
STAT 150 SPRING 2010: MIDTERM EXAM

Problems by Jim Pitman. Solutions by George Chen

1. Let X0, Y1, Y2, . . . be independent random variables, X0 with values in {0, 1, 2, . . . } and each Yi an indicator random
variable with P (Yi = 1) = 1

i and P (Yi = 0) = 1− 1
i = i−1

i for each i = 1, 2, . . . For n = 1, 2, . . . let

Xn+1 :=

{
max {k : 1 ≤ k < Xn and Yk = 1} if Xn > 1,
0 if Xn ≤ 1.

Explain why (Xn) is a Markov chain, and describe its state space and transition probabilities.

Solution: The state space is clearly {0, 1, 2, . . . } and, moreover, Xn+1 < Xn when Xn > 1. Suppose Xi > 1 and
0 < Xi+1 < Xi for i ∈ {0, 1, 2, . . . , n}. Then

P (Xn+1 = xn+1 | Xi = xi for i = 0, 1, . . . , n) =
P (Xi = xi for i = 0, 1, 2, . . . , n+ 1)

P (Xi = xi for i = 0, 1, 2, . . . , n)

=
P
(

Yx0 = 1, Yx0−1 = · · · = Yx1+1 = 0, Yx1 = 1,
Yx1−1 = · · · = Yx2+1 = 0, Yx2=1, . . . , Yxn+1 = 1

)
P
(

Yx0 = 1, Yx0−1 = · · · = Yx1+1 = 0, Yx1 = 1,
Yx1−1 = · · · = Yx2+1 = 0, Yx2=1, . . . , Yxn

= 1

)

=
P (Yx0 = 1)

∏n+1
i=1

{(∏xi−1−1
j=xi+1 P (Yj = 0)

)
P (Yxi

= 1)
}

P (Yx0 = 1)
∏n
i=1

{(∏xi−1−1
j=xi+1 P (Yj = 0)

)
P (Yxi

= 1)
} .

Many numerator/denominator cancellations occur and all that remains after cancellations is one term of the numera-
tor’s outer big-product:x(n+1)−1−1∏

j=xn+1+1

P (Yj = 0)

P
(
Yxn+1 = 1

)︸ ︷︷ ︸
1

xn+1

=
1

xn+1

 xn−1∏
j=xn+1+1

j − 1
j

 =
1

xn+1

(
xn+1

xn+1 + 1
xn+1 + 1
xn+1 + 2

· · · xn − 2
xn − 1

)
=

1
xn − 1

.

Conclude that
P (Xn+1 = xn+1 | Xi = xi for i = 0, 1, . . . , n) =

1
xn − 1

. (1)

The above result holds for all n such that Xi > 1 and 0 < Xi+1 < Xi for all 0 ≤ i ≤ n. The only other case is if there
is an m such that Xm ≤ 1. Note that by how (Xn) is defined, we must have Xm+1 = 0 and trivially we have, for all n,

P (Xn+1 = xn+1 | X0 = x0, X1 = x1, . . . , Xn−1 = xn−1, Xn ≤ 0) = 1 (xn+1 = 0) . (2)

Therefore, combining both cases (Equations (1) and (2)), we have

P (Xn+1 = xn+1 | Xi = xi for i = 0, 1, . . . , n) =


1

xn−1 if xn > 1 and 0 < xn+1 < xn,

1 (xn+1 = 0) if xn ≤ 1,
0 otherwise.

(3)

In particular, P (Xn+1 = xn+1 | Xi = xi for i = 0, 1, . . . , n) does not depend on x0, x1, . . . , xn−1, so P (Xn+1 | X0, . . . , Xn) =
P (Xn+1 | Xn), i.e. (Xn) is a Markov chain with transition probabilities given by Equation (3).

2. For Y1, Y2, . . . as in the previous question, let T0 := 0 and for n = 1, 2, . . . let

Tn := min {k : k > Tn−1 and Yk = 1} .

Explain why (Tn) is a Markov chain, and describe its state space and transition probabilities.
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Solution: The state space is clearly {0, 1, 2, . . . } and, moreover, Tn+1 > Tn for all n. Note that P (T1 = 1 | T0 = 0) = 1
since Y1 = 1 with probability 1. Consider n ≥ 2. We have for tn+1 > tn > tn−1 > · · · > t2 > 1:

P (Tn+1 = tn+1 | T0 = 0, T1 = 1, T2 = t2, . . . , Tn = tn)

=
P (T0 = 0, T1 = 1, T2 = t2, . . . , Tn = tn, Tn+1 = tn+1)

P (T0 = 0, T1 = 1, T2 = t2, . . . , Tn = tn)

=
P (T0 = 0) P (T1 = 1 | T0 = 0)

∏n+1
i=2

{(∏ti−1
j=ti−1+1 P (Yj = 0)

)
P (Yti = 1)

}
P (T0 = 0) P (T1 = 1 | T0 = 0)

∏n
i=2

{(∏ti−1
j=ti−1+1 P (Yj = 0)

)
P (Yti = 1)

} .
Many numerator/denominator cancellations occur and all that remains after cancellations is one term of the numera-
tor’s outer big-product: tn+1−1∏
j=t(n+1)−1+1

P (Yj = 0)

P
(
Ytn+1 = 1

)︸ ︷︷ ︸
1

tn+1

=
1

tn+1

tn+1−1∏
j=tn+1

j − 1
j

 =
1

tn+1

(
tn

tn + 1
tn + 1
tn + 2

· · · tn+1 − 2
tn+1 − 1

)
=

tn
tn+1 (tn+1 − 1)

.

Conclude that for n ≥ 2,

P (Tn+1 = tn+1 | T0 = 0, T1 = 1, T2 = t2, . . . , Tn = tn) =

{
tn

tn+1(tn+1−1) if tn+1 > tn,

0 otherwise.
(4)

In particular, P (Tn+1 = tn+1 | Ti = ti for i = 0, 1, . . . , n) does not depend on t0, t1, . . . , tn−1, so P (Tn+1 | T0, . . . , Tn) =
P (Tn+1 | Tn), i.e. (Tn) is a Markov chain with transition probabilities given by Equation (4).

3. Let X,Y, Z be random variables defined on a common probability space, each with a discrete distribution. Explain
why the function φ (x) := E (Y | X = x) is characterized by the property

E (Y g (X)) = E [φ (X) g (X)] (5)

for every bounded function g whose domain is the range of X. Use this characterization of E (Y | X) to verify the
formula

E (E (Y | X) | f (X)) = E [Y | f (X)] (6)

for every function f whose domain is the range of X, and the formula

E (E (Y | X,Z) | X) = E [Y | X] . (7)

Solution: We first show that φ (x) = E (Y | X = x) satisfies Equation (5):

E (Y g (X)) =
∑
x

P (X = x) E (Y g (X) | X = x) =
∑
x

P (X = x) g (x) E (Y | X = x)︸ ︷︷ ︸
φ(x)

= E (g (X)φ (X)) .

Next we show that φ is unique, i.e. if a function φ satisfies Equation (5), then we must have φ (x) = E (Y | X = x).
Note that the domain of φ is {x : P (X = x) > 0}. Let x ∈ {x : P (X = x) > 0}. To see that φ (x) must be equal to
E (Y | X = x), by Equation (5), we have

E (Y 1 (X = x)) = E (φ (X) 1 (X = x)) = φ (x) P (X = x) .

This implies that

φ (x) =
E (Y 1 (X = x))

P (X = x)
= E (Y | X) ,

using the identity that E (A | B) = E (A1B) /P (B). To verify Equation (6), observe that

E (E (Y | X) | f (X) = f (x)) = E (φ (X) | f (X) = f (x))

=
E (φ (X) 1 (f (X) = f (x)))

P (f (X) = x)
(recall that E (A | B) = E (A1B) /P (B) )

=
E (Y 1 (f (X) = f (x)))

P (f (X) = x)
(by Equation (5) where g (x) = 1 (f (X) = f (x)) )

= E (Y | f (X) = f (x)) .
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We can verify Equation (7) with direct computation:

E (E (Y | X,Z) | X = x) =
∑
z

E (Y | X = x, Z = z) P (Z = z | X = x)

=
∑
z

∑
y

yP (Y = y | X = x, Z = z) P (Z = z | X = x)

=
∑
z

∑
y

y
P (X = x, Y = y, Z = z)

P (X = x, Z = z)
P (X = x, Z = z)

P (X = x)

=
∑
z

∑
y

y
P (X = x, Y = y, Z = z)

P (X = x)

=
∑
z

∑
y

yP (Y = y, Z = z | X = x)

=
∑
y

yP (Y = y | X = x)

= E (Y | X = x) .

4. Suppose that a sequence of random variables X0, X1, . . . and a function f are such that

E (f (Xn+1) | X0, . . . , Xn) = f (Xn) (8)

for every n = 0, 1, 2, . . . Explain why this implies

E (f (Xn+1) | f (X0) , . . . , f (Xn)) = f (Xn) . (9)

Give an example of such an f which is not constant for (Xn) a p ↑, 1− p ↓ random walk on the integers.

Solution: Define random vectors X(n) =
(
X0 X1 · · · Xn−1

)> and Y(n) =
(
f (Xn) 0 · · · 0

)> taking on

values in Rn. Define function g by g
(
X(n)

)
=
(
f (X0) f (X1) · · · f (Xn−1)

)>. Then

E (f (Xn) | f (X0) , . . . , f (Xn−1)) = E

(1 0 · · · 0
)

f (Xn)

0
...
0


∣∣∣∣∣∣∣∣∣


f (X0)
f (X1)

...
f (Xn−1)




=
(
1 0 · · · 0

)
E



f (Xn)

0
...
0


∣∣∣∣∣∣∣∣∣


f (X0)
f (X1)

...
f (Xn−1)




=
(
1 0 · · · 0

)
E
(
Y(n) | g

(
X(n)

))
=
(
1 0 · · · 0

)
E
(
E
(
Y(n) | X(n)

)
| g
(
X(n)

))
(by Equation (6))

=
(
1 0 · · · 0

)
E

E



f (Xn)

0
...
0


∣∣∣∣∣∣∣∣∣


X0

X1

...
Xn−1



∣∣∣∣∣∣∣∣∣ g
(
X(n)

)

=
(
1 0 · · · 0

)
E



f (Xn−1)

0
...
0


∣∣∣∣∣∣∣∣∣ g
(
X(n)

) (by Equation (8))

= E

(1 0 · · · 0
)

f (Xn−1)

0
...
0


∣∣∣∣∣∣∣∣∣


f (X0)
f (X1)

...
f (Xn−1)




= E (f (Xn−1) | f (X0) , f (X1) , . . . , f (Xn−1)) ,
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which is precisely Equation (9).

As an example, if f (x) =
(
q
p

)x
, then if (Xn) is a p ↑, 1− p ↓ walk on the integers, then (f (Xn)) is a martingale since

E (f (Xn+1) | X0, . . . , Xn) = E

((
q

p

)Xn+1

| X0, . . . , Xn

)

= p

(
q

p

)Xn+1

+ q

(
q

p

)Xn−1

=
qXn+1

pXn
+

qXn

pXn−1

=
qXn+1

pXn
+
qXnp

pXn

=
qXnq + qXnp

pXn

=
qXn

pXn
(q + p)

= f (Xn) ,

so by the result above, we have E (f (Xn+1) | f (X0) , . . . , f (Xn)) = f (Xn).

5. Let S := X1 + · · · + XN be the number of successes and F := N − S be the number of failures in a Poisson (µ)
distributed random numberN of Bernoulli trials, where givenN = n theX1, . . . , Xn are independent with P (Xi = 1) =
1−P (Xi = 0) = p for some 0 ≤ p ≤ 1. Derive the joint distribution of S and F . How can the conclusion be generalized
to multinomial trials?

Solution: Let q = 1− p. We have

P (S = s, F = f) =
∞∑
n=0

P (S = s, F = f | N = n) P (N = n)

=
∞∑
n=0

P (S = s,N − S = f | N = n) P (N = n)

=
∞∑
n=0

P (S = s, S = N − f | N = n) P (N = n)

=
∞∑
n=0

P

(
n∑
i=1

Xi = s,

n∑
i=1

Xi = n− f

)
P (N = n)

=
∞∑
n=0

1 (s = n− f) P

(
n∑
i=1

Xi = s

)
P (N = n)

=
∞∑
n=0

1 (n = s+ f) P

(
n∑
i=1

Xi = s

)
P (N = n)

= P

(
s+f∑
i=1

Xi = s

)
P (N = s+ f)

=
(
s+ f

s

)
psqf

µs+fe−µ

(s+ f)!

=
(s+ f)!
s!f !

psµsqfµfe−µ(p+q)

(s+ f)!

=
(pµ)s e−pµ

s!
(qµ)f e−qµ

f !
= P (Poisson (pµ) = s) P (Poisson (qµ) = f) .

In the multinomial case with k categories with probabilities p1, p2, . . . , pk and N ∼ Poisson (µ) trials, let S1, S2, . . . , Sk
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denote the number of trials falling into categories 1, 2, . . . , k respectively. Then generalizing the result above, we have

P (S1 = s1, S2 = s2, . . . , Sk = sk) =
k∏
i=1

P (Poisson (piµ) = si) .

6. Let Pi govern a p ↑, q = 1− p ↓ walk (Sn) on the integers started at S0 = i, with p > q. Let

fij := Pi (Sn = j for some n ≥ 1) .

Use results derived from lectures and/or the text to present a formula for fij in each of the two cases i > j and i < j.
Deduce a formula for fij for i = j.

Solution: Case i > j: This can be viewed as the gambler’s ruin problem for a biased coin where the bottom “absorb-
ing” state is j and the top “absorbing” state is +∞. fij is the probability of starting at i and hitting j before hitting
+∞. Using a result from lecture, we have

fij = Pi (hit j before +∞) = lim
b→∞

Pa (hit 0 before b) =
(
q

p

)a
=
(
q

p

)i−j
where a = i− j and b→ +∞.

Case i < j: Claim: Since p > q, we are guaranteed to hit j starting from i, so fij = Pi (hit j) = 1. To show this,
consider the gambler’s ruin problem where we flip the walk upside down, i.e. suppose we start at −i and want to reach
−j before we reach +∞ where a step up has probability q and a step down has probability p, where p > q. Using the
result from class, we have

fij = lim
b→∞

Pa (hit 0 before b) = lim
b→∞

1−

(
p
q

)a
− 1(

p
q

)b
− 1

 = 1− lim
b→∞

(
p
q

)(−i)−(−j)
− 1(

p
q

)b
− 1

= 1− lim
b→∞

(
p
q

)−i+j
− 1(

p
q

)b
− 1

.

Since p > q, the right-most term’s denominator goes to +∞ whereas the numerator is fixed, so limb→∞
( p

q )−i+j−1

( p
q )b−1

= 0.

Thus, we have fij = 1− limb→∞
( p

q )−i+j−1

( p
q )b−1

= 1− 0 = 1.

Case i = j: From first-step analysis, we have

fii = P (go 1 step up) Pi+1 (hit i before +∞) + P (go 1 step down) Pi−1 (hit i)

= p

(
q

p

)(i+1)−i

+ q · 1 (using previous results)

= p

(
q

p

)
+ q

= 2q.

7. Let Pi govern (Xn) as a Markov chain starting from X0 = i, with finite state space S and transition matrix P which
has a set of absorbing states B. Let T := min {n ≥ 1 : Xn ∈ B} and assume that Pi (T <∞) = 1 for all i. Derive a
formula for

Pi (XT−1 = j,XT = k) for i, j ∈ Bc and k ∈ B

in terms of matrices W := (I −Q)−1 and R, where Q is the restriction of P to Bc ×Bc and R is the restriction of P
to Bc ×B.

Solution:

Pi (XT−1 = j,XT = k) =
∞∑
n=1

Pi (XT−1 = j,XT = k, T = n)

=
∞∑
n=1

Pn−1 (i, j)P (j, k)

=

( ∞∑
m=0

Pm (i, j)

)
P (j, k)
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=

( ∞∑
m=0

Qm (i, j)

)
︸ ︷︷ ︸

W (i,j)

R (j, k)

= W (i, j)R (j, k) .

8. In the same setting, let fij := Pi (Xn = j for some n ≥ 1). For i, j ∈ Bc, find and explain a formula for fij in terms
of Wij and Wjj .

Solution: Let Nj be the total number of times we visit state j before absorption. Recall that Wij = Ei (Nj) and
Wjj = Ej (Nj). Reaching Xn = j for some n ≥ 1 is equivalent to saying that there exists a first time that we reach j;
thus:

fij = Pi (Xn = j for some n ≥ 1) = P (we reach j for the first time) .

From first-step analysis:

Ei (Nj) = P (we reach state j for the first time) · Ej (Nj) + P (we never reach state j) · 0.

Hence, we have

fij = P (we reach state j for the first time) =
Ei (Nj)
Ej (Nj)

=
Wij

Wjj
.

9. In the same setting, let φi (s) denote the probability generating function of T for the Markov chain started at state i.
Derive a system of equations which could be used to determine φi (s) for all i ∈ S.

Solution: Note that for i ∈ B, Pi (T = 0) = 1, i.e. φi (s) = 1 for i ∈ B . For i /∈ B, clearly Pi (T = 0) = 0 and for
n ≥ 1, use first-step analysis to get

Pi (T = n) =
∑
j

P (i, j) Pj (T = n− 1)

=
∑
j∈Bc

Q (i, j) Pj (T = n− 1) +
∑
k∈B

R (i, k) Pk (T = n− 1)

=
∑
j∈Bc

Q (i, j) Pj (T = n− 1) +
∑
k∈B

R (i, k) 1 (n− 1 = 0)

=
∑
j∈Bc

Q (i, j) Pj (T = n− 1) + 1 (n = 1)
∑
k∈B

R (i, k) .

So

φi (s) = Pi (T = 0)︸ ︷︷ ︸
0

+
∞∑
n=1

Pi (T = n) sn

=
∞∑
n=1

∑
j∈Bc

Q (i, j) Pj (T = n− 1) + 1 (n = 1)
∑
k∈B

R (i, k)

 sn

=
∞∑
n=1

∑
j∈Bc

Q (i, j) Pj (T = n− 1) sn +
∞∑
n=1

1 (n = 1)
∑
k∈B

R (i, k) sn

=
∑
j∈Bc

Q (i, j)
∞∑
n=1

Pj (T = n− 1) sn +
∑
k∈B

R (i, k) s

=
∑
j∈Bc

Q (i, j)
∞∑
m=0

Pj (T = m) sm+1 +
∑
k∈B

R (i, k) s

=
∑
j∈Bc

Q (i, j) s
∞∑
m=0

Pj (T = m) sm +
∑
k∈B

R (i, k) s

= s
∑
j∈Bc

Q (i, j)
∞∑
m=0

Pj (T = m) sm + s
∑
k∈B

R (i, k)
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= s
∑
j∈Bc

Q (i, j)φj (s) + s
∑
k∈B

R (i, k)

= s
∑

j∈Bc\{i}

Q (i, j)φj (s) + sQ (i, i)φi (s) + s
∑
k∈B

R (i, k) .

Rearranging terms gives

s
∑

j∈Bc\{i}

Q (i, j)φj (s) + (sQ (i, i)− 1)φi (s) + s
∑
k∈B

R (i, k) = 0, for i ∈ Bc.

10. Let X be a non-negative integer valued random variable with probability generating function φ (s) for 0 ≤ s ≤ 1. Let
N be independent of X with the Geometric (p) distribution P (N = n) = (1− p)n p for n = 0, 1, 2, . . . where 0 < p < 1.
Find a formula for P (N < X) in terms of φ and p.

Solution:

P (N < X) =
∞∑
x=0

P (N < X | X = x) P (X = x)

=
∞∑
x=0

P (N < x) P (X = x)

=
∞∑
x=0

P (N ≤ x− 1) P (X = x)

=
∞∑
x=0

(1− (1− p)x) P (X = x)

=
∞∑
x=0

P (X = x)−
∞∑
x=0

(1− p)x P (X = x)

= 1− φ (1− p) .

11. Let X be a non-negative random variable with usual probability generating function φ (s) for 0 ≤ s ≤ 1. Define the
tail probability generating function τ (s) by

τ (s) :=
∞∑
n=1

P (X ≥ n) sn.

Use the identity
P (X = n) = P (X ≥ n)− P (X ≥ n+ 1)

to derive a formula for τ (s) in terms of s and φ (s) for 0 ≤ s ≤ 1. Discuss what happens for s = 1.

Solution: We have

φ (s) =
∞∑
n=0

P (X = n) sn

=
∞∑
n=0

(P (X ≥ n)− P (X ≥ n+ 1)) sn

=
∞∑
n=0

P (X ≥ n) sn −
∞∑
n=0

P (X ≥ n+ 1) sn

= P (X ≥ 0) +
∞∑
n=1

P (X ≥ n) sn −
∞∑
m=1

P (X ≥ m) sm−1

= P (X ≥ 0)︸ ︷︷ ︸
1

+
∞∑
n=1

P (X ≥ n) sn − s−1
∞∑
m=1

P (X ≥ m) sm

= 1 + τ (s)− s−1τ (s)

= 1 + τ (s)
(
1− s−1

)
,
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so

τ (s) =
φ (s)− 1
1− s−1

.

It is clear that by the definition of τ (s), when s = 1, we have τ (1) =
∑∞
n=1 P (X ≥ n) = E (X). We can also see this

via l’Hopital’s rule:

lim
s→1

τ (s) = lim
s→1

φ (s)− 1
1− s−1

= lim
s→1

φ′ (s)
s−2

=
φ′ (1)

1
= φ′ (1) = E (X) .

12. Consider a random walk on the 3 vertices of a triangle labeled clockwise 0, 1, 2. At each step, the walk moves clockwise
with probability p and counter-clockwise with probability q, where p + q = 1. Let P denote the transition matrix.
Observe that

P 2 (0, 0) = 2pq; P 3 (0, 0) = p3 + q3; P 4 (0, 0) = 6p2q2.

Derive a similar formula for P 5 (0, 0).
Solution: Consider a p ↑, q ↓ random walk on Z. Modulo 3, we are traversing the triangle described. We restrict the
rest of our discussion to the random walk on Z where we start at the origin and want to reach state 0 of the triangle
(i.e. any multiple of 3 for the random walk on Z) in 5 steps. Observe that in 5 steps, we cannot possibly reach any
multiple of 3 larger than 3 away from the origin. Also, since we move an odd number of steps, we cannot return
to the origin. However, we can reach +3 (4 up and 1 down in any combination) and −3 (4 down and 1 up in any
combination). Therefore,

P 5 (0, 0) =
(

5
1

)
︸︷︷︸

in 5 moves,
1 is down and
the rest are up

p4q +
(

5
1

)
︸︷︷︸

in 5 moves,
1 is up and the
rest are down

pq4 = 5p4q + 5pq4.

13. A branching process with Poisson (λ) offspring distribution started with one individual has extinction probability p
with 0 < p < 1. Find a formula for λ in terms of p.
Solution: The offspring distribution has PGF

φ (s) =
∞∑
n=0

λne−λ

n!
sn = e−λ

∞∑
n=0

(λs)n

n!
= e−λeλs = eλ(s−1).

The extinction probability p satisfies p = φ (p) = eλ(p−1). Taking the log of both sides gives log p = λ (p− 1), so

λ =
log p
p− 1

.

14. Suppose (Xn) is a Markov chain with state space {0, 1, . . . , b} for some positive integer b, with states 0 and b absorbing
and no other absorbing states. Suppose also that (Xn) is a martingale. Evaluate

lim
n→∞

Pa (Xn = b)

and explain your answer carefully.
Solution: We start at X0 = a. Since (Xn) is a martingale, E [Xn] = E [X0] = a for all n. So

a = E [Xn] =
b∑
i=0

iPa (Xn = i) =
b−1∑
i=1

iPa (Xn = i) + bPa (Xn = b) . (10)

Claim: From any state i ∈ {1, 2, . . . , b− 1}, we can eventually reach an absorbing state with probability 1. Assuming
that this claim is true, then for any state i ∈ {1, 2, . . . , b− 1}, limn→∞ Pa (Xn = i) = 0. Therefore, taking the limit as
n→∞ for Equation (10) gives

a = b lim
n→∞

Pa (Xn = b) , so lim
n→∞

Pa (Xn = b) =
a

b
.

Proof of claim: Suppose that at state i ∈ {1, 2, . . . , b− 1}, we cannot eventually reach an absorbing state with
probability 1. Let k be the state closest to 0 that we can eventually reach from state i. Then from state k, we cannot
reach any state in {0, 1, . . . , k − 1}. Since (Xn) is a martingale, E [Xn+1 | Xn = k] = k, but since k is not an absorbing
state, it means that there must be some probability of reaching a state in {0, 1, . . . , k − 1} (otherwise, we would have
E [Xn+1 | Xn = k] > k). Hence, we reach a contradiction. It must be that we can indeed reach absorbing state 0. By
considering the highest state ` < b that we can eventually reach from state i, a similar argument can be used to prove
that we can eventually reach state b from state i.
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