce approximations that produce
lower bounds on the likelihood. Finally, in Section II-E, we de-
|. INTRODUCTION scribe the way we have implemented evaluation of the likeli-

hood and our approximations. A collection of examples moti-

lDDEN .Markov models .(HMM.S) have recently fou.ndvated by models that have been proposed for ion channel ki-

application to the analysis of single-channel recordlngﬁeﬁcs are presented in Section Ill. Here, we examine in some
both for the construction of an idealized quantal signal fromaaetail the savings that can be acco.mplish’ed via our approxima-
noisy recording [4], [9] and for estimation of kinetic parametertsons and the size of the errors consequently incurred. Section IV
directly from the recording rather than from an idealized q y )

reconstruction [2], [10], [19], [17]. HMMs have also been use:éé);'?il:ss a summary, conclusions, and discussion of further di-
in a variety of other areas, for example, in speech recognition '

[18] and gene finding [14]. A key to their computational
effectiveness is that the number of operations required to
evaluate the likelihood or its gradient or to evaluate posterig; Model
proba_b|llt|e§ is proportional to the product of the square of We assume that aN,—state Markov process underlies the ki-
the dimension D) of the state space and the length of the .. . . . . . )
record () [3]. Aetics. We consider a discrete time process since in practice, the

Filtering and colored noise complicate the application &F ta are samples at time4t. The one-step transition probabil-

hidden Markov methodology to ion channel recordings I'n'espij fprthe trgnsition‘ — j are related to th_e genera@;:j .
o . . . _0Of a continuous time Markov process by matrix exponentiation:

principle, the state space can be enlarged to include metastatlgs_ exp(QAL)

[9], [19], and the standard algorithms can be used. In practice,. ~ DLt )

. : : -'Current levelsZ; are associated with the states, with the
however, the dimensionality of the new state space can easil . ; -~
. . . values being, in general, not all distinct. For example, a
become so large that computations are intractible. For examplé

if the underlying state space has cardinality six and a filt?Stem with two closed states and one open state would have
d

Il. THEORY

S . . =7, = 0, Z3 # 0. Denote the temporal sequence of states
of length five is used, the number of operations required o .
N . 6 9 y s(t). In the absence of filtering and noise, the observed
evaluate the likelihood is of ordes®T rather than6-T—a . .
current would bex(t) = Z,. In practice, because of filtering
factor of more than 1000. The problem of large state-spacée . .

: . ; . and noise, the observed currentlig) = (a * x)(t) + W(t),
dimension also occurs in other extensions of HMMs, for :
example, [11] wherea * = denotes the convolutiod’, a(k)z(t — k) and

pie, ' a(0), a(l), -- -, a(Ny) are filter coefficients}¥ (¢) is additive
noise.
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driven by IID Gaussian noiséx W = w, whereb(0) = 1, and The likelihood is
w(t) is 11D Gaussian noise with mean zero and variamt€eThe

FIR filter with coefficientsb can be considered a prewhitening L=Ply = Z ar(s(T) -+ s(T' = N.)).
filter [19]. Applying this filter to the observation&(t), we ar- s(T) - s(T—Ne)
rive at In practice, we must renormalize the to avoid underflow.
(This procedure was used in [15].) We define
y=brxaxz+w=frxz+w 1)

Ne= > aul(s(t) - s(t—No)),

wherey = b+ I, andf = b x a. The coefficients(k) can be o(t) U= N.)

determined by some variant of the Levinson—Durbin aIgorith&n< (t) - s(t = N.)) = g(s(t) -~ s(t — N.))/N,

from the autocorrelation sequence of the noise [19]. If the max- ¢ ¢ e/

imum lag in the sequendgk) is IV,,, the effective filterf (k) has  and N, = N,/N,_;. Note thatN, = 1, using the definition of
maximum lagN. = N+ N,,. From now on, we willwork with  ,, and N is the likelihood. We have

(1), referring tow(t) as the noise ang(t¢) as the observation at

time ¢t. There arél’ observations at = 1---7". For most pur- Nt&t(s(t) o s(t = Ne))
poses, we do not need the detailed structure of (1); itis sufficient = Z Gy_1(s(t—1) --- s(t — N. — 1))
that conditional on the state sequence s(—N.+1) ---s(T), s(t—N.—1)
the observationg(t) are independent, and the probability den- x P(s(t)|s(t — 1)g(yels(t) -~ s(t = N.))  (4)
sity P(y(t)|s) depends only 0R(¢) - - - s(t — N..): P(y(t)|s) = o ’
g(y(t)|s(t) -+ s(t = Ne)). and
T
B. Recursive Calculation of the Likelihood I — H N,. (5)
We can include the filter in (1) by extension of the state t=1

space [9] and working with a Markov chain whose states

" a"f%eN are determined by the requirement that
the NN-+1 “metastates’(s - - - sy, ). However, the transition K y g

matrix among the metastates is sparse, and we find it slightly Z Gy(s(t) - s(t — N,)) = 1. (6)
simpler to work with the original state space and extend the s(t) o s(t=N.)
usual recursive procedure [3].

Define

C. Related Recursive Algorithms

a(s(t) - s(t — Ne)) = Plyr -y, s(t) --- s(t — Ne)] (2) Our focus is on calculation of the likelihood, but we digress
briefly to give the form of the EM [3] and Viterbi [20] algo-

which can be computed recursively. With equilibrium probabilithms using the formalism of Section 1I-B. We do not neces-

ities 7(s) and transition probabilitie® (s'|s), we have sarily advocate use of the EM algorithm. Some form of quasi-

N.41 Newton method [8] may be more effective. However, the recur-

o ) sions needed for the EM algorithm can also be regarded as calcu-

a0(5(0) -+ s(=Ne)) = kliIO Pls(k)ls(k = 1)m(s(=N.)) lations of the posterior probabilities of states given the data, and,

a as such, can be useful for reconstruction of the ideal signal based

and, fort = 1...T on a fictitious HMM. Similarly, the Viterbi algorithm consists
of recursions needed to find the most probable state sequence.
ay(s(t) -+ s(t = Ne)) All of these recursions are complicated by the large numbers
= Z Plyy -~y & s(t) --- s(t = N. — 1)] of metastates, and our approximations can be applied to all of
s(t—N.—1) them.
_ Z Plys - ye 1 & s(t—1) - s(t = No = 1)] 1) EM Algorithm: Define
s(t—Ne—1) Be(s(t) --- s(t — N + 1))
X Pls(t)|yr -~ ye—1 & s(t = 1) -+ s(t = No — 1))] — Ply(t +1) -~ y(T)|s(t) -~ s(t = N. +1)] (7)

X Plydyr - yp—1 & s(t) -+ s(t = N. — 1))]

= > o a(s(t—1) - s(t— N, —1)))
s(t=N.—1) Br(s(T) ---s(T—N.+1))=1
x P(s(t)]s(t = 1))g(yels(t) -~ s(t — Ne))

which, like o, can be computed recursively as

=dy_1(s(t —1) -+ s(t — N.))P(s(t)]s(t — 1)) and, fort < T
X g(ys|s(t) - s(t — N,)) 3) Be(s(t) -+ s(t — No + 1))
where, in the last line, we defined - S;H)P(S(t +1)]s(1))
ai(s(t)---s(t—N.+1)) = Z ay(s(t) - s(t — N.)). x gly(t+1)|s(t+1) -+ s(t— N.+ 1))

o) X Braa(s(t+1), s(t) -+ s(t = N, +2)).
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It is straightforward to show, using a lemma from [3], that th®enote the maximizer b§(¢t — N.). H, then also satisfies the
EM algorithm leads to the iteration schem® — p for the recursion relation
transition probabilities, where

N Hipa(s(t = Ne+1), -+, s(t+1))
P(bla) = D. = Hy(s(t—N,) -+, s(t)) 0 4(t — N.)
with whereo denotes concatenation. Note that is the likelihood
of the state sequencewhich is to be maximized.
T
_ ~0 0
Nav= ; ai(a, 51 - sn.—1)p (bla) D. Approximations
x g(y(t+ 1)|b, a, 51 -+ SN.-1) Consider the computational cost of using (4)—(6) to compute

the likelihood. For each timg we computeNN-+1 values of
a (one for each of the metastates - -- sy, ), and each such
T—1 . . . . &
computation requires orde¥, operations. Calculation a¥,
'D:ZZ&O(a.s---SY_)ﬂO(as---s 1) P aues s operel ieali t
a t\@d; 51 N.—1)P¢\@; 51 N.—1 requiresN,, — 1 additions. Calculation of the likelihood thus
s =0 takesO(NN-1+2T) floating-point operations. If we compare this
with the computational cost when there is neither a filter nor au-
s1 --- $Ne to emphasize that these dummy variables are not Qregressive r;yqse colora_t|on, we see thz.it the \_/vork is multiplied
y a factorN.'<. For a simple scheme involving three states

sociated with specific times.) (N, = 3) and maximum lag due to filtering and noise coloration
2) Viterbi Algorithm: The Viterbi algorithm [20] is a dy- N' — 10, we have a cost amplification 6f9 — 59049, If, to

namic programming method for finding the sequence of state§ — . " L o
{5(t)} that is most likely given the observed data. It has be ¢ optimistic, we C(.)UId (;olrlnpute tr(;ethkellhoocti ﬂ:ﬁ _I'kO Il'r;1 d
used by [17] for finding a idealized record from which the ki- pis, We now require a Tufl second to compute the Ikelinoo

netics parameters are estimated by maximizing the IikeIihood%ri’Cx(?r’.n"’ilggi ;/tve will need to compute the likelihood many times to

the resulting sequence of dwell times. It has also been use . . - .
the context of speech recognition by by Juang and Rabiner [13%, he ker to speeding up the calculation of the I|kel|hpqd Is the
servation that the exact scheme, whether in the efficient form

who maximized the joint likelihood of the kinetic parameter 6 in th ¢
and the sequence of unobserved states rather than the mar ﬂ?&l( ) or in the raw form
likelihood of the kinetic parameters as in standard maximum

X Ba(b, a, 51+ sy, -2)

and o® and 8° are computed withp®. (We use the notation

likelihood estimation. To formulate the Viterbi algorithm in the L =Ply|= Z Ply & s] (10)
case of filtering and colored noise, we follow the notation of [9]. s
Let

wherey ands are historiesy; --- yr ands_y_41 -+ 1), in-
volves a large number of improbable and numerically unim-
portant sequences of states. For example, in a two-state model
(“closed” and “open”), the transition probabilitieBy,, P»1) are

likely to be extremely small. If they were not, we would say
that the sampling intervaht was too large. IV, = 4, say, we
expect to encounter metastates containing multiple transitions

Ht(s(t_Ne>7 T s<t>> = {§<_Ne)7 ) §(t_Ne_1)} (8)

be the most likely state sequence up to and including time
N, — 1. It maximizes

P(s(=Ne), =+, s(t), yo, -+, yr) (like C — O — C — O — O) rarely, and their contribution to
= P(s(=Ne), -+, 5(0))g(yols(=Ne, -+, s(0)) the sum in (10), or the role of anyfor such a metastate, might
t-1 be negligible.
X P(s(k+1)|s(k)) Our primary approximation is to choose a small toleranice
k=0 and neglect any metastatg - - - sy, for which the conditional
X g(rta]s(k —ne +1), -+, (L), Yo, -+, 1) probability
Let Plsy -+~ sn.|s0] < €1- (12)
Li(s(t — Ne), -+, s(t)) =P(8(=Ne),- -, 8(t = Ne — 1) We discuss quantitatively the effective reduction in the number
s(t—Ne), -+, 8(t), 90,5 Yt)- of metastates and in the computation time in Section Il for a
variety of realistic examples and choicescof
Then, L; satisfies the recursion The selection of metastates to be neglected based on (11) is
made once at the beginning of the calculation of the likelihood.
Lip1(s(t — No+1), -, s(t+1)) The selection depends, of course, on the transition probabilties;
= max Ly(s(t — N.), -+, s(t)) P(s(t + 1)|s(t)) therefo_re_, the_z selectlon_ ml_Jst be made repegtedly in the_ course
s(t—Ne) of maximization of the likelihood once each time the likelihood

X g(Ye1|s(t = Ne +1, -+, s(t +1)). (9) is evaluated.
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Fig. 1. Full forest, before any approximations, fér = 2 andN. = 3. The labels have no particular significance. See Table | for information associated with
the various nodes.

We can make a second approximation of a more dynamical TABLE |
character. Whenever, in evaluating (4), we encounter a value NFORMATION STORED IN THE NODES OFFIG. 1. "NODE' |'S THE LABEL
IN FIG. 1. “HISTORY" | S THE SEQUENCE OFSTATES REPRESENTED BY
THE NODE. “P” | s THE CONDITIONAL PROBABILITY OF THE PARTIAL

Z &t—l(s(t _ 1) . s(t — N, — 1)) < €3 (12) HISTORY. THE LAST COLUMN INDICATES WHETHER OR NOT THENODE IS
ELIMINATED (“PRUNED") WHEN €; = 0.001. NOTE THAT D5 AND D¢ ARE

AUTOMATICALLY PRUNED BECAUSEC; IS, AND, SMILARLY , D;; AND

D;> ARE ELIMINATED WHEN Cg IS PRUNED

s(t—Ne—1)

we replace the sum by zero. Note that this sum is the renormal-
ized version ofy;_1(s(t — 1) --- s(t — N.)). The elimination

of terms using (12) depends on the datavhereas the simpli- ﬁ?de glsmry f Egune?
fication using (11) depends only on the model and not at all on Ay 1 1. no
the data. The utility of this approximation is also discussed in B, 00 0.99 no
. By 01 0.01 no
Section IlI. By 10 0.005 no
As will be shown in Section Ill, quite substantial reduction in B, 11 0.995 no
computational cost can be achieved with small values aihd Ci 000 0.9801 no
6 C, 001 0.0099 no
€ (e.0.1077). _ _ C; 010 0.0005 yes
Similar approximations can be applied to the EM and Viterbi Cy 011 0.00995 no
algorithms. For example , in the Viterbi algorithm, note that one Cs 100 0.00495 no
. . N.+1 Cs 101 0.00005 yes
has to updatd., as in (9) for each of itV arguments c, 110 0.004975 o
(metastates). An approximation that discards those metastates Cs 111 0.990025 no
that have smalh priori probability can drastically reduce the 181 0000 0.970299 no
total number of calculations. In addition,gfy:1|s(t — N. + D. 88(1)(1) 8'888(8)2;5 ;’;
1), ---, s(t + 1)) is small, an approximation can be made in Ds 0011 0.0098505  no
which Ly (s(t— Ne+1), -- -, s(¢t+1)) is setequal to zero and Ds 0100 0.0000495  yes
then ignored in the stept+ 1 — ¢+ 2. A similar approximation Ds 0101 0.0000005  yes
inth _ - : D7 0110 0.00004975  yes
of the latter kind is used in speech processing [16]. Dg 0111 0.00990025 no
Dg 1000 0.0049005 no
E. Implementation DI 1010 00000005  yer
We use (4)—(6) to compute the likelihood. In this section, we 81? i%(l) 8'8828323? yes
discuss some design decisions we made when implementing the Di: 1101 0.00004975 yes
calculation on a computer. Di5 1110 0.004950125 no
We must store values éf;(sq - - - sy.) and update them ds Dy 1111 0.985074875 no

ranges from 0t@". There are many indices, each with a modest
range, and the number of indices depends on the model. This
suggests that a multidimensional array, with many nested logigcumented in our source code, using¢hprogramming lan-
to manipulate the values aprogresses from 0 t&, might not guage.
be the best scheme. We prefer to keep track of the various value¥/e start by constructingy/; trees (Fig. 1). Each node repre-
in a forest of N, ordered trees. (We use the terminology of [13€ents a partial state history, starting at the roots, corresponding
throughout this section.) Let us use a simple example for edgdndividual states, and descending to the leaves, which repre-
of exposition. The model structure is defined By = 2 and sent metastates, so that the history corresponding to a node of
N. = 3, and the transition matrix is, for illustrative purposes depthd has lengthd + 1 (see the second column of Table I).
We store the probability of the partial state history, conditional
(099 0.01 on the initial state, in each node; these values are built up re-
N (0.005 0.995> : cursively as the tree is built (see the third column of Table I).
In general, all operations that one might think of performing by
The general case does not involve anything new, and the diseans of multiple nested loops are, in fact, done by recursive
cussion would become excessively abstract. The general cagecis traversals.
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Fig. 2. Forest of Fig. 1 after pruning with= 0.001.

In practice, we need not build the full tree because we invoRéne channel is open in the first two statds£ 1) and closed
(112) to “prune” the tree as we build it, eliminating any node foin the last threeZ = 0). We note that the fifth is a long-lived
which P < ¢; and all of its children. For our example, supposelosed state.
we choose: = 0.001. Then, we actually build the forest in Model Il was proposed in [6] for a batrachotoxin-modified
Fig. 2. It can happen that (11) eliminates all the children of sodium channel. It too is a five-state scheme, which when sam-
node without eliminating the node itself; in this case, the nogded at 10 kHz yields the transition matrix
is pruned. At the end of the pruning process, there are no leaves
at levels greater than zero. 0.9903 0.0096 0.0000 0.0000 0.0000

Aiter pruning, we multiply the stored probabilities in the 0.0577 0.9330 0.0092 0.0001 0.0000
leaves by the equilibrium probabilities associated with the
roots of the trees to obtain values @f. During the same tree  11ir = | 0.0017 0.0554 0.9141 0.0274 0.0014

traversal, the means af(¢t) conditional on the metastate are 0.0001 0.0025 0.0822 0.9152 0.0001
construcFed and storeq in the leaves. . ' . 0.0000 0.0003 0.0086 0.0001 0.9910
We still need to discuss the updating process in which, (14)

starting from a forest witki; stored in the leaves, we arrive atThe channel is closed in the first three states and open in the last
a new forest, with the same topology, with, in the leaves. two. The first closed state and the last open state are particularly
Mathematically, we must sum over the oldest state, which is|ghg lived, with mean durations of about 100 sampling units.
the roots, to obtain the normalized versionaef and then, we  Model 11l was used in [10] and is derived from another model
use the last form of (3). All of the index manipulation in (3) willfor a batra chotoxin-modified sodium channel [12]. This model

be done automatically by recursive tree traversals. Consider i three states, the first two of which are closed, and when
subtrees rooted at;Band B;. The “sum” of these will become Samp|ed at 10 kHz produces a transition matrix

the part of the new tree rooted at Af level greater than zero,

anda; will be stored in its leaves, which are the nodes of level 0.9996 0.0004 0.0000

one in the final tree. In general, when “adding” two trees, we

add theas stored in the leaves, except when some leaves are P =] 0.0090  0.9860 0.0049 | . (15)

missing because of pruning. Similarly, the part of the new tree 0.0000 0.0093 0.9907

rooted at A of level greater than zero is obtained as the sum o

of the subtrees rooted atBand B,. It is then straightforward ~ 1hese models share a feature that makes our approximation

to compute and store the values @f,; and carry out the schemes effective. Many pfthe entr|e§ of the tran_smon matrlges

normalization process described by (4)—(6). are quite small, and the diagonal entries are relatively large, im-
plying that a substantial fraction of metastates have very small
probability. Particularly improbable are those with many transi-

Ill. EXAMPLES tions between different states.

. . . . In our simulations, we used a digital approximation
We illustrate the computational savings of our method by SII’{'I— . i .
. . . 0 ,an eight-pole Bessel filter with a cutoff at 2 kHz (a
ulations from three models that have appeared in the ion channel . . -
. . . moving average with coefficient®.0348, 0.4515, 0.4556,
literature. Model | was proposed in [5] for an acetylcholine re: ) .
o X 0.0621, —0.0064]). Our two noise models were white
ceptor. When sampled at 10 kHz, the transition matrix of the . : .
five-state scheme is noise and an autoregressive scheme from [19] with co-
efficients [1.0,  0.7152,  0.4900, 0.3056,  0.1427].
The convolution of these two sequences, truncated
0.7373 0.0044 0.0004 0.2325 0.0253 after eight terms and normalized to sum to one, gave a
0.0001 0.9723 0.0219 0.0053 0.0004 net composite filter with coefficient§0.0131,  0.1799,
0.3004, 0.2341, 0.1526, 0.0867, 0.0305, 0.0026]. Three
J— = 4 ) ’ ’ ) )
Pr={ 00002 06579 0.1614 0.1588 0.0217 different SNRs were used, the innovation standard deviations
0.0012 0.0020 0.0020 0.8142 0.1807 being 0.05, 0.25, and 0.75. For each of the three kinetic models,
0.0000 0.0000 0.0000 0.0009 0.9991 for each of the two noise models, and for each of the three

(13) signal to noise levels, we simulated 100 000 points, or 10 s of
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Fig. 3. (a) Error in the approximation to the log likelihood as a function of the fraction of meta-states retained. (b) Error in the approximatimm|teefieood
as a function of the total equilibrium probability of the metastates pruned from the tree (the probability deficit). (c) Probability deficit asradtithe tolerance
€1. (d) Error in the approximation to the log likelihood as a function of the tolerance

data. The computations we report were performed on a Same large, even with them, computational times are quite sub-
UltraSparc 2. Our programs were written in C and linked tstantial. For example, after the number of metastates of model
Matlabt . | is reduced by factor of 362, 1077 effective metastates still re-

We first discuss the results for the autoregressive noise modsin. In fact, evaluation of the likelihood allowing for filtering
with innovation standard deviatian = 0.05. For a composite and colored noise, pruning the number of effective metastates
filter of length eight, the total number of metastates ste= to 1077, took 1687 s, as compared with 1.3 s for evaluation of
390625 for models | and 1l and® = 6561 for model Ill. As the likelihood of a model with no filtering and white noise. For
discussed in the last section, the computational prices to be paiddel I1l, the computation of the likelihood took 158 s after re-
over a model with no filtering and white noise are factors afuction of the number of metastates by a factor of 65.
57 = 78125 and3” = 2187. For example, if the likelihood took  Without specification of the use of the approximate log likeli-
1 s to evaluate with no filtering and white noise (this figure iBood, it is difficult to determine an acceptable level of error, but
roughly accurate), it would take approximately 22 h to evaluatee suggest the following heuristic as a guide. Supposéitisat
in models | and 11, allowing for colored noise and filtering.  the maximum likelihood estimate of an-dimensional vector

As explained in the previous section, we can decrease the@frate constants. A standard large sample theory result [7] is
fective number of metastates and, proportionally, the time tioat an approximaté00(1 — «)% confidence region fof is
evaluate the likelihood, by increasing the parameteFig. 3(a) {0]2(¢(6) — £(6)) < x2,()}, where/(6) is the log likelihood,
shows the resulting error in approximating the likelihood asand x?2,(«) is the upperx percentage point of the chi-square
function of the fraction of the number of metastates remainintdjstribution withm degrees of freedom. For example, the un-
after pruning. (The actual log likelihoods were of ordé? for derlying kinetic model for model 1l has six free rate constants
each of the three models.) For example, if the number of mettisat determine the rate matrix from which P = exp(QA¢)
tates of model | is reduced by a factor of 362, the resulting erraas found. The upper 5% point of the chi-square distribution
in the log likelihood is 3.15 out of .57 x 10°. For model Ill, with six degrees of freedom is 12.59. Thus, the effect of an ap
reduction of the number of metastates by a factor of 65 resultegbximation error of order one in the log likelihood is compa-
in an error of 3.37 out of .57 x 10°. Although these reductions rable with the variation in the likelihood due to parameter un-

certainty. The effect of the approximation error on optimization
IThe MathWorks, Inc., Natick, MA. is discussed in the concluding section.
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Fig. 4. (a) Probability deficit for model | as a function of the fraction of metastates retained for various filter lengths. (b) Probability defisitci®n of the
number of metastates retained for filter lengths as in (a).

As described in the previous section, we prune the numkieean colored. The length of the filter is thus five rather than
of effective metastates by setting the tolerance parameter eight, and the relative gains are smaller. On an absolute scale,
Let the sum of the equilibrium probabilities of the metastatéhe computations are less forbidding. For models | and 1l and a
that have been discarded be termed the “probability deficififter of length five, there ar8® = 3125 metastates as compared
Fig. 3(b) shows that the error in the log likelihood is propomith 58 = 390625 for a filter of length 8, and gains by factors
tional to the probability deficit with a constant of proportion-of about 10 are possible while incurring an error of order one.
ality of order10%. The probability deficit induced by pruning of Generally, as the length of a filter is increased, the fraction
the degree discussed in the examples above is roughly of ordEmetastates needed to maintain a given probability deficit de-
102, which we believe is negligble when viewed from a broadreases rapidly. Fig. 4(a) shows this phenomena for model | and
perspective in which the model itself is a crude approximatiorarious filter lengths. However, the total number of remaining
to physical reality. Fig. 3(c) shows how the probability deficit isnetastates, and, hence, the time to evaluate the likelihood, con-
determined by the tolerance. To complete the picture, Fig. 3tiues to increase, as shown in Fig. 4(b). It thus appears that ad-
shows how the error in the log likelihood is determined by thditional computational strategies, such as distributing the com-
tolerancecr;. From these figures, we see that the tolerance, thatations over a network of workstations, are still needed for
probability deficit, and the fraction of metastates remaining avery long filters.
all equivalent ways of specifying the amount of pruning. We Finally, we discuss the savings that can be accomplished by
have found it algorithmically most natural to control the amourtnposing the second toleraneg > 0. In our simulations, we
of pruning by setting; since the pruning can be accomplishetbund that withe; > 0, decreases in computation time of factors
as the forest of metastates is traversed. of two to three, with little additional inaccuracy in the approx-

Very similar results were found at the lower SNRs in thamated log likelihood, could be accomplished by settingo
the errors induced in estimating the log likelihood by using small values, such a®)~?, when the SNR was high. Further
small fraction of the total number of metastates were compacreasing: did not result in substantial consequent savings as
rable in order of magnitude with those described above for theost metastates that waa@osterioriunlikely had already been
three models. For example, for model |, with= 0.75, the total eliminated. At lower SNRs the effectiveness gflecreased and
log likelihood was-1.13 x 10°, and the error when 1077 metasbecame insubstantial at= 0.75. This is to be expected since
tates were used was 1.00. using the second tolerance eliminates, at each time point, metas-

We next briefly contrast the results discussed above to thdages that ara posterioriunlikely given the observed data, and
obtained when a lowpass filter is used but noise is white ratheith a high noise level, the data are relatively uninformative.
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As an example, for model Il with = 0.05, settinge; = 10~ twice, but if A is sufficiently small so thaT’AC' < 1, the con-
reduced the number of metastates by a factor of 200—franibution of these and higher numbers of multiple occurrences is
390625 to 1946. With, = 0 the error in the log likelihood relatively negligible. Extending this argument to the omission of
of 3.63, setting, = 107'° reduced the computation time by a)/ metastates, we then have

further factor of 2.1, giving a net reduction by a factor of about o

400, whereas the additional error in the log likelihood was less _ -
than10~4. With this setting of,, the average number of metas- Lexact = Lapprox & LexactT mz_:l AmCn (18)
tates discarded per time point was 765 (out of 1946). Examina- ~ Lexact 1C & (19)

tion of the results revealed that when the channel was closed,
about 750 metastates were typically discarded, and when it Wege ¢, do not vary much or if their covariance with the,,
open (which was less frequent), about 1150 were discarded.is small relative to the product of their means, and wh&ris
the total probability deficit, and’ is the average of th€,,. We
IV. DISCUSSION thus haveog(Lapprox =~ log(Lexact —7'CA. This argument,
coupled with the empirical results of the previous section, sug-
We have explained and demonstrated methods that provigests that if the log likelihood is plotted against the probability
dramatic computational gains in the evaluation of the likelihoogksficit, the intercept, and thus the error of the approximation,
of an HMM for single-channel recordings contaminated by filagn pe roughly gauged to an order of magnitude.
tering and colored noise. These gains are achieved by discardingne desirable accuracy of the approximation depends on how
the Contributions to the ||kel|h00d from metastates that are e|thﬁ@ results are going to be used. In the previous Section’ we dis-
a priori or a posterioriunlikely. We have found it convenient cyssed the effects on construction of confidence intervals. If the
and effective to organize the computations in a tree structugg)a| is to construct the Viterbi approximation to the underlying
but other approaches are possible. With our implementatieymple path, a sensible way to proceed would be to start with
the greatest gains are made by discarding metastates thet a§§elatively large tolerance and then relax it, stopping when the
priori unlikely since the pruned branches of the tree are subg@mnges in the reconstruction became practically negligible.
quently never traversed during the iterated passes through it. Ouf this paper, we have concentrated on efficient approximate
methods can be applied to approximate not only the likelihogga|uation of the likelihood but not directly on its maximization.
but its gradient and posterior probabilities as well. The effegye have not systematically investigated the impact of approxi-
tiveness of the approach depends on the kinetics of the mogghtion to the likelihood on the maximum likelihood estimates
If the kinetics are very fast, relatively few metastates may be ighemselves. However, we did find for Model 11l and a filter of
norable, and the method will be less effective. length five that choosing, = 10~ ande, = 0 led to estimates
It is difficult to give a simple, concrete recipe for choosingyithin a percent of the maximum likelihood estimatg & 0
the critical parameter;, but we can offer some considerationgnde, — 0), with a relative time savings per evaluation of the
that may help guide its choice. likelihood of 2.5. More substantial gains were made when the
Although it is algorithmically most natural to use, it is filter was longer. Many additional issues come into play in max-
more intuitive to work with the equivalent probability deficit.imizing the likelihood, but in any case, evaluation of the likeli-
On a priori grounds, one might feel that the suitability or imood function is a key component. Other important components
plications of the model should not depend on the inclusion {clude the choice of starting values and the search strategy. For
exclusion of a set of metastates having total probability of ordgRoice of starting values, it may be effective to maximize the
107° or10~°. For example, a comparison of two models shoulgkelihood or an approximation to it on a relatively small seg-
not hinge on such fine structure. ment of data. When working with the full data set, one could ini-
There are rough theoretical grounds for believing that thgylly use these maximizers as starting values and relatively large
error in log likelihood is proportional to the probability deficit,tolerances to find a new maximum. The tolerances could then be
as we found empirically in the previous section. Consider firglecreased, and the process could be continued until there was
the effect of deleting from the summation in (10) all sequenceggile change in the maximizers. Since our approximations work
containing a metastate,, - - -, s, . ) occurring attime. The  py discarding metastates, they produce lower bounds to the like-
difference between the exact and approximate likelihood is  |ihood:; the success achieved in maximizing such lower bounds
rather than the likelihood itself depends in part on how uniform
the bounds are over the relevant parameter space. We have not
yet investigated this question, but the observed proportionality
of the error in the log likelihood to the probability deficit pro-
(16)  vides some reason for optimism that maintaining a fairly con-
= AC} Lexact (17) stant probability deficit as the parameters change would pro-
duce nearly uniform lower bounds. Given the time that it takes
whereA is the probability of that metastate. Now, in the sumto evaluate the likelihood function, itis clearly importantto use a
mation (10), there arg’ sequences in which that metastate ocsearch strategy that entails a minimum number of function eval-
curs exactly once, and the consequent reduction when they aaions.
all deleted iISI'AC Lexact, WhereC' is the average of thé;. Although we have developed and illustrated the methods in
There arel’(T — 1)/2 sequences in which the metastate occutke context of single-channel recordings, we believe that they

Loxact - Lapprox
~ P(St7 T St—]\fF)P(ytht) T P(yt—]\TF |5t—]\TF)Lexact
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may have relevance to other phenomena modeled by HMMs if14] A. Krogh, S. Mian, and D. Haussler, “A hidden Markov model that finds
which the dimensionality of the state space makes exact com-

putation of the likelihood prohibitive or impractical. Within the

[15]

context of the statistical analysis of patch clamp recordings, we
believe that our methods will be especially effective in eval-[16]
uating the likelihood of superpositions of independent chan-
nels. Such superpositions produce a very high dimensional state
space that has hindered the successful application of otherwi§gl

promising HMM techniques [2].

Our code is written in C to be driven by Matlab, and we will [18]
be pleased to share it with anyone who is interested.

(1]
(2]

(3]

(4]

(5]

(6]

(71
(8]
9]
(20]

(11]

[12]

(23]
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