Let Y_i be independent random variables, Y_i with values in $\{0, 1, 2, \ldots \}$ and each Y_i an indicator variable with values in $\{0, 1\}$ and $P(Y_i = 1) = 1/i$ for each $i = 1, 2, \ldots$. For $n = 1, 2, \ldots$ let

$$X_{n+1} := \max\{k : 1 \leq k < X_n \text{ and } Y_k = 1\}$$

and $X_{n+1} := 0$ if $X_n \leq 1$. Explain why (X_n) is a Markov chain, and describe its state space and transition probabilities.

2. For Y_1, Y_2, \ldots as in the previous question, let $T_0 := 0$ and for $n = 1, 2, \ldots$ let

$$T_n := \min\{k : k > T_{n-1} \text{ and } Y_k = 1\}$$

Explain why (T_n) is a Markov chain, and describe its state space and its transition probabilities.

3. Let X, Y, Z be random variables defined on a common probability space, each with a discrete distribution. Explain why the function $\psi(x) := E(Y \mid X = x)$ is characterized by the property

$$E(Y g(X)) = E[\psi(X) g(X)]$$

for every bounded function g whose domain is the range of X. Use this characterization of $E(Y \mid X)$ to verify the formula

$$E(E(Y \mid X) \mid f(X)) = E[Y \mid f(X)]$$

for every function f whose domain is the range of X, and the formula

$$E(E(Y \mid X, Z) \mid X) = E[Y \mid X].$$

4. Suppose that a sequence of random variables X_0, X_1, \ldots and a function f are such that

$$E(f(X_{n+1}) \mid X_0, \ldots, X_n) = f(X_n)$$

for every $n = 0, 1, 2, \ldots$. Explain why this implies

$$E(f(X_{n+1}) \mid f(X_0), \ldots, f(X_n)) = f(X_n).$$

Give an example of such an f which is not constant for (X_n) a $p \uparrow, 1 - p \downarrow$ random walk on the integers.

5. Let $S := X_1 + \cdots + X_N$ be the number of successes and $F := N - S$ the number of failures in a Poisson(μ) distributed random number N of Bernoulli trials, where given $N = n$ the X_1, \ldots, X_n are independent with $P(X_i = 1) = 1 - P(X_i = 0) = p$ for some $0 \leq p \leq 1$. Derive the joint distribution of S and F. How can the conclusion be generalized to multinomial trials?

6. Let P_i govern a $p \uparrow, 1 - p \downarrow$ walk (S_n) on the integers started at $S_0 = i$, with $p > q$. Let

$$f_{ij} := P_i(S_n = j \text{ for some } n \geq 1).$$

Use results derived in lectures and/or the text to present a formula for f_{ij} in each of the two cases $i > j$ and $i < j$. Deduce a formula for f_{ij} for $i = j$.

7. Let P_i govern (X_n) as a Markov chain starting from $X_0 = i$, with finite state space S, and transition matrix P which has a set of absorbing states B. Let $T := \min\{n \geq 1 : X_n \in B\}$ and assume that $P_i(T < \infty) = 1$ for all i. Derive a formula for

$$P_i(X_{T-1} = j, X_T = k)$$

for $i, j \in B^c$ and $k \in B$ in terms of the matrices $W := (I - Q)^{-1}$ and R, where Q is the restriction of P to $B^c \times B^c$ and R is the restriction of P to $B^c \times B$.

Convention throughout: $\min \emptyset = \infty$.

8. In the same setting, let \(f_{ij} := P_i(X_n = j \text{ for some } n \geq 1) \). For \(i, j \in B^c \), find and explain a formula for \(f_{ij} \) in terms of \(W_{ij} \) and \(W_{jj} \).

9. In the same setting, let \(\phi_i(s) \) denote the probability generating function of \(T \) for the Markov chain started in state \(i \). Derive a system of equations which could be used to determine \(\phi_i(s) \) for all \(i \in S \).

10. Let \(X \) be a non-negative integer valued random variable with probability generating function \(\phi(s) \) for \(0 \leq s \leq 1 \). Let \(N \) be independent of \(X \) with the geometric(\(p \)) distribution \(P(N = n) = (1 - p)^n p \) for \(n = 0, 1, 2, \ldots \), where \(0 < p < 1 \). Find a formula in terms of \(\phi \) and \(p \) for \(P(N < X) \).

11. Let \(X \) be a non-negative random variable with usual probability generating function \(\phi(s) \) for \(0 \leq s \leq 1 \). Define the tail probability generating function \(\tau(s) \) by

\[
\tau(s) := \sum_{n=1}^{\infty} P(X \geq n)s^n
\]

Use the identity

\[
P(X = n) = P(X \geq n) - P(X \geq n + 1)
\]

to help derive a formula for \(\tau(s) \) in terms of \(s \) and \(\phi(s) \) for \(0 \leq s < 1 \). Discuss what happens for \(s = 1 \).

12. Consider a random walk on the 3 vertices of a triangle labeled clockwise by 0, 1, 2. At each step, the walk moves clockwise with probability \(p \) and counter-clockwise with probability \(q \), where \(p + q = 1 \). Let \(P \) denote the transition matrix. Observe that

\[
P^2(0, 0) = 2pq; \quad P^3(0, 0) = p^3 + q^3; \quad P^4(0, 0) = 6p^2q^2.
\]

Derive a similar formula for \(P^5(0, 0) \).

13. A branching process with Poisson(\(\lambda \)) offspring distribution started with one individual has extinction probability \(p \) with \(0 < p < 1 \). Find a formula for \(\lambda \) in terms of \(p \).

14. Suppose \((X_n) \) is a Markov chain with state space \(\{0, 1, \ldots, b\} \) for some positive integer \(b \), with states 0 and \(b \) absorbing and no other absorbing states. Suppose also that \((X_n) \) is a martingale. Evaluate

\[
\lim_{n \to \infty} P_a(X_n = b)
\]

and explain your answer carefully.