STAT 150 SPRING 2010: MIDTERM EXAM

Problems by Jim Pitman. Solutions by George Chen

1. Let Xo,Y3,Y3,... be independent random variables, X, with values in {0,1,2,...} and each Y; an indicator random
variable with P(Y; =1) =1 and P(Y; =0)=1—1 =L foreach i =1,2,... Forn=1,2,... let

i

X _Jmax{k:1<k< X, and Yy =1} if X,, > 1,
"o if X, < 1.

Explain why (X,,) is a Markov chain, and describe its state space and transition probabilities.
Solution: The state space is clearly {0,1,2,...} and, moreover, X, ;1 < X,, when X,, > 1. Suppose X; > 1 and
0< X1 <X, forie{0,1,2,...,n}. Then
P(X;=ua;,fori=0,1,2,...,n+1)
P(X;=x; fori=0,1,2,...,n)

P(Xpt1 =xpg1 | Xi=az; fori=0,1,...,n) =

P YﬂfU:l?YxU—l:"': $1+1207Y$1 :la
o le—l == Tpo41 = 07Yr2:17' . "Yiﬂn+1 =1

IED Ya:o = 17YLE0—1 == Ig 41 = 07Y$1 = 1’
Yxl—lz"': x2+1207Yx2=1?""Y1’n:1

PO = DTS {(IFL5 PG =0) P(, = 1)}
P (Y, = DITL, { (I PG = 0) P(¥a = 1)}

Many numerator/denominator cancellations occur and all that remains after cancellations is one term of the numera-
tor’s outer big-product:

o1 1 el 1 Top1 Tmpr+ 1 Tn—2 1
- n+ n—+ n
H HD(}G:O) P(Y$n+1:1):x H - :{E ((E 1z +2.’E —1)21' R
J=Tpp1+1 —I/—/ n+1 =Tnp1+1 ] n+1 n+1 n+1 n n
Ty 41
Conclude that )
P(Xn+1il’n+1‘XziiiszI'Z:O,l,,’ﬂ): 1 (1)
Ty —

The above result holds for all n such that X; > 1 and 0 < X;1; < X; for all 0 <4 < n. The only other case is if there
is an m such that X,, < 1. Note that by how (X,,) is defined, we must have X,,11 = 0 and trivially we have, for all n,

P(Xpni1 =21 | Xo=20, X1 =21,..., Xn 1 =21, X, £0) =1 (211 = 0). (2)
Therefore, combining both cases (Equations (1) and (2)), we have

1
Tpn—1

ifx, >1and 0 < xp41 < Ty,

P(Xpt1=2pt1 | Xs=a;for i =0,1,...,n) = 1 (231 =0) ifa, <1, (3)
0 otherwise.
In particular, P (X, 41 = @p41 | X; = 2; for i = 0,1,...,n) does not depend on zg, 21, ..., Zn-1,50 P (Xnt1 | Xo,..., Xpn) =

P(Xpnt1 | Xn), ie. (X,) is a Markov chain with transition probabilities given by Equation (3).
2. For Y1,Ys,... as in the previous question, let Ty := 0 and for n =1,2,... let
T,:=min{k:k>T,_1 and Y = 1}.

Explain why (7},) is a Markov chain, and describe its state space and transition probabilities.



Solution: The state space is clearly {0, 1,2, ...} and, moreover, T}, 11 > T, for all n. Note that P(T3 =1 |Ty =0) =1
since Y7 = 1 with probability 1. Consider n > 2. We have for t,41 > t, > t,—1 > - >ty > L

P(Thyr =ty | To=0,T1 = 1,Ty = to,..., T, = t,,)
— ]P)(TO:OaTl = 17T2 :t27~-~7Tn:tn7Tn+1 :tn+1)
P(To=0,11 = 1,15 = la,.... Tp = t)

P =0P (0 =11% =0T (TS, L, P =0)P(Y, = 1)
B(To=0)P(T =1 Ty =0T, { (T[S, P(Y; =0) P(Y, = 1)}

Many numerator/denominator cancellations occur and all that remains after cancellations is one term of the numera-
tor’s outer big-product:

tpny1—1 tny1—1 |
1 -1 1 tn, t 1 t -2 t
I roi=0)rm, == I1 220 = (e ) - s
j:t( +1) 1+1 — t"-‘rl j=tn+1 J tn-i—l tn+1tn+2 tn+1—1 tn+1 (tn-l—l_l)
n — 1 n
tn41

Conclude that for n > 2,

if tny1 > Tp,

tn
P(Tpi1 =tn1 | To=0,T1 =1, Ty =to,..., T, = t,,) = { tnr1ltnrai=1) _
0 otherwise.

In particular, P (T 41 = tny1 | T; =t; for ¢ = 0,1,...,n) does not depend on tg,t1,...,tn—1, 50 P(Thi1 | To, ..., Tn) =
P(Tp41 | Ty), ie. (T},) is a Markov chain with transition probabilities given by Equation (4).

. Let X,Y, Z be random variables defined on a common probability space, each with a discrete distribution. Explain
why the function ¢ (z) :=E (Y | X = x) is characterized by the property

E(Yg (X)) =E[s(X)g(X)] (5)

for every bounded function g whose domain is the range of X. Use this characterization of E (Y | X) to verify the
formula

EEY [X)]f(X)=E[Y|f(X)] (6)

for every function f whose domain is the range of X, and the formula
EEY|X,2)| X)=E[Y | X]. (7)

Solution: We first show that ¢ (z) = E (Y | X = x) satisfies Equation (5):

=Y PX=2)E(Yg(X)| X =2)= ZIP’ (@)EY [X=2)=E(9(X)¢(X)).
* ()

Next we show that ¢ is unique, i.e. if a function ¢ satisfies Equation (5), then we must have ¢ (z) = E(Y | X = ).
Note that the domain of ¢ is {z : P(X =) > 0}. Let € {x : P(X ==x) > 0}. To see that ¢ (z) must be equal to
E(Y | X = z), by Equation (5), we have

EY1(X =2)=E(@X)1(X =2))=¢ (@) P X =2).
This implies that
CE(VI(X =) _
using the identity that E (A | B) = E(Alp) /P (B). To verify Equation (6), observe that

EEY [X)]f(X)=[f(2) =E(o(X) ]| f(X)=[(2))

f(
_EOELIFE) =F @) ocan that E(A | B) = E(A15) /P (B))

E(Y|X),

P(f(X)=x)
_E(YL(f(X) = [(2) . B -
T P(f(X) =2 (by Equation (5) where g () = 1(f(X) = f (x)))

=EY [f(X)=[f(2)).



We can verify Equation (7) with direct computation:

EE(Y|X.2)|X=0)=) EY|X=0,Z=2)P(Z=2|X=2)

:ZZyP(Y:y|X:x,Z:z)P(Z=z|X:x)

—mY—y,Z )P (X =2,Z =2)
_Zzy X=x7Z=2z2) P(X =x)

X=x Y—y,Z z)
*Zzy — 1)
:ZZy]P’ =y, Z=z|X=n1)
_ Y P =y X =2)

=EY |X=x).
4. Suppose that a sequence of random variables X, X1,... and a function f are such that
]E(f (Xn+1) ‘ Xo,...,Xn) = f(Xn) (8)
for every n =0,1,2,... Explain why this implies
E(f (Xpt1) | f(Xo),..o f(Xn)) = f(Xn). (9)
Give an example of such an f which is not constant for (X,,) ap 1,1 — p | random walk on the integers.
Solution: Define random vectors X(™ = (XO Xy - Xn_l)—r and Y™ = (f (X,) 0 --- O)—r taking on
values in R". Define function g by g (X)) = (f (Xo) [f(X1) - f (Xn_l))—r. Then
0 f(Xq1)
E(f (Xa) | £ (Xo) oo f (X)) =E| (1 0 - 0) |
0 f(anl)
f(Xy) f(Xo)
0 f(X1)
=(1 0 E _ -
0 f(Xn—l)
—(1 0 - (Y(”)|g(X(")>
=1 0 - (E ( )| X(”)> g (X<">)) (by Equation (6))
f(Xn) XO
0 X
—(1 0 0)E|E , ! g (X<”>)
0 Xn—l
f(Xn 1)
0
=(1 0 - 0)E ) g (X(")) (by Equation (8))
0
f(Xn-1) S (Xo)
0 f(X1)
=F (1 0 --- 0) ) !
0 f(Xn—l)

:E(f (anl) | f(XO)af(Xl)7"'7f(Xn71))7



which is precisely Equation (9).

As an example, if f (z) = (%) , then if (X,,) isap 1,1 —p | walk on the integers, then (f (X,,)) is a martingale since

A
E(f (Xus) | Xor.. Xp) = E ((p) |Xo,...,Xn>

q Xn+1 7 Xn—1
;) ()
p D

s . <
pX" an,1
B Pt X
pr o p¥n
_ gt gtp
pn
Xn
= ZX” (¢+p)
=f (Xn) )

so by the result above, we have E (f (Xp41) | f (Xo),--., f (Xn)) = f (Xy).

5. Let S := X; + -+ + Xy be the number of successes and F' := N — S be the number of failures in a Poisson ()
distributed random number N of Bernoulli trials, where given N = n the X, ..., X,, are independent with P (X; = 1) =
1-P(X; =0) = p for some 0 < p < 1. Derive the joint distribution of S and F'. How can the conclusion be generalized
to multinomial trials?

Solution: Let ¢ =1 — p. We have

P(S=sF=f) =Y P(S=sF=f|N=n)P(N=n)

n=0 i=1
—Zl(n—s—i—f)P(ZXl:s)IP(N:n)

s+f> o putlemr
s (s+ f)!
(st ) piutqf pfe—rpta)
sl (s+ f)!
(pp)" e~ (qp)” e~
5! 7l
= P (Poisson (pu) = s) P (Poisson (qu) = f) .

In the multinomial case with k categories with probabilities pi, pa, ..., pr and N ~ Poisson (u) trials, let Sy, Ss,..., Sk



denote the number of trials falling into categories 1,2, ...,k respectively. Then generalizing the result above, we have

k

P(S) =s1,5 =s9,...,5, = s) = H]P’(Poisson (pip) = s4) .
i=1

. Let P; govern a p 1,¢q =1 — p | walk (S,,) on the integers started at Sy = 4, with p > ¢. Let
fij =P; (S, = j for some n >1).

Use results derived from lectures and/or the text to present a formula for f;; in each of the two cases ¢ > j and @ < j.
Deduce a formula for f;; for i = j.

Solution: Case 7 > j: This can be viewed as the gambler’s ruin problem for a biased coin where the bottom “absorb-
ing” state is j and the top “absorbing” state is +-00. f;; is the probability of starting at ¢ and hitting j before hitting
+o0. Using a result from lecture, we have

a 1—J
fis = Pi (it j before +0c) = lim P, (hit 0 before b) = <q> = <q>

where ¢ =7 — j and b — +oo.

Case ¢ < j: Claim: Since p > ¢, we are guaranteed to hit j starting from 4, so f;; = P; (hit j) = 1. To show this,
consider the gambler’s ruin problem where we flip the walk upside down, i.e. suppose we start at —i and want to reach
—7j before we reach +0o where a step up has probability ¢ and a step down has probability p, where p > q. Using the
result from class, we have

Q3

(ﬂ)a—l (B)(*i)*(*j)_l ( )*Hj_l
fij = Jim Pq (hit 0 before b) = lim | 1~ M2 =1— lim 2 —1— lim

b—oo (E)b_l b—oo (B)b_l b—oo (E)b_l
q q q

(5)—1'-%—.7‘71 _
(=~

Since p > ¢, the right-most term’s denominator goes to +o0c whereas the numerator is fixed, so limy_. o
py=iti_g

Case i = j: From first-step analysis, we have

Thus, we have fij; =1 — limp_.o0 =1-0=1.

fii =P (go 1 step up) P;11 (hit i before + 00) + P (go 1 step down) P;_; (hit ¢)
d

= 2q.

(i+1)—i
) +q-1 (using previous results)
)+

. Let P; govern (X,,) as a Markov chain starting from X, = 4, with finite state space S and transition matrix P which
has a set of absorbing states B. Let T := min{n > 1: X,, € B} and assume that P; (T < co) = 1 for all i. Derive a
formula for

"N TR

P, (Xr-1=4,Xr=k) fori,j € B°and k € B

in terms of matrices W := (I — Q)" and R, where Q is the restriction of P to B¢ x B¢ and R is the restriction of P
to B¢ x B.

Solution:

o0
]P)i(XT—l ZJ,XT:kJ) :ZPi(XT—l Zj,XT:k‘,T:TL)



W (i.5)
=W (i,j) R(4, k).

8. In the same setting, let f;; :== P; (X,, = j for some n > 1). For ¢,j € B¢, find and explain a formula for f;; in terms
of Wij and Wjj.
Solution: Let N; be the total number of times we visit state j before absorption. Recall that W;; = E; (N;) and
W;; = E; (N;). Reaching X,, = j for some n > 1 is equivalent to saying that there exists a first time that we reach j;
thus:
fij =P; (X, = j for some n > 1) = P (we reach j for the first time).

From first-step analysis:
E; (N;) = P (we reach state j for the first time) - E; (IN;) 4+ P (we never reach state j) - 0.

Hence, we have
E.(N,) Wy
fi; = P (we reach state j for the first time) = 1L — 2
! Ej (N;j) Wy

9. In the same setting, let ¢; (s) denote the probability generating function of T for the Markov chain started at state s.
Derive a system of equations which could be used to determine ¢; (s) for all i € S.

Solution: Note that for ¢ € B, P, (T =0) = 1, i.e. ’qﬁi (s)=1forie B ‘ For i ¢ B, clearly P; (T'=0) = 0 and for
n > 1, use first-step analysis to get

=D P(.j)Pj(T=n-1)
=Y Q)P (T=n—-1)+Y R(,k)P(T=n-1)

jEBC keB

=Y Q)P (T=n-1)+> R(i,k)1(n—1=0)
jEB® keB

=Y Q)P (T=n-1)+1(n=1)Y R(k).
jeB* keB

So

di(s)=P; (T:0)+;Pi (T =

M

Y QGNP (T=n—-1)+1(n=1)> R(i,k)|s"

n=1 \jeB¢ keB
:Z D QUNP(T=n—1)s"+Y 1(n=1) R(i,k)s
n=1jeB¢° n=1 keB
=Y QUAHY P (T=n-1)s"+) R(ik)s
jeBe n=1 keB
ST QG Y P (T =m)s" T+ > R(ik)s
jeBe m=0 keB
=Y Qi.j)sY B (T=m)s"+> R(i,k)s
jJjEB*® m=0 keB
= Z (4,7) ZPJT m) m+sZR(i,k)
jeB® keB



=5y Qi,j)d;(s)+5) R(ik)

jEB* kEB
=s Y. Qi,5) ¢ (s)+sQi,1) i (s)+5 Y R(i,k).
jeBe\{i} keB

Rearranging terms gives

s Y. QUi,j) ¢ (s)+ (sQ(i,i) — 1) ¢i(s)+s > R(i,k)=0,  forie B

jeB\{i} keB

. Let X be a non-negative integer valued random variable with probability generating function ¢ (s) for 0 < s < 1. Let
N be independent of X with the Geometric (p) distribution P(N =n) = (1 —p)" pforn=0,1,2,... where 0 < p < 1.
Find a formula for P (N < X) in terms of ¢ and p.

Solution:

]P(N<X):§:P(N<X|X:x)IP(X:m)
=0

=) (1-(01-p)")P(X =2)
x=0

=Y P(X=2) =Y (1P P(X =2)
=0 x=0

. Let X be a non-negative random variable with usual probability generating function ¢ (s) for 0 < s < 1. Define the
tail probability generating function 7 (s) by

T(s) =Y P(X >n)s".
n=1
Use the identity
P(X=n)=P(X>n)—-P(X >n+1)
to derive a formula for 7 (s) in terms of s and ¢ (s) for 0 < s < 1. Discuss what happens for s = 1.

Solution: We have

n=0
=Y P(X>n)s"-> P(X>n+1)s"
n=0 n=0

n=1 m=1
=P(X>20)+> P(X>n)s"—s 'Y P(X>m)s"
H{_/ n=1 m=1



12.

13.

14.

" 0(5) -1
s) —
T(s) = 1
It is clear that by the definition of 7 (s), when s = 1, we have 7 (1) =Y ° | P(X > n) = E(X). We can also see this
via ’'Hopital’s rule:
1 ’ /
limT(s):limﬁfh #s) L()

s—1 s—1 1— s—>1 S T2

=¢'(1) =E(X).

Consider a random walk on the 3 vertices of a triangle labeled clockwise 0, 1, 2. At each step, the walk moves clockwise
with probability p and counter-clockwise with probability ¢, where p + g = 1. Let P denote the transition matrix.
Observe that

P2(0,0)=2pg;  P(0,0)=p>+¢%  P*(0,0)=6p°¢?
Derive a similar formula for P (0,0).

Solution: Consider a p T,¢ | random walk on Z. Modulo 3, we are traversing the triangle described. We restrict the
rest of our discussion to the random walk on Z where we start at the origin and want to reach state 0 of the triangle
(i.e. any multiple of 3 for the random walk on Z) in 5 steps. Observe that in 5 steps, we cannot possibly reach any
multiple of 3 larger than 3 away from the origin. Also, since we move an odd number of steps, we cannot return
to the origin. However, we can reach +3 (4 up and 1 down in any combination) and —3 (4 down and 1 up in any
combination). Therefore,

5 5
P®(0,0) = <1> plg+ <1> pg* = 5p*q+ 5pq’.
~——
in 5 moves, in 5 moves,
1 is down and 1 is up and the
the rest are up rest are down

A branching process with Poisson (A) offspring distribution started with one individual has extinction probability p
with 0 < p < 1. Find a formula for A in terms of p.

Solution: The offspring distribution has PGF

¢ (s) = Z e = e Z — e — A,

n=0

The extinction probability p satisfies p = ¢ (p) = e*®~1). Taking the log of both sides gives logp = A (p — 1), so

_logp
=01

Suppose (X,,) is a Markov chain with state space {0, 1,...,b} for some positive integer b, with states 0 and b absorbing
and no other absorbing states. Suppose also that (X,) is a martingale. Evaluate

lim P, (X, = b)

and explain your answer carefully.
Solution: We start at Xy = a. Since (Xn) is a martingale, E [X,,] = E[X] = a for all n. So

b—1
ZZ}P’ Xp =) =Y iPq(Xp =)+ bPy (X, =1). (10)
=1
Claim: From any state i € {1,2,...,b— 1}, we can eventually reach an absorbing state with probability 1. Assuming

that this claim is true, then for any state i € {1,2,...,b— 1}, lim,,_,oc P, (X, = 7) = 0. Therefore, taking the limit as
n — oo for Equation (10) gives

a=blim Py (X, =b), so lim P, (X,=>b)=-.
n—o0 n—oo b
Proof of claim: Suppose that at state ¢ € {1,2,...,b— 1}, we cannot eventually reach an absorbing state with

probability 1. Let k be the state closest to 0 that we can eventually reach from state i. Then from state k, we cannot
reach any state in {0,1,...,k — 1}. Since (X,,) is a martingale, E [X,, 41 | X,, = k] = k, but since k is not an absorbing
state, it means that there must be some probability of reaching a state in {0,1,...,k — 1} (otherwise, we would have
E [Xn+1 | Xn = k] > k). Hence, we reach a contradiction. It must be that we can indeed reach absorbing state 0. By
considering the highest state ¢ < b that we can eventually reach from state i, a similar argument can be used to prove
that we can eventually reach state b from state .



