STAT 150 SPRING 2010: MIDTERM EXAM

Problems by Jim Pitman. Solutions by George Chen

1. Let $X_{0}, Y_{1}, Y_{2}, \ldots$ be independent random variables, X_{0} with values in $\{0,1,2, \ldots\}$ and each Y_{i} an indicator random variable with $\mathbb{P}\left(Y_{i}=1\right)=\frac{1}{i}$ and $\mathbb{P}\left(Y_{i}=0\right)=1-\frac{1}{i}=\frac{i-1}{i}$ for each $i=1,2, \ldots$ For $n=1,2, \ldots$ let

$$
X_{n+1}:= \begin{cases}\max \left\{k: 1 \leq k<X_{n} \text { and } Y_{k}=1\right\} & \text { if } X_{n}>1 \\ 0 & \text { if } X_{n} \leq 1\end{cases}
$$

Explain why $\left(X_{n}\right)$ is a Markov chain, and describe its state space and transition probabilities.
Solution: The state space is clearly $\{0,1,2, \ldots\}$ and, moreover, $X_{n+1}<X_{n}$ when $X_{n}>1$. Suppose $X_{i}>1$ and $0<X_{i+1}<X_{i}$ for $i \in\{0,1,2, \ldots, n\}$. Then

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{i}=x_{i} \text { for } i=0,1, \ldots, n\right) & =\frac{\mathbb{P}\left(X_{i}=x_{i} \text { for } i=0,1,2, \ldots, n+1\right)}{\mathbb{P}\left(X_{i}=x_{i} \text { for } i=0,1,2, \ldots, n\right)} \\
& =\frac{\mathbb{P}\binom{Y_{x_{0}}=1, Y_{x_{0}-1}=\cdots=Y_{x_{1}+1}=0, Y_{x_{1}}=1,}{Y_{x_{1}-1}=\cdots=Y_{x_{2}+1}=0, Y_{x_{2}=1}, \ldots, Y_{x_{n+1}}=1}}{\mathbb{P}\binom{Y_{x_{0}}=1, Y_{x_{0}-1}=\cdots=Y_{x_{1}+1}=0, Y_{x_{1}}=1,}{Y_{x_{1}-1}=\cdots=Y_{x_{2}+1}=0, Y_{x_{2}=1}, \ldots, Y_{x_{n}}=1}} \\
& =\frac{\mathbb{P}\left(Y_{x_{0}}=1\right) \prod_{i=1}^{n+1}\left\{\left(\prod_{j=x_{i}+1}^{x_{i-1}-1} \mathbb{P}\left(Y_{j}=0\right)\right) \mathbb{P}\left(Y_{x_{i}}=1\right)\right\}}{\mathbb{P}\left(Y_{x_{0}}=1\right) \prod_{i=1}^{n}\left\{\left(\prod_{j=x_{i}+1}^{x_{i-1}-1} \mathbb{P}\left(Y_{j}=0\right)\right) \mathbb{P}\left(Y_{x_{i}}=1\right)\right\}} .
\end{aligned}
$$

Many numerator/denominator cancellations occur and all that remains after cancellations is one term of the numerator's outer big-product:

$$
\left(\prod_{j=x_{n+1}+1}^{x_{(n+1)-1}-1} \mathbb{P}\left(Y_{j}=0\right)\right) \underbrace{\mathbb{P}\left(Y_{x_{n+1}}=1\right)}_{\frac{1}{x_{n+1}}}=\frac{1}{x_{n+1}}\left(\prod_{j=x_{n+1}+1}^{x_{n}-1} \frac{j-1}{j}\right)=\frac{1}{x_{n+1}}\left(\frac{x_{n+1}}{x_{n+1}+1} \frac{x_{n+1}+1}{x_{n+1}+2} \cdots \frac{x_{n}-2}{x_{n}-1}\right)=\frac{1}{x_{n}-1} .
$$

Conclude that

$$
\begin{equation*}
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{i}=x_{i} \text { for } i=0,1, \ldots, n\right)=\frac{1}{x_{n}-1} . \tag{1}
\end{equation*}
$$

The above result holds for all n such that $X_{i}>1$ and $0<X_{i+1}<X_{i}$ for all $0 \leq i \leq n$. The only other case is if there is an m such that $X_{m} \leq 1$. Note that by how $\left(X_{n}\right)$ is defined, we must have $X_{m+1}=0$ and trivially we have, for all n,

$$
\begin{equation*}
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{0}=x_{0}, X_{1}=x_{1}, \ldots, X_{n-1}=x_{n-1}, X_{n} \leq 0\right)=\mathbf{1}\left(x_{n+1}=0\right) \tag{2}
\end{equation*}
$$

Therefore, combining both cases (Equations (1) and (2)), we have

$$
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{i}=x_{i} \text { for } i=0,1, \ldots, n\right)= \begin{cases}\frac{1}{x_{n}-1} & \text { if } x_{n}>1 \text { and } 0<x_{n+1}<x_{n} \tag{3}\\ \mathbf{1}\left(x_{n+1}=0\right) & \text { if } x_{n} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

In particular, $\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{i}=x_{i}\right.$ for $\left.i=0,1, \ldots, n\right)$ does not depend on $x_{0}, x_{1}, \ldots, x_{n-1}$, so $\mathbb{P}\left(X_{n+1} \mid X_{0}, \ldots, X_{n}\right)=$ $\mathbb{P}\left(X_{n+1} \mid X_{n}\right)$, i.e. $\left(X_{n}\right)$ is a Markov chain with transition probabilities given by Equation (3).
2. For Y_{1}, Y_{2}, \ldots as in the previous question, let $T_{0}:=0$ and for $n=1,2, \ldots$ let

$$
T_{n}:=\min \left\{k: k>T_{n-1} \text { and } Y_{k}=1\right\} .
$$

Explain why $\left(T_{n}\right)$ is a Markov chain, and describe its state space and transition probabilities.

Solution: The state space is clearly $\{0,1,2, \ldots\}$ and, moreover, $T_{n+1}>T_{n}$ for all n. Note that $\mathbb{P}\left(T_{1}=1 \mid T_{0}=0\right)=1$ since $Y_{1}=1$ with probability 1 . Consider $n \geq 2$. We have for $t_{n+1}>t_{n}>t_{n-1}>\cdots>t_{2}>1$:

$$
\begin{aligned}
& \mathbb{P}\left(T_{n+1}=t_{n+1} \mid T_{0}=0, T_{1}=1, T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right) \\
& =\frac{\mathbb{P}\left(T_{0}=0, T_{1}=1, T_{2}=t_{2}, \ldots, T_{n}=t_{n}, T_{n+1}=t_{n+1}\right)}{\mathbb{P}\left(T_{0}=0, T_{1}=1, T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right)} \\
& =\frac{\mathbb{P}\left(T_{0}=0\right) \mathbb{P}\left(T_{1}=1 \mid T_{0}=0\right) \prod_{i=2}^{n+1}\left\{\left(\prod_{j=t_{i-1}+1}^{t_{i}-1} \mathbb{P}\left(Y_{j}=0\right)\right) \mathbb{P}\left(Y_{t_{i}}=1\right)\right\}}{\mathbb{P}\left(T_{0}=0\right) \mathbb{P}\left(T_{1}=1 \mid T_{0}=0\right) \prod_{i=2}^{n}\left\{\left(\prod_{j=t_{i-1}+1}^{t_{i}-1} \mathbb{P}\left(Y_{j}=0\right)\right) \mathbb{P}\left(Y_{t_{i}}=1\right)\right\}} .
\end{aligned}
$$

Many numerator/denominator cancellations occur and all that remains after cancellations is one term of the numerator's outer big-product:

$$
\left(\prod_{j=t_{(n+1)-1}+1}^{t_{n+1}-1} \mathbb{P}\left(Y_{j}=0\right)\right) \underbrace{\mathbb{P}\left(Y_{t_{n+1}}=1\right)}_{\frac{1}{t_{n+1}}}=\frac{1}{t_{n+1}}\left(\prod_{j=t_{n}+1}^{t_{n+1}-1} \frac{j-1}{j}\right)=\frac{1}{t_{n+1}}\left(\frac{t_{n}}{t_{n}+1} \frac{t_{n}+1}{t_{n}+2} \cdots \frac{t_{n+1}-2}{t_{n+1}-1}\right)=\frac{t_{n}}{t_{n+1}\left(t_{n+1}-1\right)}
$$

Conclude that for $n \geq 2$,

$$
\mathbb{P}\left(T_{n+1}=t_{n+1} \mid T_{0}=0, T_{1}=1, T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right)= \begin{cases}\frac{t_{n}}{t_{n+1}\left(t_{n+1}-1\right)} & \text { if } t_{n+1}>t_{n} \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

In particular, $\mathbb{P}\left(T_{n+1}=t_{n+1} \mid T_{i}=t_{i}\right.$ for $\left.i=0,1, \ldots, n\right)$ does not depend on $t_{0}, t_{1}, \ldots, t_{n-1}$, so $\mathbb{P}\left(T_{n+1} \mid T_{0}, \ldots, T_{n}\right)=$ $\mathbb{P}\left(T_{n+1} \mid T_{n}\right)$, i.e. $\left(T_{n}\right)$ is a Markov chain with transition probabilities given by Equation (4).
3. Let X, Y, Z be random variables defined on a common probability space, each with a discrete distribution. Explain why the function $\phi(x):=\mathbb{E}(Y \mid X=x)$ is characterized by the property

$$
\begin{equation*}
\mathbb{E}(Y g(X))=\mathbb{E}[\phi(X) g(X)] \tag{5}
\end{equation*}
$$

for every bounded function g whose domain is the range of X. Use this characterization of $\mathbb{E}(Y \mid X)$ to verify the formula

$$
\begin{equation*}
\mathbb{E}(\mathbb{E}(Y \mid X) \mid f(X))=\mathbb{E}[Y \mid f(X)] \tag{6}
\end{equation*}
$$

for every function f whose domain is the range of X, and the formula

$$
\begin{equation*}
\mathbb{E}(\mathbb{E}(Y \mid X, Z) \mid X)=\mathbb{E}[Y \mid X] \tag{7}
\end{equation*}
$$

Solution: We first show that $\phi(x)=\mathbb{E}(Y \mid X=x)$ satisfies Equation (5):

$$
\mathbb{E}(Y g(X))=\sum_{x} \mathbb{P}(X=x) \mathbb{E}(Y g(X) \mid X=x)=\sum_{x} \mathbb{P}(X=x) g(x) \underbrace{\mathbb{E}(Y \mid X=x)}_{\phi(x)}=\mathbb{E}(g(X) \phi(X))
$$

Next we show that ϕ is unique, i.e. if a function ϕ satisfies Equation (5), then we must have $\phi(x)=\mathbb{E}(Y \mid X=x)$. Note that the domain of ϕ is $\{x: \mathbb{P}(X=x)>0\}$. Let $x \in\{x: \mathbb{P}(X=x)>0\}$. To see that $\phi(x)$ must be equal to $\mathbb{E}(Y \mid X=x)$, by Equation (5), we have

$$
\mathbb{E}(Y \mathbf{1}(X=x))=\mathbb{E}(\phi(X) \mathbf{1}(X=x))=\phi(x) \mathbb{P}(X=x)
$$

This implies that

$$
\phi(x)=\frac{\mathbb{E}(Y \mathbf{1}(X=x))}{\mathbb{P}(X=x)}=\mathbb{E}(Y \mid X)
$$

using the identity that $\mathbb{E}(A \mid B)=\mathbb{E}\left(A \mathbf{1}_{B}\right) / \mathbb{P}(B)$. To verify Equation (6), observe that

$$
\begin{array}{rlrl}
\mathbb{E}(\mathbb{E}(Y \mid X) \mid f(X)=f(x)) & =\mathbb{E}(\phi(X) \mid f(X)=f(x)) & \\
& =\frac{\mathbb{E}(\phi(X) \mathbf{1}(f(X)=f(x)))}{\mathbb{P}(f(X)=x)} \quad & \left(\text { recall that } \mathbb{E}(A \mid B)=\mathbb{E}\left(A \mathbf{1}_{B}\right) / \mathbb{P}(B)\right) \\
& =\frac{\mathbb{E}(Y \mathbf{1}(f(X)=f(x)))}{\mathbb{P}(f(X)=x)} & & \text { (by Equation (5) where } g(x)=\mathbf{1}(f(X)=f(x))) \\
& =\mathbb{E}(Y \mid f(X)=f(x)) . &
\end{array}
$$

We can verify Equation (7) with direct computation:

$$
\begin{aligned}
\mathbb{E}(\mathbb{E}(Y \mid X, Z) \mid X=x) & =\sum_{z} \mathbb{E}(Y \mid X=x, Z=z) \mathbb{P}(Z=z \mid X=x) \\
& =\sum_{z} \sum_{y} y \mathbb{P}(Y=y \mid X=x, Z=z) \mathbb{P}(Z=z \mid X=x) \\
& =\sum_{z} \sum_{y} y \frac{\mathbb{P}(X=x, Y=y, Z=z)}{\mathbb{P}(X=x, Z=z)} \frac{\mathbb{P}(X=x, Z=z)}{\mathbb{P}(X=x)} \\
& =\sum_{z} \sum_{y} y \frac{\mathbb{P}(X=x, Y=y, Z=z)}{\mathbb{P}(X=x)} \\
& =\sum_{z} \sum_{y} y \mathbb{P}(Y=y, Z=z \mid X=x) \\
& =\sum_{y} y \mathbb{P}(Y=y \mid X=x) \\
& =\mathbb{E}(Y \mid X=x)
\end{aligned}
$$

4. Suppose that a sequence of random variables X_{0}, X_{1}, \ldots and a function f are such that

$$
\begin{equation*}
\mathbb{E}\left(f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right)=f\left(X_{n}\right) \tag{8}
\end{equation*}
$$

for every $n=0,1,2, \ldots$ Explain why this implies

$$
\begin{equation*}
\mathbb{E}\left(f\left(X_{n+1}\right) \mid f\left(X_{0}\right), \ldots, f\left(X_{n}\right)\right)=f\left(X_{n}\right) \tag{9}
\end{equation*}
$$

Give an example of such an f which is not constant for $\left(X_{n}\right)$ a $p \uparrow, 1-p \downarrow$ random walk on the integers.
Solution: Define random vectors $\mathbf{X}^{(n)}=\left(\begin{array}{llll}X_{0} & X_{1} & \cdots & X_{n-1}\end{array}\right)^{\top}$ and $\mathbf{Y}^{(n)}=\left(\begin{array}{lllll}f\left(X_{n}\right) & 0 & \cdots & 0\end{array}\right)^{\top}$ taking on values in \mathbb{R}^{n}. Define function g by $g\left(\mathbf{X}^{(n)}\right)=\left(\begin{array}{llll}f\left(X_{0}\right) & f\left(X_{1}\right) & \cdots & f\left(X_{n-1}\right)\end{array}\right)^{\top}$. Then

$$
\begin{aligned}
& \left.\left.\mathbb{E}\left(f\left(X_{n}\right) \mid f\left(X_{0}\right), \ldots, f\left(X_{n-1}\right)\right)=\mathbb{E}\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right)\left(\begin{array}{c}
f\left(X_{n}\right) \\
0 \\
\vdots \\
0
\end{array}\right) \right\rvert\,\left(\begin{array}{c}
f\left(X_{0}\right) \\
f\left(X_{1}\right) \\
\vdots \\
f\left(X_{n-1}\right)
\end{array}\right)\right) \\
& =\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right) \mathbb{E}\left(\left(\begin{array}{c}
f\left(X_{n}\right) \\
0 \\
\vdots \\
0
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
f\left(X_{0}\right) \\
f\left(X_{1}\right) \\
\vdots \\
f\left(X_{n-1}\right)
\end{array}\right)\right.\right) \\
& =\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right) \mathbb{E}\left(\mathbf{Y}^{(n)} \mid g\left(\mathbf{X}^{(n)}\right)\right) \\
& =\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right) \mathbb{E}\left(\left.\mathbb{E}\left(\left(\begin{array}{c}
f\left(X_{n}\right) \\
0 \\
\vdots \\
0
\end{array}\right) \left\lvert\,\left(\begin{array}{c}
X_{0} \\
X_{1} \\
\vdots \\
X_{n-1}
\end{array}\right)\right.\right) \right\rvert\, g\left(\mathbf{X}^{(n)}\right)\right) \\
& =\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right) \mathbb{E}\left(\left.\left(\begin{array}{c}
f\left(X_{n-1}\right) \\
0 \\
\vdots \\
0
\end{array}\right) \right\rvert\, g\left(\mathbf{X}^{(n)}\right)\right) \\
& \left.\left.=\mathbb{E}\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right)\left(\begin{array}{c}
f\left(X_{n-1}\right) \\
0 \\
\vdots \\
0
\end{array}\right) \right\rvert\,\left(\begin{array}{c}
f\left(X_{0}\right) \\
f\left(X_{1}\right) \\
\vdots \\
f\left(X_{n-1}\right)
\end{array}\right)\right) \\
& =\mathbb{E}\left(f\left(X_{n-1}\right) \mid f\left(X_{0}\right), f\left(X_{1}\right), \ldots, f\left(X_{n-1}\right)\right),
\end{aligned}
$$

which is precisely Equation (9).
As an example, if $f(x)=\left(\frac{q}{p}\right)^{x}$, then if $\left(X_{n}\right)$ is a $p \uparrow, 1-p \downarrow$ walk on the integers, then $\left(f\left(X_{n}\right)\right)$ is a martingale since

$$
\begin{aligned}
\mathbb{E}\left(f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right) & =\mathbb{E}\left(\left.\left(\frac{q}{p}\right)^{X_{n+1}} \right\rvert\, X_{0}, \ldots, X_{n}\right) \\
& =p\left(\frac{q}{p}\right)^{X_{n}+1}+q\left(\frac{q}{p}\right)^{X_{n}-1} \\
& =\frac{q^{X_{n}+1}}{p^{X_{n}}}+\frac{q^{X_{n}}}{p^{X_{n}-1}} \\
& =\frac{q^{X_{n}+1}}{p^{X_{n}}}+\frac{q^{X_{n}} p}{p^{X_{n}}} \\
& =\frac{q^{X_{n}} q+q^{X_{n}} p}{p^{X_{n}}} \\
& =\frac{q^{X_{n}}}{p^{X_{n}}}(q+p) \\
& =f\left(X_{n}\right),
\end{aligned}
$$

so by the result above, we have $\mathbb{E}\left(f\left(X_{n+1}\right) \mid f\left(X_{0}\right), \ldots, f\left(X_{n}\right)\right)=f\left(X_{n}\right)$.
5. Let $S:=X_{1}+\cdots+X_{N}$ be the number of successes and $F:=N-S$ be the number of failures in a Poisson (μ) distributed random number N of Bernoulli trials, where given $N=n$ the X_{1}, \ldots, X_{n} are independent with $\mathbb{P}\left(X_{i}=1\right)=$ $1-\mathbb{P}\left(X_{i}=0\right)=p$ for some $0 \leq p \leq 1$. Derive the joint distribution of S and F. How can the conclusion be generalized to multinomial trials?
Solution: Let $q=1-p$. We have

$$
\begin{aligned}
& \mathbb{P}(S=s, F=f)=\sum_{n=0}^{\infty} \mathbb{P}(S=s, F=f \mid N=n) \mathbb{P}(N=n) \\
&=\sum_{n=0}^{\infty} \mathbb{P}(S=s, N-S=f \mid N=n) \mathbb{P}(N=n) \\
&=\sum_{n=0}^{\infty} \mathbb{P}(S=s, S=N-f \mid N=n) \mathbb{P}(N=n) \\
&=\sum_{n=0}^{\infty} \mathbb{P}\left(\sum_{i=1}^{n} X_{i}=s, \sum_{i=1}^{n} X_{i}=n-f\right) \mathbb{P}(N=n) \\
&=\sum_{n=0}^{\infty} \mathbf{1}(s=n-f) \mathbb{P}\left(\sum_{i=1}^{n} X_{i}=s\right) \mathbb{P}(N=n) \\
&=\sum_{n=0}^{\infty} \mathbf{1}(n=s+f) \mathbb{P}\left(\sum_{i=1}^{n} X_{i}=s\right) \mathbb{P}(N=n) \\
&=\mathbb{P}\left(\sum_{i=1}^{s+f} X_{i}=s\right) \mathbb{P}(N=s+f) \\
&=\binom{s+f}{s} p^{s} q^{f} \frac{\mu^{s+f} e^{-\mu}}{(s+f)!} \\
&=\frac{(s+f)!}{s!f!} \frac{p^{s} \mu^{s} q^{f} \mu^{f} e^{-\mu(p+q)}}{(s+f)!} \\
&=\frac{(p \mu)^{s} e^{-p \mu}}{s!} \frac{(q \mu)^{f} e^{-q \mu}}{f!} \\
&=\mathbb{P}(\text { Poisson } \\
&(p \mu)=s) \mathbb{P}(\operatorname{Poisson}(q \mu)=f)
\end{aligned}
$$

In the multinomial case with k categories with probabilities $p_{1}, p_{2}, \ldots, p_{k}$ and $N \sim \operatorname{Poisson}(\mu)$ trials, let $S_{1}, S_{2}, \ldots, S_{k}$
denote the number of trials falling into categories $1,2, \ldots, k$ respectively. Then generalizing the result above, we have

$$
\mathbb{P}\left(S_{1}=s_{1}, S_{2}=s_{2}, \ldots, S_{k}=s_{k}\right)=\prod_{i=1}^{k} \mathbb{P}\left(\operatorname{Poisson}\left(p_{i} \mu\right)=s_{i}\right)
$$

6. Let \mathbb{P}_{i} govern a $p \uparrow, q=1-p \downarrow$ walk $\left(S_{n}\right)$ on the integers started at $S_{0}=i$, with $p>q$. Let

$$
f_{i j}:=\mathbb{P}_{i}\left(S_{n}=j \text { for some } n \geq 1\right)
$$

Use results derived from lectures and/or the text to present a formula for $f_{i j}$ in each of the two cases $i>j$ and $i<j$. Deduce a formula for $f_{i j}$ for $i=j$.
Solution: Case $i>j$: This can be viewed as the gambler's ruin problem for a biased coin where the bottom "absorbing" state is j and the top "absorbing" state is $+\infty . f_{i j}$ is the probability of starting at i and hitting j before hitting $+\infty$. Using a result from lecture, we have

$$
f_{i j}=\mathbb{P}_{i}(\text { hit } j \text { before }+\infty)=\lim _{b \rightarrow \infty} \mathbb{P}_{a}(\text { hit } 0 \text { before } b)=\left(\frac{q}{p}\right)^{a}=\left(\frac{q}{p}\right)^{i-j}
$$

where $a=i-j$ and $b \rightarrow+\infty$.
Case $i<j$: Claim: Since $p>q$, we are guaranteed to hit j starting from i, so $f_{i j}=\mathbb{P}_{i}($ hit $j)=1$. To show this, consider the gambler's ruin problem where we flip the walk upside down, i.e. suppose we start at $-i$ and want to reach $-j$ before we reach $+\infty$ where a step up has probability q and a step down has probability p, where $p>q$. Using the result from class, we have

$$
f_{i j}=\lim _{b \rightarrow \infty} \mathbb{P}_{a}(\text { hit } 0 \text { before } b)=\lim _{b \rightarrow \infty}\left(1-\frac{\left(\frac{p}{q}\right)^{a}-1}{\left(\frac{p}{q}\right)^{b}-1}\right)=1-\lim _{b \rightarrow \infty} \frac{\left(\frac{p}{q}\right)^{(-i)-(-j)}-1}{\left(\frac{p}{q}\right)^{b}-1}=1-\lim _{b \rightarrow \infty} \frac{\left(\frac{p}{q}\right)^{-i+j}-1}{\left(\frac{p}{q}\right)^{b}-1}
$$

Since $p>q$, the right-most term's denominator goes to $+\infty$ whereas the numerator is fixed, so $\lim _{b \rightarrow \infty} \frac{\left(\frac{p}{q}\right)^{-i+j}-1}{\left(\frac{p}{q}\right)^{b}-1}=0$. Thus, we have $f_{i j}=1-\lim _{b \rightarrow \infty} \frac{\left(\frac{p}{q}\right)^{-i+j}-1}{\left(\frac{p}{q}\right)^{b}-1}=1-0=1$.
Case $i=j$: From first-step analysis, we have

$$
\begin{aligned}
f_{i i} & =\mathbb{P}(\text { go } 1 \text { step up }) \mathbb{P}_{i+1}(\text { hit } i \text { before }+\infty)+\mathbb{P}(\text { go } 1 \text { step down }) \mathbb{P}_{i-1}(\text { hit } i) \\
& =p\left(\frac{q}{p}\right)^{(i+1)-i}+q \cdot 1 \\
& =p\left(\frac{q}{p}\right)+q \\
& =2 q
\end{aligned}
$$

7. Let \mathbb{P}_{i} govern $\left(X_{n}\right)$ as a Markov chain starting from $X_{0}=i$, with finite state space S and transition matrix P which has a set of absorbing states B. Let $T:=\min \left\{n \geq 1: X_{n} \in B\right\}$ and assume that $P_{i}(T<\infty)=1$ for all i. Derive a formula for

$$
\mathbb{P}_{i}\left(X_{T-1}=j, X_{T}=k\right) \text { for } i, j \in B^{c} \text { and } k \in B
$$

in terms of matrices $W:=(I-Q)^{-1}$ and R, where Q is the restriction of P to $B^{c} \times B^{c}$ and R is the restriction of P to $B^{c} \times B$.

Solution:

$$
\begin{aligned}
\mathbb{P}_{i}\left(X_{T-1}=j, X_{T}=k\right) & =\sum_{n=1}^{\infty} \mathbb{P}_{i}\left(X_{T-1}=j, X_{T}=k, T=n\right) \\
& =\sum_{n=1}^{\infty} P^{n-1}(i, j) P(j, k) \\
& =\left(\sum_{m=0}^{\infty} P^{m}(i, j)\right) P(j, k)
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\left(\sum_{m=0}^{\infty} Q^{m}(i, j)\right)}_{W(i, j)} R(j, k) \\
& =W(i, j) R(j, k) .
\end{aligned}
$$

8. In the same setting, let $f_{i j}:=\mathbb{P}_{i}\left(X_{n}=j\right.$ for some $\left.n \geq 1\right)$. For $i, j \in B^{c}$, find and explain a formula for $f_{i j}$ in terms of $W_{i j}$ and $W_{j j}$.
Solution: Let N_{j} be the total number of times we visit state j before absorption. Recall that $W_{i j}=\mathbb{E}_{i}\left(N_{j}\right)$ and $W_{j j}=\mathbb{E}_{j}\left(N_{j}\right)$. Reaching $X_{n}=j$ for some $n \geq 1$ is equivalent to saying that there exists a first time that we reach j; thus:

$$
f_{i j}=\mathbb{P}_{i}\left(X_{n}=j \text { for some } n \geq 1\right)=\mathbb{P}(\text { we reach } j \text { for the first time }) .
$$

From first-step analysis:

$$
\mathbb{E}_{i}\left(N_{j}\right)=\mathbb{P}(\text { we reach state } j \text { for the first time }) \cdot \mathbb{E}_{j}\left(N_{j}\right)+\mathbb{P}(\text { we never reach state } j) \cdot 0 .
$$

Hence, we have

$$
f_{i j}=\mathbb{P}(\text { we reach state } j \text { for the first time })=\frac{E_{i}\left(N_{j}\right)}{E_{j}\left(N_{j}\right)}=\frac{W_{i j}}{W_{j j}} .
$$

9. In the same setting, let $\phi_{i}(s)$ denote the probability generating function of T for the Markov chain started at state i. Derive a system of equations which could be used to determine $\phi_{i}(s)$ for all $i \in S$.
Solution: Note that for $i \in B, \mathbb{P}_{i}(T=0)=1$, i.e. $\phi_{i}(s)=1$ for $i \in B$. For $i \notin B$, clearly $\mathbb{P}_{i}(T=0)=0$ and for $n \geq 1$, use first-step analysis to get

$$
\begin{aligned}
\mathbb{P}_{i}(T=n) & =\sum_{j} P(i, j) \mathbb{P}_{j}(T=n-1) \\
& =\sum_{j \in B^{c}} Q(i, j) \mathbb{P}_{j}(T=n-1)+\sum_{k \in B} R(i, k) \mathbb{P}_{k}(T=n-1) \\
& =\sum_{j \in B^{c}} Q(i, j) \mathbb{P}_{j}(T=n-1)+\sum_{k \in B} R(i, k) \mathbf{1}(n-1=0) \\
& =\sum_{j \in B^{c}} Q(i, j) \mathbb{P}_{j}(T=n-1)+\mathbf{1}(n=1) \sum_{k \in B} R(i, k) .
\end{aligned}
$$

So

$$
\begin{aligned}
\phi_{i}(s) & =\underbrace{\mathbb{P}_{i}(T=0)}_{0}+\sum_{n=1}^{\infty} \mathbb{P}_{i}(T=n) s^{n} \\
& =\sum_{n=1}^{\infty}\left(\sum_{j \in B^{c}} Q(i, j) \mathbb{P}_{j}(T=n-1)+\mathbf{1}(n=1) \sum_{k \in B} R(i, k)\right) s^{n} \\
& =\sum_{n=1}^{\infty} \sum_{j \in B^{c}} Q(i, j) \mathbb{P}_{j}(T=n-1) s^{n}+\sum_{n=1}^{\infty} \mathbf{1}(n=1) \sum_{k \in B} R(i, k) s^{n} \\
& =\sum_{j \in B^{c}} Q(i, j) \sum_{n=1}^{\infty} \mathbb{P}_{j}(T=n-1) s^{n}+\sum_{k \in B} R(i, k) s \\
& =\sum_{j \in B^{c}} Q(i, j) \sum_{m=0}^{\infty} \mathbb{P}_{j}(T=m) s^{m+1}+\sum_{k \in B} R(i, k) s \\
& =\sum_{j \in B^{c}} Q(i, j) s \sum_{m=0}^{\infty} \mathbb{P}_{j}(T=m) s^{m}+\sum_{k \in B} R(i, k) s \\
& =s \sum_{j \in B^{c}} Q(i, j) \sum_{m=0}^{\infty} \mathbb{P}_{j}(T=m) s^{m}+s \sum_{k \in B} R(i, k)
\end{aligned}
$$

$$
\begin{aligned}
& =s \sum_{j \in B^{c}} Q(i, j) \phi_{j}(s)+s \sum_{k \in B} R(i, k) \\
& =s \sum_{j \in B^{c} \backslash\{i\}} Q(i, j) \phi_{j}(s)+s Q(i, i) \phi_{i}(s)+s \sum_{k \in B} R(i, k) .
\end{aligned}
$$

Rearranging terms gives

$$
s \sum_{j \in B^{c} \backslash\{i\}} Q(i, j) \phi_{j}(s)+(s Q(i, i)-1) \phi_{i}(s)+s \sum_{k \in B} R(i, k)=0, \quad \text { for } i \in B^{c}
$$

10. Let X be a non-negative integer valued random variable with probability generating function $\phi(s)$ for $0 \leq s \leq 1$. Let N be independent of X with the Geometric (p) distribution $\mathbb{P}(N=n)=(1-p)^{n} p$ for $n=0,1,2, \ldots$ where $0<p<1$. Find a formula for $\mathbb{P}(N<X)$ in terms of ϕ and p.

Solution:

$$
\begin{aligned}
\mathbb{P}(N<X) & =\sum_{x=0}^{\infty} \mathbb{P}(N<X \mid X=x) \mathbb{P}(X=x) \\
& =\sum_{x=0}^{\infty} \mathbb{P}(N<x) \mathbb{P}(X=x) \\
& =\sum_{x=0}^{\infty} \mathbb{P}(N \leq x-1) \mathbb{P}(X=x) \\
& =\sum_{x=0}^{\infty}\left(1-(1-p)^{x}\right) \mathbb{P}(X=x) \\
& =\sum_{x=0}^{\infty} \mathbb{P}(X=x)-\sum_{x=0}^{\infty}(1-p)^{x} \mathbb{P}(X=x) \\
& =1-\phi(1-p) .
\end{aligned}
$$

11. Let X be a non-negative random variable with usual probability generating function $\phi(s)$ for $0 \leq s \leq 1$. Define the tail probability generating function $\tau(s)$ by

$$
\tau(s):=\sum_{n=1}^{\infty} \mathbb{P}(X \geq n) s^{n}
$$

Use the identity

$$
\mathbb{P}(X=n)=\mathbb{P}(X \geq n)-\mathbb{P}(X \geq n+1)
$$

to derive a formula for $\tau(s)$ in terms of s and $\phi(s)$ for $0 \leq s \leq 1$. Discuss what happens for $s=1$.
Solution: We have

$$
\begin{aligned}
\phi(s) & =\sum_{n=0}^{\infty} \mathbb{P}(X=n) s^{n} \\
& =\sum_{n=0}^{\infty}(\mathbb{P}(X \geq n)-\mathbb{P}(X \geq n+1)) s^{n} \\
& =\sum_{n=0}^{\infty} \mathbb{P}(X \geq n) s^{n}-\sum_{n=0}^{\infty} \mathbb{P}(X \geq n+1) s^{n} \\
& =\mathbb{P}(X \geq 0)+\sum_{n=1}^{\infty} \mathbb{P}(X \geq n) s^{n}-\sum_{m=1}^{\infty} \mathbb{P}(X \geq m) s^{m-1} \\
& =\underbrace{\mathbb{P}(X \geq 0)}_{1}+\sum_{n=1}^{\infty} \mathbb{P}(X \geq n) s^{n}-s^{-1} \sum_{m=1}^{\infty} \mathbb{P}(X \geq m) s^{m} \\
& =1+\tau(s)-s^{-1} \tau(s) \\
& =1+\tau(s)\left(1-s^{-1}\right),
\end{aligned}
$$

$$
\tau(s)=\frac{\phi(s)-1}{1-s^{-1}}
$$

It is clear that by the definition of $\tau(s)$, when $s=1$, we have $\tau(1)=\sum_{n=1}^{\infty} \mathbb{P}(X \geq n)=\mathbb{E}(X)$. We can also see this via l'Hopital's rule:

$$
\lim _{s \rightarrow 1} \tau(s)=\lim _{s \rightarrow 1} \frac{\phi(s)-1}{1-s^{-1}}=\lim _{s \rightarrow 1} \frac{\phi^{\prime}(s)}{s^{-2}}=\frac{\phi^{\prime}(1)}{1}=\phi^{\prime}(1)=\mathbb{E}(X)
$$

12. Consider a random walk on the 3 vertices of a triangle labeled clockwise $0,1,2$. At each step, the walk moves clockwise with probability p and counter-clockwise with probability q, where $p+q=1$. Let P denote the transition matrix. Observe that

$$
P^{2}(0,0)=2 p q ; \quad P^{3}(0,0)=p^{3}+q^{3} ; \quad P^{4}(0,0)=6 p^{2} q^{2}
$$

Derive a similar formula for $P^{5}(0,0)$.
Solution: Consider a $p \uparrow, q \downarrow$ random walk on \mathbb{Z}. Modulo 3, we are traversing the triangle described. We restrict the rest of our discussion to the random walk on \mathbb{Z} where we start at the origin and want to reach state 0 of the triangle (i.e. any multiple of 3 for the random walk on \mathbb{Z}) in 5 steps. Observe that in 5 steps, we cannot possibly reach any multiple of 3 larger than 3 away from the origin. Also, since we move an odd number of steps, we cannot return to the origin. However, we can reach +3 (4 up and 1 down in any combination) and -3 (4 down and 1 up in any combination). Therefore,

$$
P^{5}(0,0)=\underbrace{\binom{5}{1}}_{\begin{array}{c}
\text { in } 5 \text { moves, } \\
\text { 1 is down and } \\
\text { the rest are up }
\end{array}} p^{4} q+\underbrace{\binom{5}{1}}_{\begin{array}{c}
\text { in } 5 \text { moves, } \\
1 \text { is up and the } \\
\text { rest are down }
\end{array}} p q^{4}=5 p^{4} q+5 p q^{4}
$$

13. A branching process with Poisson (λ) offspring distribution started with one individual has extinction probability p with $0<p<1$. Find a formula for λ in terms of p.
Solution: The offspring distribution has PGF

$$
\phi(s)=\sum_{n=0}^{\infty} \frac{\lambda^{n} e^{-\lambda}}{n!} s^{n}=e^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda s)^{n}}{n!}=e^{-\lambda} e^{\lambda s}=e^{\lambda(s-1)}
$$

The extinction probability p satisfies $p=\phi(p)=e^{\lambda(p-1)}$. Taking the \log of both sides gives $\log p=\lambda(p-1)$, so

$$
\lambda=\frac{\log p}{p-1}
$$

14. Suppose $\left(X_{n}\right)$ is a Markov chain with state space $\{0,1, \ldots, b\}$ for some positive integer b, with states 0 and b absorbing and no other absorbing states. Suppose also that $\left(X_{n}\right)$ is a martingale. Evaluate

$$
\lim _{n \rightarrow \infty} \mathbb{P}_{a}\left(X_{n}=b\right)
$$

and explain your answer carefully.
Solution: We start at $X_{0}=a$. Since $\left(X_{n}\right)$ is a martingale, $\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{0}\right]=a$ for all n. So

$$
\begin{equation*}
a=\mathbb{E}\left[X_{n}\right]=\sum_{i=0}^{b} i \mathbb{P}_{a}\left(X_{n}=i\right)=\sum_{i=1}^{b-1} i \mathbb{P}_{a}\left(X_{n}=i\right)+b \mathbb{P}_{a}\left(X_{n}=b\right) \tag{10}
\end{equation*}
$$

Claim: From any state $i \in\{1,2, \ldots, b-1\}$, we can eventually reach an absorbing state with probability 1. Assuming that this claim is true, then for any state $i \in\{1,2, \ldots, b-1\}, \lim _{n \rightarrow \infty} \mathbb{P}_{a}\left(X_{n}=i\right)=0$. Therefore, taking the limit as $n \rightarrow \infty$ for Equation (10) gives

$$
a=b \lim _{n \rightarrow \infty} \mathbb{P}_{a}\left(X_{n}=b\right), \quad \text { so } \quad \lim _{n \rightarrow \infty} \mathbb{P}_{a}\left(X_{n}=b\right)=\frac{a}{b}
$$

Proof of claim: Suppose that at state $i \in\{1,2, \ldots, b-1\}$, we cannot eventually reach an absorbing state with probability 1 . Let k be the state closest to 0 that we can eventually reach from state i. Then from state k, we cannot reach any state in $\{0,1, \ldots, k-1\}$. Since $\left(X_{n}\right)$ is a martingale, $\mathbb{E}\left[X_{n+1} \mid X_{n}=k\right]=k$, but since k is not an absorbing state, it means that there must be some probability of reaching a state in $\{0,1, \ldots, k-1\}$ (otherwise, we would have $\left.\mathbb{E}\left[X_{n+1} \mid X_{n}=k\right]>k\right)$. Hence, we reach a contradiction. It must be that we can indeed reach absorbing state 0 . By considering the highest state $\ell<b$ that we can eventually reach from state i, a similar argument can be used to prove that we can eventually reach state b from state i.

