Statistics 150 (Stochastic Processes): Midterm Exam, Spring 2010. J. Pitman, U.C. Berkeley.

Convention throughout: $\min \emptyset=\infty$.

1. Let $X_{0}, Y_{1}, Y_{2}, \ldots$ be independent random variables, X_{0} with values in $\{0,1,2, \ldots\}$ and each Y_{i} an indicator variable with values in $\{0,1\}$ and $\mathbb{P}\left(Y_{i}=1\right)=1 / i$ for each $i=1,2, \ldots$. For $n=1,2, \ldots$ let

$$
X_{n+1}:=\max \left\{k: 1 \leq k<X_{n} \text { and } Y_{k}=1\right\} \text { if } X_{n}>1
$$

and $X_{n+1}:=0$ if $X_{n} \leq 1$. Explain why $\left(X_{n}\right)$ is a Markov chain, and describe its state space and transition probabilities.
2. For Y_{1}, Y_{2}, \ldots as in the previous question, let $T_{0}:=0$ and for $n=1,2, \ldots$ let

$$
T_{n}:=\min \left\{k: k>T_{n-1} \text { and } Y_{k}=1\right\}
$$

Explain why $\left(T_{n}\right)$ is a Markov chain, and describe its state space and its transition probabilities.
3. Let X, Y, Z be random variables defined on a common probability space, each with a discrete distribution. Explain why the function $\psi(x):=\mathbb{E}(Y \mid X=x)$ is characterized by the property

$$
\mathbb{E}(Y g(X))=\mathbb{E}[\psi(X) g(X)]
$$

for every bounded function g whose domain is the range of X. Use this characterization of $E(Y \mid X)$ to verify the formula

$$
\mathbb{E}(E(Y \mid X) \mid f(X))=\mathbb{E}[Y \mid f(X)]
$$

for every function f whose domain is the range of X, and the formula

$$
\mathbb{E}(E(Y \mid X, Z) \mid X)=\mathbb{E}[Y \mid X]
$$

4. Suppose that a sequence of random variables X_{0}, X_{1}, \ldots and a function f are such that

$$
\mathbb{E}\left(f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right)=f\left(X_{n}\right)
$$

for every $n=0,1,2, \ldots$. Explain why this implies

$$
\mathbb{E}\left(f\left(X_{n+1}\right) \mid f\left(X_{0}\right), \ldots, f\left(X_{n}\right)\right)=f\left(X_{n}\right)
$$

Give an example of such an f which is not constant for $\left(X_{n}\right)$ a $p \uparrow, 1-p \downarrow$ random walk on the integers.
5. Let $S:=X_{1}+\cdots+X_{N}$ be the number of successes and $F:=N-S$ the number of failures in a $\operatorname{Poisson}(\mu)$ distributed random number N of Bernoulli trials, where given $N=n$ the X_{1}, \ldots, X_{n} are independent with $\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=0\right)=p$ for some $0 \leq p \leq 1$. Derive the joint distribution of S and F. How can the conclusion be generalized to multinomial trials?
6. Let \mathbb{P}_{i} govern a $p \uparrow, 1-p \downarrow$ walk $\left(S_{n}\right)$ on the integers started at $S_{0}=i$, with $p>q$. Let

$$
f_{i j}:=\mathbb{P}_{i}\left(S_{n}=j \text { for some } n \geq 1\right)
$$

Use results derived in lectures and/or the text to present a formula for $f_{i j}$ in each of the two cases $i>j$ and $i<j$. Deduce a formula for $f_{i j}$ for $i=j$.
7. Let \mathbb{P}_{i} govern $\left(X_{n}\right)$ as a Markov chain starting from $X_{0}=i$, with finite state space S, and transition matrix P which has a set of absorbing states B. Let $T:=\min \left\{n \geq 1: X_{n} \in B\right\}$ and assume that $\mathbb{P}_{i}(T<\infty)=1$ for all i. Derive a formula for

$$
\mathbb{P}_{i}\left(X_{T-1}=j, X_{T}=k\right) \text { for } i, j \in B^{c} \text { and } k \in B
$$

in terms of the matrices $W:=(I-Q)^{-1}$ and R, where Q is the restriction of P to $B^{c} \times B^{c}$ and R is the restriction of P to $B^{c} \times B$.
8. In the same setting, let $f_{i j}:=\mathbb{P}_{i}\left(X_{n}=j\right.$ for some $\left.n \geq 1\right)$. For $i, j \in B^{c}$, find and explain a formula for $f_{i j}$ in terms of $W_{i j}$ and $W_{j j}$.
9. In the same setting, let $\phi_{i}(s)$ denote the probability generating function of T for the Markov chain started in state i. Derive a system of equations which could be used to determine $\phi_{i}(s)$ for all $i \in S$.
10. Let X be a non-negative integer valued random variable with probability generating function $\phi(s)$ for $0 \leq s \leq 1$. Let N be independent of X with the geometric (p) distribution $\mathbb{P}(N=n)=(1-p)^{n} p$ for $n=0,1,2, \ldots$, where $0<p<1$. Find a formula in terms of ϕ and p for $\mathbb{P}(N<X)$.
11. Let X be a non-negative random variable with usual probability generating function $\phi(s)$ for $0 \leq s \leq 1$. Define the tail probability generating function $\tau(s)$ by

$$
\tau(s):=\sum_{n=1}^{\infty} \mathbb{P}(X \geq n) s^{n}
$$

Use the identity

$$
\mathbb{P}(X=n)=\mathbb{P}(X \geq n)-\mathbb{P}(X \geq n+1)
$$

to help derive a formula for $\tau(s)$ in terms of s and $\phi(s)$ for $0 \leq s<1$. Discuss what happens for $s=1$.
12. Consider a random walk on the 3 vertices of a triangle labeled clockwise by $0,1,2$. At each step, the walk moves clockwise with probability p and counter-clockwise with probability q, where $p+q=1$. Let P denote the transition matrix. Observe that

$$
P^{2}(0,0)=2 p q ; \quad P^{3}(0,0)=p^{3}+q^{3} ; \quad P^{4}(0,0)=6 p^{2} q^{2} .
$$

Derive a similar formula for $P^{5}(0,0)$.
13. A branching process with Poisson (λ) offspring distribution started with one individual has extinction probability p with $0<p<1$. Find a formula for λ in terms of p.
14. Suppose $\left(X_{n}\right)$ is a Markov chain with state space $\{0,1, \ldots, b\}$ for some positive integer b, with states 0 and b absorbing and no other absorbing states. Suppose also that $\left(X_{n}\right)$ is a martingale. Evaluate

$$
\lim _{n \rightarrow \infty} \mathbb{P}_{a}\left(X_{n}=b\right)
$$

and explain your answer carefully.

