1. A sequence of random variables X_{1}, X_{2}, \ldots, each with two possible values 0 and 1 , is such that $\mathbb{P}\left(X_{1}=1\right)=p_{1}$ and for each $n \geq 1$

$$
\mathbb{P}\left(X_{n+1}=1 \mid X_{1}, \ldots, X_{n}\right)=\left(1-\theta_{n}\right) p_{1}+\theta_{n} S_{n} / n
$$

where $\left(\theta_{n}\right)$ is a sequence of parameters with $0 \leq \theta_{n} \leq 1$, and $S_{n}:=X_{1}+\cdots+X_{n}$. Find and prove a formula for $\mathbb{P}\left(X_{n}=1\right)$ in terms of p_{1} and $\theta_{1}, \theta_{2}, \ldots$
2. Consider a Markov chain $\left(X_{n}\right)$ with transition matrix P. For $1 \leq m<n$ find and explain a formula for the conditional distribution of X_{m} given $X_{0}=i$ and $X_{n}=k$ in terms of the entries of appropriate matrix powers of P.
3. Consider a $p \uparrow, 1-p \downarrow$ walk $\left(S_{n}\right)$ started at $S_{0}=a$ and run until the time T when it first hits either 0 or b for some positive integers $0 \leq a \leq b$. Assuming $p \neq 1 / 2$, justify an application of Wald's identity to derive a simple formula for $\mathbb{E}\left(T \mid S_{0}=a\right)$ in terms of p and the known solution of the gambler's ruin problem for an unfair coin, denote it

$$
h(p, a, b):=\mathbb{P}\left(S_{T}=b \mid S_{0}=a\right)
$$

Note: You are not asked to provide or derive the formula for the hitting probability $h(p, a, b)$: you are asked to express $\mathbb{E}\left(T \mid S_{0}=a\right)$ in terms of these probabilities.
4. Let p_{0}, p_{1}, \ldots be a probability distribution on non-negative integers with mean $\mu:=\sum_{n} n p_{n}$, and let S_{n} be a Markov chain with transition probabilities $P(i, j)=p_{j-i+1}$ for $0 \leq i-1 \leq j$ and $P(0,0)=1$. Let

$$
f_{i j}:=\mathbb{P}\left(S_{n}=j \text { for some } n \geq 1 \mid S_{0}=i\right)
$$

Assume that $\mu \leq 1$. It then follows from results derived in class that $f_{i, j}=1$ for all $i>j \geq 0$, and you can assume this to be true. Derive a system of equations satisfied by the $f_{i j}$ for $0<i \leq j$ which allow computation of these $f_{i j}$ from the p_{k}. In particular, use these equations for $j=2,3$ to give an explicit formula for $f_{1,2}$ and for $f_{1,3}$.
5. In a branching process started with one individual, each individual has a geometrically distributed number of children, with probability $p(1-p)^{i}$ for i children for $i=0,1, \ldots$. Find the probability of eventual extinction of the branching process in terms of p, as explicitly as possible.
6. Consider a simple nearest neighbour random walk on m points arranged around the circumference of a circle, at each step moving either one step clockwise or one step counterclockwise with equal probability. Let C_{m} be the cover time, that is the number of steps until every point has been visited at least once. Express C_{m} in terms of $\max _{1 \leq k \leq n} S_{k}$ and $\min _{1 \leq k \leq n} S_{k}$ for a simple random walk S_{n} on the integers instead of points around a circle, and deduce a formula for $\mathbb{E}\left(C_{m}\right)$.
7. In a simple population genetics model for neutral evolution with a fixed total population size N, let X_{n} represent the number of individuals in the population with a particular genetic characteristic, so $0 \leq X_{n} \leq N$. The model supposes that given X_{0}, \ldots, X_{n}, the distribution of X_{n+1} is binomial with parameters N and $p=X_{n} / N$. Show that for $0 \leq k \leq N$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=N \mid X_{0}=k\right)=k / N
$$

