Statistics 150 (Stochastic Processes): Midterm Exam, Spring 2010. J. Pitman, U.C. Berkeley.

Convention throughout: $\min \emptyset = \infty$.

1. Let X_0, Y_1, Y_2, \ldots be independent random variables, X_0 with values in $\{0, 1, 2, \ldots\}$ and each Y_i an indicator variable with values in $\{0, 1\}$ and $\mathbb{P}(Y_i = 1) = 1/i$ for each $i = 1, 2, \ldots$ For $n = 1, 2, \ldots$ let

 $X_{n+1} := \max\{k : 1 \le k < X_n \text{ and } Y_k = 1\}$ if $X_n > 1$

and $X_{n+1} := 0$ if $X_n \leq 1$. Explain why (X_n) is a Markov chain, and describe its state space and transition probabilities.

2. For Y_1, Y_2, \ldots as in the previous question, let $T_0 := 0$ and for $n = 1, 2, \ldots$ let

$$T_n := \min\{k : k > T_{n-1} \text{ and } Y_k = 1\}$$

Explain why (T_n) is a Markov chain, and describe its state space and its transition probabilities.

3. Let X, Y, Z be random variables defined on a common probability space, each with a discrete distribution. Explain why the function $\psi(x) := \mathbb{E}(Y \mid X = x)$ is characterized by the property

$$\mathbb{E}(Yg(X)) = \mathbb{E}[\psi(X)g(X)]$$

for every bounded function g whose domain is the range of X. Use this characterization of E(Y|X) to verify the formula

$$\mathbb{E}(E(Y|X) \mid f(X)) = \mathbb{E}[Y \mid f(X)]$$

for every function f whose domain is the range of X, and the formula

$$\mathbb{E}(E(Y|X,Z) \mid X) = \mathbb{E}[Y|X].$$

- 4. Suppose that a sequence of random variables X_0, X_1, \ldots and a function f are such that
 - $\mathbb{E}(f(X_{n+1}) \mid X_0, \dots, X_n) = f(X_n)$

for every $n = 0, 1, 2, \dots$ Explain why this implies

$$\mathbb{E}(f(X_{n+1}) \mid f(X_0), \dots, f(X_n)) = f(X_n)$$

Give an example of such an f which is not constant for (X_n) a $p \uparrow (1-p)$ random walk on the integers.

- 5. Let $S := X_1 + \cdots + X_N$ be the number of successes and F := N S the number of failures in a Poisson(μ) distributed random number N of Bernoulli trials, where given N = n the X_1, \ldots, X_n are independent with $\mathbb{P}(X_i = 1) = 1 \mathbb{P}(X_i = 0) = p$ for some $0 \le p \le 1$. Derive the joint distribution of S and F. How can the conclusion be generalized to multinomial trials?
- 6. Let \mathbb{P}_i govern a $p \uparrow (1-p \downarrow \text{ walk } (S_n))$ on the integers started at $S_0 = i$, with p > q. Let

$$f_{ij} := \mathbb{P}_i(S_n = j \text{ for some } n \ge 1).$$

Use results derived in lectures and/or the text to present a formula for f_{ij} in each of the two cases i > j and i < j. Deduce a formula for f_{ij} for i = j.

7. Let \mathbb{P}_i govern (X_n) as a Markov chain starting from $X_0 = i$, with finite state space S, and transition matrix P which has a set of absorbing states B. Let $T := \min\{n \ge 1 : X_n \in B\}$ and assume that $\mathbb{P}_i(T < \infty) = 1$ for all i. Derive a formula for

$$\mathbb{P}_i(X_{T-1} = j, X_T = k)$$
 for $i, j \in B^c$ and $k \in B$

in terms of the matrices $W := (I - Q)^{-1}$ and R, where Q is the restriction of P to $B^c \times B^c$ and R is the restriction of P to $B^c \times B$.

- 8. In the same setting, let $f_{ij} := \mathbb{P}_i(X_n = j \text{ for some } n \ge 1)$. For $i, j \in B^c$, find and explain a formula for f_{ij} in terms of W_{ij} and W_{jj} .
- 9. In the same setting, let $\phi_i(s)$ denote the probability generating function of T for the Markov chain started in state i. Derive a system of equations which could be used to determine $\phi_i(s)$ for all $i \in S$.
- 10. Let X be a non-negative integer valued random variable with probability generating function $\phi(s)$ for $0 \le s \le 1$. Let N be independent of X with the geometric(p) distribution $\mathbb{P}(N = n) = (1 p)^n p$ for $n = 0, 1, 2, \ldots$, where $0 . Find a formula in terms of <math>\phi$ and p for $\mathbb{P}(N < X)$.
- 11. Let X be a non-negative random variable with usual probability generating function $\phi(s)$ for $0 \le s \le 1$. Define the *tail probability generating function* $\tau(s)$ by

$$\tau(s) := \sum_{n=1}^{\infty} \mathbb{P}(X \ge n) s^n$$

Use the identity

$$\mathbb{P}(X=n) = \mathbb{P}(X \ge n) - \mathbb{P}(X \ge n+1)$$

to help derive a formula for $\tau(s)$ in terms of s and $\phi(s)$ for $0 \le s < 1$. Discuss what happens for s = 1.

12. Consider a random walk on the 3 vertices of a triangle labeled clockwise by 0, 1, 2. At each step, the walk moves clockwise with probability p and counter-clockwise with probability q, where p + q = 1. Let P denote the transition matrix. Observe that

$$P^{2}(0,0) = 2pq; P^{3}(0,0) = p^{3} + q^{3}; P^{4}(0,0) = 6p^{2}q^{2}.$$

Derive a similar formula for $P^5(0,0)$.

- 13. A branching process with $Poisson(\lambda)$ offspring distribution started with one individual has extinction probability p with $0 . Find a formula for <math>\lambda$ in terms of p.
- 14. Suppose (X_n) is a Markov chain with state space $\{0, 1, \ldots, b\}$ for some positive integer b, with states 0 and b absorbing and no other absorbing states. Suppose also that (X_n) is a martingale. Evaluate

$$\lim_{n \to \infty} \mathbb{P}_a(X_n = b)$$

and explain your answer carefully.