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Fast Evaluation of the Likelihood of an HMM: Ion
Channel Currents with Filtering and Colored Noise

Donald R. Fredkin and John A. Rice

Abstract—Hidden Markov models (HMMs) have been used in
the study of single-channel recordings of ion channel currents for
restoration of idealized signals from noisy recordings and for es-
timation of kinetic parameters. A key to their effectiveness from
a computational point of view is that the number of operations to
evaluate the likelihood, posterior probabilities and the most likely
state sequence is proportional to the product of the square of the
dimension of the state space and the length of the series. However,
when the state space is quite large, computations can become in-
feasible. This can happen when the record has been lowpass fil-
tered and when the noise is colored. In this paper, we present an
approximate method that can provide very substantial reductions
in computational cost at the expense of only a very small error. We
describe the method and illustrate through examples the gains that
can be made in evaluating the likelihood.

I. INTRODUCTION

H IDDEN Markov models (HMMs) have recently found
application to the analysis of single-channel recordings,

both for the construction of an idealized quantal signal from a
noisy recording [4], [9] and for estimation of kinetic parameters
directly from the recording rather than from an idealized
reconstruction [2], [10], [19], [17]. HMMs have also been used
in a variety of other areas, for example, in speech recognition
[18] and gene finding [14]. A key to their computational
effectiveness is that the number of operations required to
evaluate the likelihood or its gradient or to evaluate posterior
probabilities is proportional to the product of the square of
the dimension ( ) of the state space and the length of the
record ( ) [3].

Filtering and colored noise complicate the application of
hidden Markov methodology to ion channel recordings. In
principle, the state space can be enlarged to include “metastates”
[9], [19], and the standard algorithms can be used. In practice,
however, the dimensionality of the new state space can easily
become so large that computations are intractible. For example,
if the underlying state space has cardinality six and a filter
of length five is used, the number of operations required to
evaluate the likelihood is of order rather than —a
factor of more than 1000. The problem of large state-space
dimension also occurs in other extensions of HMMs, for
example, [11].
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In this paper, we propose and illustrate an approximation
strategy that can radically decrease the number of operations
required to evaluate the likelihood while entailing little loss in
accuracy. The basic idea is to ignore metastates that are either
a priori or a posteriori highly unlikely. In an example to be
presented in detail below, the number of operations is reduced
by a factor of about 400.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the HMM that relates a kinetic model to
an observed noisy digital recording and show how it can be
extended to account for filtering and colored noise. We then
show how the basic recursions of [3] can be accomplished for
the extended model and introduce approximations that produce
lower bounds on the likelihood. Finally, in Section II-E, we de-
scribe the way we have implemented evaluation of the likeli-
hood and our approximations. A collection of examples moti-
vated by models that have been proposed for ion channel ki-
netics are presented in Section III. Here, we examine in some
detail the savings that can be accomplished via our approxima-
tions and the size of the errors consequently incurred. Section IV
contains a summary, conclusions, and discussion of further di-
rections.

II. THEORY

A. Model

We assume that an –state Markov process underlies the ki-
netics. We consider a discrete time process since in practice, the
data are samples at times . The one-step transition probabil-
ities for the transition are related to the generator
of a continuous time Markov process by matrix exponentiation:

.
Current levels are associated with the states, with the

values being, in general, not all distinct. For example, a
system with two closed states and one open state would have

, . Denote the temporal sequence of states
by . In the absence of filtering and noise, the observed
current would be . In practice, because of filtering
and noise, the observed current is ,
where denotes the convolution and

are filter coefficients; is additive
noise.

In this paper, we assume that the noise is independent
of the state . We will usually assume the noise to be inde-
pendent identically distributed (IID) Gaussian random variables
with mean zero and variance . However, because we are al-
ready prepared to consider the effect of a filter, we can easily
consider noise that is an autoregressive (AR) random process
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driven by IID Gaussian noise: , where , and
is IID Gaussian noise with mean zero and variance. The

FIR filter with coefficients can be considered a prewhitening
filter [19]. Applying this filter to the observations , we ar-
rive at

(1)

where , and . The coefficients can be
determined by some variant of the Levinson–Durbin algorithm
from the autocorrelation sequence of the noise [19]. If the max-
imum lag in the sequence is , the effective filter has
maximum lag . From now on, we will work with
(1), referring to as the noise and as the observation at
time . There are observations at . For most pur-
poses, we do not need the detailed structure of (1); it is sufficient
that conditional on the state sequence ,
the observations are independent, and the probability den-
sity depends only on :

.

B. Recursive Calculation of the Likelihood

We can include the filter in (1) by extension of the state
space [9] and working with a Markov chain whose states are
the “metastates” . However, the transition
matrix among the metastates is sparse, and we find it slightly
simpler to work with the original state space and extend the
usual recursive procedure [3].

Define

(2)

which can be computed recursively. With equilibrium probabil-
ities and transition probabilities , we have

and, for

(3)

where, in the last line, we defined

The likelihood is

In practice, we must renormalize the to avoid underflow.
(This procedure was used in [15].) We define

and . Note that , using the definition of
, and is the likelihood. We have

(4)

and

(5)

The are determined by the requirement that

(6)

C. Related Recursive Algorithms

Our focus is on calculation of the likelihood, but we digress
briefly to give the form of the EM [3] and Viterbi [20] algo-
rithms using the formalism of Section II-B. We do not neces-
sarily advocate use of the EM algorithm. Some form of quasi-
Newton method [8] may be more effective. However, the recur-
sions needed for the EM algorithm can also be regarded as calcu-
lations of the posterior probabilities of states given the data, and,
as such, can be useful for reconstruction of the ideal signal based
on a fictitious HMM. Similarly, the Viterbi algorithm consists
of recursions needed to find the most probable state sequence.
All of these recursions are complicated by the large numbers
of metastates, and our approximations can be applied to all of
them.

1) EM Algorithm: Define

(7)

which, like , can be computed recursively as

and, for
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It is straightforward to show, using a lemma from [3], that the
EM algorithm leads to the iteration scheme for the
transition probabilities, where

with

and and are computed with . (We use the notation
to emphasize that these dummy variables are not as-

sociated with specific times.)
2) Viterbi Algorithm: The Viterbi algorithm [20] is a dy-

namic programming method for finding the sequence of states
that is most likely given the observed data. It has been

used by [17] for finding a idealized record from which the ki-
netics parameters are estimated by maximizing the likelihood of
the resulting sequence of dwell times. It has also been used in
the context of speech recognition by by Juang and Rabiner [13],
who maximized the joint likelihood of the kinetic parameters
and the sequence of unobserved states rather than the marginal
likelihood of the kinetic parameters as in standard maximum
likelihood estimation. To formulate the Viterbi algorithm in the
case of filtering and colored noise, we follow the notation of [9].
Let

(8)

be the most likely state sequence up to and including time
. It maximizes

Let

Then, satisfies the recursion

(9)

Denote the maximizer by . then also satisfies the
recursion relation

where denotes concatenation. Note that is the likelihood
of the state sequence, which is to be maximized.

D. Approximations

Consider the computational cost of using (4)–(6) to compute
the likelihood. For each time, we compute values of

(one for each of the metastates ), and each such
computation requires order operations. Calculation of
requires additions. Calculation of the likelihood thus
takes floating-point operations. If we compare this
with the computational cost when there is neither a filter nor au-
toregressive noise coloration, we see that the work is multiplied
by a factor . For a simple scheme involving three states
( ) and maximum lag due to filtering and noise coloration

, we have a cost amplification of . If, to
be optimistic, we could compute the likelihood for in
1 s, we now require a full second to compute the likelihood
once, and we will need to compute the likelihood many times to
maximize it.

The key to speeding up the calculation of the likelihood is the
observation that the exact scheme, whether in the efficient form
(4)–(6) or in the raw form

(10)

where and are histories ( and ), in-
volves a large number of improbable and numerically unim-
portant sequences of states. For example, in a two-state model
(“closed” and “open”), the transition probabilities ( , ) are
likely to be extremely small. If they were not, we would say
that the sampling interval was too large. If , say, we
expect to encounter metastates containing multiple transitions
(like ) rarely, and their contribution to
the sum in (10), or the role of anyfor such a metastate, might
be negligible.

Our primary approximation is to choose a small tolerance
and neglect any metastate for which the conditional
probability

(11)

We discuss quantitatively the effective reduction in the number
of metastates and in the computation time in Section III for a
variety of realistic examples and choices of.

The selection of metastates to be neglected based on (11) is
made once at the beginning of the calculation of the likelihood.
The selection depends, of course, on the transition probabilties;
therefore, the selection must be made repeatedly in the course
of maximization of the likelihood once each time the likelihood
is evaluated.
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Fig. 1. Full forest, before any approximations, forN = 2 andN = 3. The labels have no particular significance. See Table I for information associated with
the various nodes.

We can make a second approximation of a more dynamical
character. Whenever, in evaluating (4), we encounter a value

(12)

we replace the sum by zero. Note that this sum is the renormal-
ized version of . The elimination
of terms using (12) depends on the data, whereas the simpli-
fication using (11) depends only on the model and not at all on
the data. The utility of this approximation is also discussed in
Section III.

As will be shown in Section III, quite substantial reduction in
computational cost can be achieved with small values ofand

(e.g., ).
Similar approximations can be applied to the EM and Viterbi

algorithms. For example , in the Viterbi algorithm, note that one
has to update as in (9) for each of its arguments
(metastates). An approximation that discards those metastates
that have smalla priori probability can drastically reduce the
total number of calculations. In addition, if

is small, an approximation can be made in
which is set equal to zero and
then ignored in the step . A similar approximation
of the latter kind is used in speech processing [16].

E. Implementation

We use (4)–(6) to compute the likelihood. In this section, we
discuss some design decisions we made when implementing the
calculation on a computer.

We must store values of and update them as
ranges from 0 to . There are many indices, each with a modest
range, and the number of indices depends on the model. This
suggests that a multidimensional array, with many nested loops
to manipulate the values asprogresses from 0 to, might not
be the best scheme. We prefer to keep track of the various values
in a forest of ordered trees. (We use the terminology of [1]
throughout this section.) Let us use a simple example for ease
of exposition. The model structure is defined by and

, and the transition matrix is, for illustrative purposes

The general case does not involve anything new, and the dis-
cussion would become excessively abstract. The general case is

TABLE I
INFORMATION STORED IN THE NODES OFFIG. 1. “NODE” I S THE LABEL

IN FIG. 1. “HISTORY” I S THE SEQUENCE OFSTATES REPRESENTED BY

THE NODE. “P” I S THE CONDITIONAL PROBABILITY OF THE PARTIAL

HISTORY. THE LAST COLUMN INDICATES WHETHER OR NOT THENODE IS
ELIMINATED (“PRUNED”) WHEN � = 0:001. NOTE THAT D AND D ARE

AUTOMATICALLY PRUNED BECAUSEC IS, AND, SIMILARLY , D AND

D ARE ELIMINATED WHEN C IS PRUNED

documented in our source code, using theprogramming lan-
guage.

We start by constructing trees (Fig. 1). Each node repre-
sents a partial state history, starting at the roots, corresponding
to individual states, and descending to the leaves, which repre-
sent metastates, so that the history corresponding to a node of
depth has length (see the second column of Table I).
We store the probability of the partial state history, conditional
on the initial state, in each node; these values are built up re-
cursively as the tree is built (see the third column of Table I).
In general, all operations that one might think of performing by
means of multiple nested loops are, in fact, done by recursive
tree traversals.
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Fig. 2. Forest of Fig. 1 after pruning with� = 0:001.

In practice, we need not build the full tree because we invoke
(11) to “prune” the tree as we build it, eliminating any node for
which and all of its children. For our example, suppose
we choose . Then, we actually build the forest in
Fig. 2. It can happen that (11) eliminates all the children of a
node without eliminating the node itself; in this case, the node
is pruned. At the end of the pruning process, there are no leaves
at levels greater than zero.

After pruning, we multiply the stored probabilities in the
leaves by the equilibrium probabilities associated with the
roots of the trees to obtain values of. During the same tree
traversal, the means of conditional on the metastate are
constructed and stored in the leaves.

We still need to discuss the updating process in which,
starting from a forest with stored in the leaves, we arrive at
a new forest, with the same topology, with in the leaves.
Mathematically, we must sum over the oldest state, which is at
the roots, to obtain the normalized version of, and then, we
use the last form of (3). All of the index manipulation in (3) will
be done automatically by recursive tree traversals. Consider the
subtrees rooted at Band B . The “sum” of these will become
the part of the new tree rooted at Aof level greater than zero,
and will be stored in its leaves, which are the nodes of level
one in the final tree. In general, when “adding” two trees, we
add the s stored in the leaves, except when some leaves are
missing because of pruning. Similarly, the part of the new tree
rooted at A of level greater than zero is obtained as the sum
of the subtrees rooted at Band B . It is then straightforward
to compute and store the values of and carry out the
normalization process described by (4)–(6).

III. EXAMPLES

We illustrate the computational savings of our method by sim-
ulations from three models that have appeared in the ion channel
literature. Model I was proposed in [5] for an acetylcholine re-
ceptor. When sampled at 10 kHz, the transition matrix of the
five-state scheme is

(13)

The channel is open in the first two states ( ) and closed
in the last three ( ). We note that the fifth is a long-lived
closed state.

Model II was proposed in [6] for a batrachotoxin-modified
sodium channel. It too is a five-state scheme, which when sam-
pled at 10 kHz yields the transition matrix

(14)
The channel is closed in the first three states and open in the last
two. The first closed state and the last open state are particularly
long lived, with mean durations of about 100 sampling units.

Model III was used in [10] and is derived from another model
for a batra chotoxin-modified sodium channel [12]. This model
has three states, the first two of which are closed, and when
sampled at 10 kHz produces a transition matrix

(15)

These models share a feature that makes our approximation
schemes effective. Many of the entries of the transition matrices
are quite small, and the diagonal entries are relatively large, im-
plying that a substantial fraction of metastates have very small
probability. Particularly improbable are those with many transi-
tions between different states.

In our simulations, we used a digital approximation
to an eight-pole Bessel filter with a cutoff at 2 kHz (a
moving average with coefficients

). Our two noise models were white
noise and an autoregressive scheme from [19] with co-
efficients .
The convolution of these two sequences, truncated
after eight terms and normalized to sum to one, gave a
net composite filter with coefficients

, . Three
different SNRs were used, the innovation standard deviations
being 0.05, 0.25, and 0.75. For each of the three kinetic models,
for each of the two noise models, and for each of the three
signal to noise levels, we simulated 100 000 points, or 10 s of
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(a) (b)

(c) (d)

Fig. 3. (a) Error in the approximation to the log likelihood as a function of the fraction of meta-states retained. (b) Error in the approximation to thelog likelihood
as a function of the total equilibrium probability of the metastates pruned from the tree (the probability deficit). (c) Probability deficit as a function of the tolerance
� . (d) Error in the approximation to the log likelihood as a function of the tolerance� .

data. The computations we report were performed on a Sun
UltraSparc 2. Our programs were written in C and linked to
Matlab1 .

We first discuss the results for the autoregressive noise model
with innovation standard deviation . For a composite
filter of length eight, the total number of metastates are

for models I and II and for model III. As
discussed in the last section, the computational prices to be paid
over a model with no filtering and white noise are factors of

and . For example, if the likelihood took
1 s to evaluate with no filtering and white noise (this figure is
roughly accurate), it would take approximately 22 h to evaluate
in models I and II, allowing for colored noise and filtering.

As explained in the previous section, we can decrease the ef-
fective number of metastates and, proportionally, the time to
evaluate the likelihood, by increasing the parameter. Fig. 3(a)
shows the resulting error in approximating the likelihood as a
function of the fraction of the number of metastates remaining
after pruning. (The actual log likelihoods were of order for
each of the three models.) For example, if the number of metas-
tates of model I is reduced by a factor of 362, the resulting error
in the log likelihood is 3.15 out of . For model III,
reduction of the number of metastates by a factor of 65 resulted
in an error of 3.37 out of . Although these reductions

1The MathWorks, Inc., Natick, MA.

are large, even with them, computational times are quite sub-
stantial. For example, after the number of metastates of model
I is reduced by factor of 362, 1077 effective metastates still re-
main. In fact, evaluation of the likelihood allowing for filtering
and colored noise, pruning the number of effective metastates
to 1077, took 1687 s, as compared with 1.3 s for evaluation of
the likelihood of a model with no filtering and white noise. For
model III, the computation of the likelihood took 158 s after re-
duction of the number of metastates by a factor of 65.

Without specification of the use of the approximate log likeli-
hood, it is difficult to determine an acceptable level of error, but
we suggest the following heuristic as a guide. Suppose thatis
the maximum likelihood estimate of an-dimensional vector
of rate constants. A standard large sample theory result [7] is
that an approximate % confidence region for is

, where is the log likelihood,
and is the upper percentage point of the chi-square
distribution with degrees of freedom. For example, the un-
derlying kinetic model for model II has six free rate constants
that determine the rate matrix from which
was found. The upper 5% point of the chi-square distribution
with six degrees of freedom is 12.59. Thus, the effect of an ap-
proximation error of order one in the log likelihood is compa-
rable with the variation in the likelihood due to parameter un-
certainty. The effect of the approximation error on optimization
is discussed in the concluding section.
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(a) (b)

Fig. 4. (a) Probability deficit for model I as a function of the fraction of metastates retained for various filter lengths. (b) Probability deficit asa function of the
number of metastates retained for filter lengths as in (a).

As described in the previous section, we prune the number
of effective metastates by setting the tolerance parameter.
Let the sum of the equilibrium probabilities of the metastates
that have been discarded be termed the “probability deficit.”
Fig. 3(b) shows that the error in the log likelihood is propor-
tional to the probability deficit with a constant of proportion-
ality of order . The probability deficit induced by pruning of
the degree discussed in the examples above is roughly of order

, which we believe is negligble when viewed from a broad
perspective in which the model itself is a crude approximation
to physical reality. Fig. 3(c) shows how the probability deficit is
determined by the tolerance. To complete the picture, Fig. 3(d)
shows how the error in the log likelihood is determined by the
tolerance . From these figures, we see that the tolerance, the
probability deficit, and the fraction of metastates remaining are
all equivalent ways of specifying the amount of pruning. We
have found it algorithmically most natural to control the amount
of pruning by setting since the pruning can be accomplished
as the forest of metastates is traversed.

Very similar results were found at the lower SNRs in that
the errors induced in estimating the log likelihood by using a
small fraction of the total number of metastates were compa-
rable in order of magnitude with those described above for the
three models. For example, for model I, with , the total
log likelihood was , and the error when 1077 metas-
tates were used was 1.00.

We next briefly contrast the results discussed above to those
obtained when a lowpass filter is used but noise is white rather

than colored. The length of the filter is thus five rather than
eight, and the relative gains are smaller. On an absolute scale,
the computations are less forbidding. For models I and II and a
filter of length five, there are metastates as compared
with for a filter of length 8, and gains by factors
of about 10 are possible while incurring an error of order one.

Generally, as the length of a filter is increased, the fraction
of metastates needed to maintain a given probability deficit de-
creases rapidly. Fig. 4(a) shows this phenomena for model I and
various filter lengths. However, the total number of remaining
metastates, and, hence, the time to evaluate the likelihood, con-
tinues to increase, as shown in Fig. 4(b). It thus appears that ad-
ditional computational strategies, such as distributing the com-
putations over a network of workstations, are still needed for
very long filters.

Finally, we discuss the savings that can be accomplished by
imposing the second tolerance . In our simulations, we
found that with , decreases in computation time of factors
of two to three, with little additional inaccuracy in the approx-
imated log likelihood, could be accomplished by settingto
small values, such as , when the SNR was high. Further
increasing did not result in substantial consequent savings as
most metastates that werea posterioriunlikely had already been
eliminated. At lower SNRs the effectiveness ofdecreased and
became insubstantial at . This is to be expected since
using the second tolerance eliminates, at each time point, metas-
tates that area posterioriunlikely given the observed data, and
with a high noise level, the data are relatively uninformative.
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As an example, for model II with , setting
reduced the number of metastates by a factor of 200—from
390 625 to 1946. With the error in the log likelihood
of 3.63, setting reduced the computation time by a
further factor of 2.1, giving a net reduction by a factor of about
400, whereas the additional error in the log likelihood was less
than . With this setting of , the average number of metas-
tates discarded per time point was 765 (out of 1946). Examina-
tion of the results revealed that when the channel was closed,
about 750 metastates were typically discarded, and when it was
open (which was less frequent), about 1150 were discarded.

IV. DISCUSSION

We have explained and demonstrated methods that provide
dramatic computational gains in the evaluation of the likelihood
of an HMM for single-channel recordings contaminated by fil-
tering and colored noise. These gains are achieved by discarding
the contributions to the likelihood from metastates that are either
a priori or a posterioriunlikely. We have found it convenient
and effective to organize the computations in a tree structure,
but other approaches are possible. With our implementation,
the greatest gains are made by discarding metastates that area
priori unlikely since the pruned branches of the tree are subse-
quently never traversed during the iterated passes through it. Our
methods can be applied to approximate not only the likelihood
but its gradient and posterior probabilities as well. The effec-
tiveness of the approach depends on the kinetics of the model.
If the kinetics are very fast, relatively few metastates may be ig-
norable, and the method will be less effective.

It is difficult to give a simple, concrete recipe for choosing
the critical parameter , but we can offer some considerations
that may help guide its choice.

Although it is algorithmically most natural to use, it is
more intuitive to work with the equivalent probability deficit.
On a priori grounds, one might feel that the suitability or im-
plications of the model should not depend on the inclusion or
exclusion of a set of metastates having total probability of order

or . For example, a comparison of two models should
not hinge on such fine structure.

There are rough theoretical grounds for believing that the
error in log likelihood is proportional to the probability deficit,
as we found empirically in the previous section. Consider first
the effect of deleting from the summation in (10) all sequences
containing a metastate occurring at time. The
difference between the exact and approximate likelihood is

(16)

(17)

where is the probability of that metastate. Now, in the sum-
mation (10), there are sequences in which that metastate oc-
curs exactly once, and the consequent reduction when they are
all deleted is , where is the average of the .
There are sequences in which the metastate occurs

twice, but if is sufficiently small so that , the con-
tribution of these and higher numbers of multiple occurrences is
relatively negligible. Extending this argument to the omission of

metastates, we then have

(18)

(19)

if the do not vary much or if their covariance with the
is small relative to the product of their means, and whereis
the total probability deficit, and is the average of the . We
thus have approx exact . This argument,
coupled with the empirical results of the previous section, sug-
gests that if the log likelihood is plotted against the probability
deficit, the intercept, and thus the error of the approximation,
can be roughly gauged to an order of magnitude.

The desirable accuracy of the approximation depends on how
the results are going to be used. In the previous section, we dis-
cussed the effects on construction of confidence intervals. If the
goal is to construct the Viterbi approximation to the underlying
sample path, a sensible way to proceed would be to start with
a relatively large tolerance and then relax it, stopping when the
changes in the reconstruction became practically negligible.

In this paper, we have concentrated on efficient approximate
evaluation of the likelihood but not directly on its maximization.
We have not systematically investigated the impact of approxi-
mation to the likelihood on the maximum likelihood estimates
themselves. However, we did find for Model III and a filter of
length five that choosing and led to estimates
within a percent of the maximum likelihood estimate (
and ), with a relative time savings per evaluation of the
likelihood of 2.5. More substantial gains were made when the
filter was longer. Many additional issues come into play in max-
imizing the likelihood, but in any case, evaluation of the likeli-
hood function is a key component. Other important components
include the choice of starting values and the search strategy. For
choice of starting values, it may be effective to maximize the
likelihood or an approximation to it on a relatively small seg-
ment of data. When working with the full data set, one could ini-
tially use these maximizers as starting values and relatively large
tolerances to find a new maximum. The tolerances could then be
decreased, and the process could be continued until there was
little change in the maximizers. Since our approximations work
by discarding metastates, they produce lower bounds to the like-
lihood; the success achieved in maximizing such lower bounds
rather than the likelihood itself depends in part on how uniform
the bounds are over the relevant parameter space. We have not
yet investigated this question, but the observed proportionality
of the error in the log likelihood to the probability deficit pro-
vides some reason for optimism that maintaining a fairly con-
stant probability deficit as the parameters change would pro-
duce nearly uniform lower bounds. Given the time that it takes
to evaluate the likelihood function, it is clearly important to use a
search strategy that entails a minimum number of function eval-
uations.

Although we have developed and illustrated the methods in
the context of single-channel recordings, we believe that they
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may have relevance to other phenomena modeled by HMMs in
which the dimensionality of the state space makes exact com-
putation of the likelihood prohibitive or impractical. Within the
context of the statistical analysis of patch clamp recordings, we
believe that our methods will be especially effective in eval-
uating the likelihood of superpositions of independent chan-
nels. Such superpositions produce a very high dimensional state
space that has hindered the successful application of otherwise
promising HMM techniques [2].

Our code is written in C to be driven by Matlab, and we will
be pleased to share it with anyone who is interested.
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