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This is a preliminary set of notes for a course of lectures to be given at the

St. Flour summer school in July 2002. After this preliminary chapter,

the

chapters of the notes are called lectures, numbered 1,...,9,10, with sections
e.g. 1.1,1.2,.... Most sections conclude with some Ezercises, some of which are
called Problems. The difference is that I know how to solve the exercises but
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not the problems. Solutions to some exercises (marked with a ) are available
in an appendix to these notes. If you solve a problem, please show me your
solution and I will turn the problem into an exercise with appropriate acknowl-
edgment. Solutions to unsolved exercises, and suggestions of further exercises
and problems, would also be appreciated.

Many interesting topics, closely related to these notes, have been mentioned
only briefly, or not mentioned at all. If you know about such a topic, please send
me appropriate references, or better a sentence or paragraph which I could add
to indicate how the topic is connected to the course. Please send suggestions,
comments and corrections by email to pitman@stat.berkeley.edu .
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nary versions of these notes and made suggestions and corrections, especially
Steven Evans, Jean-Francois Le Gall, Neil O’Connell, Mihael Perman, and Ja-
son Schweinsberg. Thanks also to Jean Picard for his organizational efforts in
making arrangements for the St. Flour Summer School.

0.2 Introduction

The main theme of this course is the study of various combinatorial models of
random partitions and random trees, and the asymptotics of these models re-
lated to continuous parameter stochastic processes. A basic feature of models for
random partitions is that the sum of the parts is usually constant. So the sizes
of the parts cannot be independent. But the structure of many natural mod-
els for random partitions can be reduced by suitable conditioning or scaling to
classical probabilistic results involving sums of independent random variables.
Limit models for combinatorially defined random partitions are consequently
related to the two fundamental limit processes of classical probability theory:
Brownian motion and Poisson processes. The theory of Brownian motion and
related stochastic processes has been greatly enriched by the recognition that
some fundamental properties of these processes are best understood in terms
of how various random partitions and random trees embedded in their paths.
This has led to rapid developments, particularly in the theory of continuum
random trees, continuous state branching processes, and Markovian superpro-
cesses, which go far beyond the scope of this course. Following is a list of the
main topics to be treated:
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models for random combinatorial structures, such as trees, forests, per-
mutations, mappings, and partitions;

probabilistic interpretations of various combinatorial notions e.g. Bell
polynomials, Stirling numbers, polynomials of binomial type, Lagrange
inversion;

Kingman’s theory of exchangeable random partitions and random discrete
distributions;

connections between random combinatorial structures and processes with
independent increments: Poisson-Dirichlet limits;

random partitions derived from subordinators;

asymptotics of random trees, graphs and mappings related to excursions
of Brownian motion;

continuum random trees embedded in Brownian motion;
Brownian local times and squares of Bessel processes;

various processes of fragmentation and coagulation, including Kingman’s
coalescent, the additive and multiplicative coalescents

Next, an incomplete list and topics of current interest, with inadequate ref-
erences. These topics are close to those just listed, and certainly part of the
realm of combinatorial stochastic processes, but not treated here:

probability on trees and networks, as presented in [245];

random integer partitions [137, 89], random Young tableaux, growth of
Young diagrams, connections with representation theory and symmetric

functions [201, 364, 365, 199];

longest increasing subsequence of a permutation, connections with random
matrices [?];

random partitions related to uniformly chosen invertible matrices over a
finite field, as studied by Fulman [138];

random maps, coalescing saddles, singularity analysis, and Airy phenom-

ena, [67];

random planar lattices and integrated superbrownian excursion [79].

The reader of these notes i1s assumed to be familiar with the basic theory
of probability and stochastic processes, at the level of Billingsley [52] or Dur-
rett [104], including continuous time stochastic processes, especially Brownian
motion and Poisson processes. For background on some more specialized top-
ics (local times, Bessel processes, excursions, SDE’s) the reader is referred to
Revuz-Yor [331]. The rest of this Chapter 0 reviews some basic facts from this
probabilistic background for ease of later reference.
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0.3 Notation

It is assumed throughout these notes that various random objects are defined as
measurable functions on some background probability space (2, F,P), equipped
with expectation operator [E. Many arguments involve the use of additional
randomization, typically involving a random permutation, or the introduction
of a sequence of independent uniform [0, 1] variables Uy, Us, . . .. It should always
be assumed that there is room enough in the basic setup for the introduction of
such devices, and understood that this involves no loss of generality.

Factorial powers For n = 0,1,2... and arbitrary real z and o let (2)nta
denote the nth factorial power of x with increment «, that is

n—1

()nta = z(z+a) (2 + (n = Da) = [](z +ia) = a"(z/a)ny (1)

=0

where (2)n4 = (2)n41 and the last equality is valid only for a # 0. Similarly,
let
(#)nje = (T)nt-a (2)

be the nth factorial power of x with decrement o and (), = (2)ny1. Note
that (), for positive integer « is the number of permutations of z elements of
length n, and that

(#)nt = T'(z + n)/T(z). (3)

Recall the consequence of Stirling’s formula that for each real r
T'(z+7r)/T(z) ~z"as z = co. (4)

Multinomial coefficients

< n ) n!
ni, ..., Ng ny!-ong!

Power series Notation such as
cn = [2"]f(z)
should be read as “c, is the coefficient of ™ in f(z)”, meaning
f(x) = Z cpz”
n

where the power series might be convergent in some neighbourhood of 0, or
regarded formally [351]. Note that e.g.

|25 #62) = mtan1s)

n!
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0.4 Brownian motion and related processes

Let S, := X1 4+ ...+ X,, where the X; are independent random variables with
mean 0 and variance 1, and let S; for real ¢ be defined by linear interpolation
between integer values. According to Donsker’s theorem [52, 53, 104, 331]

(Snt/V/n,0<t< 1) S (B,0<t< 1) (5)

in the usual sense of convergence in distribution of random elements of C[0, 1],
where (By,t > 0) is a standard Brownian motion meaning that B is a process
with continuous paths and stationary independent Gaussian increments, with

B, 4 V/tB; where By is standard Gaussian.

Brownian bridge Assuming now that the X; are integer valued, some con-
ditioned forms of Donsker’s theorem can be presented as follows. Let o(y/n)
denote any sequence of possible values of S,, with o(y/n)/\/n — 0 as n — oo.
Then [109]

(Sne/V/n,0 <t <1]S, = o(v/n)) & (B, 0<t < 1) (6)

where BY" is the standard Brownian bridge, that is, the centered Gaussian pro-
cess obtained by conditioning (B;,0 < ¢ < 1) on By = 0. Some well known
descriptions of the distribution of B* are [331, Ch. III, Ex (3.10)]

(B 0<t<1) £ (B —tB1,0<t < 1) L (1= t)Byya_y,0<t < 1) (7)

where £ denotes equality of distributions on the path space C[0, 1], and the
rightmost process is defined to be 0 for ¢ = 1.

Brownian meander and excursion Let 7_ := inf{n : S, < 0}. Then as
n — 0o .

(Sne/Vn,0<t<1]|T- >n) = (BM,0<t< 1) (8)
where B™¢ is the standard Brownian meander [172, 58], and as n — oo through
possible values of T_

(Sne/V/m,0 <t <1|To =n) 5 (B0 <1< 1) (9)

where Bg* is the standard Brownian excursion [188, 87]. Informally,

Bl’l’le d

BeX

(B|By>0forall0<t<1)

L (B|B,>0forall0<t<1, B =0)

where £ denotes equality in distribution. These definitions of conditioned
Brownian motions have been made rigorous in a number of ways: for instance
by the method of Doob h-transforms [339, 133], and as weak limits as ¢ | 0 of
the distribution of B given suitable events A., as in [106, 56], for instance

(B|B(0,1)> —¢) & B™ as e | 0 (10)

where X (s,t) denotes the infimum of a process X over the interval (s,t).
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Brownian scaling For a process X := (X;,t € J) parameterized by an in-
terval J, and I = [Gy, Dj] a subinterval of J with length A\; := Dy — G > 0,
we denote by X[I] or X[Gr, Dy] the fragment of X on I, that is the process

X[ = Xar4u (0 <u<Ap). (11)

We denote by X.[I] or X.[Gy, Di] the standardized fragment of X on I, defined
by the Brownian scaling operation

Xarrur; — X
X*[I]u = %

For T > 0 let Gp := sup{s : s < T, B; = 0} be the last zero of B before
time T and Dy :=inf{s : s > T, B; = 0} be the first zero of B after time T.
Let |B| := (|B¢|,t > 0), called reflecting Brownian motion. Tt is well known
[178, 83, 331] that for each fixed T' > 0, there are the following identities in
distribution derived by Brownian scaling:

(0<u<1). (12)

B.[0,T] £ B[0,1]; B.[0,Gr] £ B (13)

|B|[Gr,T] £ B™; |B|.[Gr, Dr] £ B*. (14)

It is also known that BP", B™® and B®* can be constructed by various other
operations on the paths of B, and transformed from one to another by further
operations [42].

For 0 < t < oo let BP"t be a Brownian bridge of length t, which may be
regarded as a random element of C[0,¢] or of C[0, c0], as convenient:

BPM(s) := VB ((s/t) A1) (s > 0). (15)

Let B™®! denote a Brownian meander of length t, and B! be a Brownian
excursion of length t, defined similarly to (15) with B™¢ or B** instead of B*.

Brownian excursions and the three-dimensional Bessel process The
following theorem summarizes some important relations between Brownian ex-
cursions and a particular time-homogeneous diffusion process Rz on [0, c0),
commonly known as the three-dimensional Bessel process BES(3), due to the
representation

(16)

where the B; are three independent standard Brownian motions. It should
be understood however that this particular representation of Rz is a relatively
unimportant coincidence in distribution. What is much more important, and
can be understood entirely in terms of the random walk approximations (5)
and (9) of Brownian motion and Brownian excursion, is that there exists time-
homogeneous diffusion process Rg on [0, 00) with R3(0) = 0, which has the same
self-similarity property as B, meaning invariance under Brownian scaling, and
which can be characterized in various ways as indicated in the theorem.
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Theorem 1 For each fized t > 0, the Brownian excursion Bt of length t is
BES(3) bridge from 0 to 0 over time t, meaning that

(B™!(5),0 < 5 <1) £ (Rs(s),0 < 5 < | Ra(t) = 0).

Moreover, ast — oo

Bt % Ry, (17)

and R3 can be characterized in two other ways as follows:
(1) [254, 379] The process Rs is a Brownian motion on [0, 00) started at 0 and
conditioned never to return to 0, as defined by the Doob h-transform of Brownian
motion on [0, c0) with absorbtion at 0, for the harmonic function h(z) = z. That
1s, R3 has continuous paths starting at 0, and for each 0 < a < b the stretch of
R3 between when 1t first hits a and first hits b 1s distributed like B with By = a
conditioned to hit b before 0.
(i1) [292]

Raft) = Bt) — 2B(t) (¢ >0) (18)

where B is a standard Brownian motion with past minimum process

B(t) = B[0,{] = —Raft, ).

Lévy’s identity The identity in distribution (18) admits numerous variations
and conditioned forms [292, 42, 44] by virtue of Lévy’s identity of joint distri-
butions of paths [331]

(B—B,—B) £ (|B|, L) (19)

where L := (L¢,t > 0) is local time process of B at 0.

Lévy-Ito-Williams theory of Brownian excursions Due to (19), the pro-
cess of excursions of | B| away from 0 is equivalent in distribution to the process
of excursions of B above B. According to the Lévy-Ito description of this pro-
cess, if I, := [Ty, Ty] for T, := inf{t : B(t) < —£}, the points

{(6, u(L2), (B = B)[I1]) : £> 0, u(Le) > 0}, (20)

where p is Lebesgue measure, are the points of a Poisson point process on
Rso X Ry x C[0, 00) with intensity

dt
dl ———
V2mt3/2

On the other hand, according to Williams [380], if M, := B[I,] — B[I,] is the

maximum height of the excursion of B over B on the interval I;, the points

P(B™" € dw). (21)

{(¢, My, (B—B)[L]) : £ > 0, u(I;) > 0}, (22)
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are the points of a Poisson point process on Ry x Rsgx C[0, 00) with intensity

dm

de — P(B*I™ ¢ dw) (23)

where B! is a Brownian excursion conditioned to have mazimum m. That
is to say B|™ is a process X with X (0) = 0 such that if H,(X) := inf{t :
t > 0,X(t) = z} then for each m > 0, the processes B*1™[0, H,,(X)] and
m — Be"'m[Hm(X), Hy(X)] are two independent copies of R3[0, H,n(R3)], and
X is stopped at 0 at time Ho(X). Ité’s law of Brownian excursions is the o-finite
measure v on C[0,00) which can be presented in two different ways according

to (21) and (23) as

o dt * dm
v()=| ———=PB¥c)=[ —pB¥"c. 24
O=[ F=mrere)=[ ) e
where the first expression is a disintegration according to the lifetime of the
excursion, and the second according to its maximum. The identity (24) has a
number of interesting applications and generalizations [48, 313, 318].

BES(3) bridges Starting from three independent standard Brownian bridges
Blbr,i =1,2,3, for z,y > 0 let

R3™(u) = \/(r +(y—@)ut BY,)? + (BE,)” + (B3,)?  (0<u<1). (25)

The random element R3 Y of C[0, 1] is the BES(3) bridge from z to y, in terms
of which the laws of the standard excursion and meander are represented as

B £ RS and B™ £ R}’ (26)

where p is a random variable with the Rayleigh density

Plp € do)/d = e~ 3" (z > 0) (27)

and p is independent of the family of Bessel bridges R3™",r > 0. Then by
construction

B = p = /2T, (28)

where I'y i1s a standard exponential variable, and
me me d 0—r
(BB =r) = Rg™". (29)

These descriptions are read from [378, 175]. See also [83, 42, 50, 331] for further
background. By (25) and Ito’s formula, the process R3 Y can be characterized
for each z,y > 0 as the solution over [0, 1] of the Tt6 SDE

1, =R

Ro==2;, dR, = <——|—

7t ) ds + dn (30)

for a Brownian motion ~.
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Exercises

1. [331] Show that the three dimensional Bessel process Rg is characterized by
description (i) of Theorem 1, using stochastic calculus.

2. Check that R5™Y solves (30), and discuss the uniqueness issue.

3. [291, 224] Formulate and prove a discrete analog for simple symmetric ran-
dom walk of the equivalence of the two descriptions of R3 given in Theorem 1,
along with a discrete analog of the following fact: if R(¢) := B(t) — 2B(t) for a
Brownian motion B then

the conditional law of B(t) given (R(s),0 < s < t) is uniform on [—R(%),0].
(31)
Deduce the Brownian results by embedding a simple symmetric random walk
in the path of B.

4. (Williams’ time reversal theorem)[379, 291, 224] Derive the identity in
distribution

(R3(t),0 <t < Ku) = (x — B(Hy —1),0 < t < Hy), (32)

where K is the last hitting time of z > 0 by R3, and where H, the first hitting
time of z > 0 by B, by first establishing a corresponding identity for paths of
a suitably conditioned random walk with increments of +1, then passing to a
Brownian limit.

5. [379, 224] Derive the identity in distribution
(R3(t),0 <t < Hy) = (z — Ra(H, —1),0 < t < H,), (33)

where H; is the hitting time of z > 0 by Rs.

6. Fixz > 0and for 0 < y < z let K, be the last time before H,(R3) that Rs
hits y, let I, := [K,_, K], and let R3[l,] — y be the excursion of R3 over the
interval 7, pulled down so that it starts and ends at 0. Let M, be the maximum
height of this excursion. Show that the points

{(y, My, R3[1y] —y : My > 0}, (34)

are the points of a Poisson point process on [0, z] x Ry o x C[0, co) with intensity
measure of the form

f(y, m)dydmP (B™!™ € duw)

for some f(y, m) to be computed explicitly, where B I™ is a Brownian excur-
sion of maximal height m. See [296] for related results.
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Notes and comments

See [333, 224, 33, 331, 158] for different approaches to the basic path transfor-
mation (18) from B to Rg, its discrete analogs, and various extensions. In terms
of X :== —B and M := X = —B, the transformation takes X to 2M — X. For a
generalization to exponential functionals, see Matsumoto and Yor [250]. This is
also discussed in [278], where an alternative proof is given using reversibility and
symmetry arguments, with an application to a certain directed polymer prob-
lem. A multidimensional extension is presented in [279], where a representation
for Brownian motion conditioned never to exit a (type A) Weyl chamber is ob-
tained using reversibility and symmetry properties of certain queueing networks.
See also [278, 216] and the survey paper [277]. This representation theorem is
closely connected to random matrices, Young tableaux, the Robinson-Schensted-
Knuth correspondence, and symmetric functions theory [275, 276]. A similar
representation theorem has been obtained in [61] in a more general symmetric
spaces context, using quite different methods. These multidimensional versions
of the transformation from X to 2M — X are intimately connected with combi-
natorial representation theory and Littelmann’s path model [239].

0.5 Subordinators

A subordinator (Ty,s > 0) is an increasing process with right continuous paths,
stationary independent increments, and Ty = 0. Tt is well known [34] that every
such process can be represented as

Ty=ct+ Y A, (t > 0)
0<s<t

for some ¢ > 0 where A; := Ty — Ts_ and {(s,A;) : s > 0,A; > 0} is the set
of points of a Poisson point process on (0, 00)? with intensity measure dsA(dz)
for some measure A on (0, 00), called the Lévy measure of Ty or of (T3,¢ > 0),
such that the Laplace exponent

P(u) = cu+ /000(1 — e "N)A(dz) (35)

is finite for some (hence all) u > 0. The Laplace transform of the distribution
of T is then given by the following special case of the Lévy-Khintchine formula
[34]:

Fle~uTt] = e~ t¥(®), (36)

The gamma process Let (T';,s > 0) denote a standard gamma process, that
is the subordinator with marginal densities

P(Ts € dz)/dx = ﬁ e le™® (z>0). (37)
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The Laplace exponent () of the standard Gamma process is

u? ol

=1 1 -y - — — ...
p() =log(1 +w)=u— "0t "
and the Lévy measure is A(dz) = z='e"%dz. A special feature of the gamma
process is the multiplicative structure exposed by Exercises 1 and 2. See also

[360].

Stable subordinators Let P, govern a stable subordinator (75, s > 0) with
index a € (0,1). So under P,

T, £ sty (38)
where o
Ey [exp(—ATy)] = / e_)‘xfa(:z:) dr = exp(—A%) (39)
0
where fq(z) is the stable(a) density of T, that is [323]
1 o= (=1)F+t T(ak+1)
fa(t) = - I;) i sm(7rak)W. (40)

For a = % this reduces to the formula of Doetsch [97, pp. 401-402] and Lévy
[237]
-5 —m(lp-2
L t) = m@ 4t — ]P)(EBI € dt)/dt (41)
where B; is a standard Gaussian variable. For general a, the Lévy density of
T 1s well known to be

o 1
o = 42
pole) = fim g (2> 0 (42)
Note the useful formula
INE
-0y __ o _
BT = fea (0> ) (43)

which is read from (39) using 77% = T'(9)~! S A MdNL Let (S;,t > 0)
denote the continuous inverse of (75, s > 0). For instance, (S, > 0) may be the

local time process at 0 of some self-similar Markov process, such as a Brownian
motion (a = 1) or a Bessel process of dimension 2 — 2a € (0,2). See [331, 35].

Easily from (38), under P, there is the identity in law
S/t L s L e (44)

Thus the P, distribution of Sy is the Mittag-Leffler distribution with Mellin
transform

B (1) = Ea (7)) = Fietets (0> -1 (49
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and density at s > 0

k+1

—l/oc 1 &
Po(Sy € ds)/ds = ga(s) := faim/a - L Z T(ak+1)s"~!sin(rak)
k=0

(46)
See [262, 54] for background.

Exercises

1. (Beta-Gamma algebra) Let (T';,# > 0) be a standard gamma process. For
a,b >0 let
ﬂa,b = 1_‘a/Fa-}-&r (47)

Then B, has the beta(a,b) distribution

F(a + b) a—1

T - 0<u<) (48)

p(ﬂa,b € du) =

and [, p is independent of T'yyp. See [101] for a review of algebraic properties of
beta and gamma distributions, and [72] for developments related to intertwining
of Markov processes.

2. (Dirichlet Process) [131, 298] Let (T;,¢ > 0) be a standard Gamma pro-
cess, and for 6 > 0 set

Fg(u) = Fug/rg (0 S u S 1) (49)

Call Fy(+), the standard Dirichlet process with parameter 8, or Dirichlet(f) pro-
cess for short. This process Fy(-) is increasing with exchangeable increments,
and independent of Ty. Note that Fp(-) is the cumulative distribution func-
tion of a random discrete probability distribution on [0, 1], which may also be
denoted Fy. For each partition of [0, 1] into m disjoint intervals I, ..., L, of
lengths a1, ..., am, with 2~ a; = 1, the random vector (Fg(I1),..., Fo(In))
has the Dirichlet(f, ..., 0,) distribution with 6; = fa;, that is

PO+ 40m) 901 -1
LT T =t =Ly dpy, 50
T(61) - T(6m) 't PGP GPm=1 (50

on the simplex (p1,...,pm) with p; >0 and > 1", p; = 1. Deduce a description
of the laws of gamma bridges (T';,0 < ¢ < §|T'y = z) in terms of the standard
Dirichlet process Fp(-) analogous to the well known description of Brownian
bridges (B;,0 <t < 6| By = z) in terms of a standard Brownian bridge B’".
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1 Bell polynomials and composite structures

1.1 Partitions and compositions

Let F be a finite set. A partition of F' into k blocks is an unordered collection of
non-empty disjoint sets {A, ..., Ax} whose union is F'. Let Py, ] denote the set
of partitions of the set [n] := {1, ..., n} into k blocks, and let P, := UZ_; P ],
the set of all partitions of [n]. To be definite, the blocks A; of a partition of
[n] are assumed to be listed in order of appearance, meaning the order of their
least elements, except if otherwise specified. The sequence (|A1],...,|Ax|) of
sizes of blocks of a partition of [n] defines a composition of n, that is a sequence
of positive integers with sum n. Let C, denote the set of all compositions of n.
An integer composition is an element of U3 ,C,,. The multiset {|A4],...,|Ax|}
of unordered sizes of blocks of a partition II,, of [n] defines a partition of n,
customarily encoded by one of the following:

e the composition of n defined by the decreasing arrangement of block sizes
of I1,,, say (N;lL 1o .,N;LL i |) where |IT,,| is the number of blocks of TI,,;

e the infinite decreasing sequence of non-negative integers (Niyl, N;b?, oY)
defined by appending an infinite string of zeros to (Ni,17 ce Ni im| ), so
N} . is the size of the ith largest block of II, if |IT,,| > 7, and 0 otherwise,

n,i

e the sequence of non-negative integer counts (|II,|;,1 < j < n), where
IIL,,|; is the number of blocks of II,, of size j, with

Y Il = [Ta] and ) j[ITa]; = n. (51)

J J

Thus the set P, of all partitions of n is bijectively identified with one of the
following three sets of sequences of non-negative integers:

Up=1{(nj)1<j<k im1 >mna > ... >ngp > 1 and an =n}
J

or
{(nj)1<j<o0 i m1 >mn3 > ... and E n; = n}
J

or

{(mi)ici<n : Zimi =n}.

i
with the bijection from either (n;) to (m;) defined by m; = Zj 1(n; =1).
Composite structures Let v, := (v1,vs,...) and w, := (w1, ws,...) be two

sequences of non-negative integers. Let V be some species of combinatorial
structures [32], so for each finite set F,, with |F,| = n elements there is some
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construction of a set V(F,) of V-structures on F,, such that the number of V
structures on a set of n elements is |V (F,)| = v,. For instance V(F,) might be
F, x F,, or FI or permutations from F, to F,, or rooted trees labeled F,,
corresponding to the sequences v, = n?, or n”, or n!, or n®~! respectively.

Let W be another species of combinatorial structures, so the number of W
structures on a set of j elements is w;. Let (V o W)(F,) denote the compos-
ite structure on F, defined as the set of all ways to partition Fj, into blocks
{A1,..., A} for some 1 < k < n, assign this collection of blocks a V structure,
and assign each block A; a W-structure. Then for each set F,, with n elements,
the number of such composite structures is evidently

n

(Vo W)(Fa)| = Ba(ve,ws) = > _ v Bn i (wy) (52)

where )
Baslw) = 3, [T (53)
{A1,. ., AR}EP, 5 =1

is the number of ways to partition F,, into k& blocks and assign each block a
W -structure.

The sum By, x(w,) is a polynomial in variables w1, ..., wp_k41, known as
the (n, k)th partial Bell polynomial [85]. For a partition m, of n into k parts
with m; parts equal to j for 1 < j < n, the coefficient of Hj w}nj in By, k(w,)
is the number of partitions II,, of [n] corresponding to m,. That is to say,

n!

y 4\ :

as indicated for 1 < k < n <5 in the following table:

Table 2 Some partial Bell polynomials

n Bn,l(wo) Bn,2(wo) Bn,S(wo) Bn,4(wo) Bn,S(wo)
1 w1

2 wWo w%

3 w3 3w we w‘;’

4 Wy 4dwiws + 3w§ 61[}%’![}2 w‘f

5 ws Swiwy + 10wsws 1Ow%w3 + 15w1w§ 1Ow:fw2 w?

The Bell polynomials By, x(w, ), and Stirling numbers obtained as evaluations
of By, x(w,) for particular w,, have numerous interpretations and applications,
some of which are reviewed in the exercises of this section. See also [85]. Three
different probabilistic interpretations discussed in the next three subsections
involve:

e formulae relating the moments and cumulants of a random variable X
particularly for X with infinitely divisible distribution;
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e the probability function of a random sum X; + ...+ Xg of independent
and identically distributed positive integer valued random variables Xj;

e the normalization constant in the definition of Gibbs distributions on par-
titions.

The second and third of these interpretations turn out to be closely related, and
will be of fundamental importance throughout this course. The first interpre-
tation can be related to the second in special cases. But this interpretation is
rather different in nature, and not so closely connected to the main theme of
the course.
Useful alternative expressions for By, x(w,) and By, (ve, we) 1= Ezzl vk Bn k(W)

can be given as follows. For each partition of [n] into k disjoint non-empty blocks
there are k! different ordered partitions of [n] into k such blocks. Corresponding

to each composition (n1,...,ng) of n with & parts, there are
k
n 1
=nl|| —
<n1a"'ank> Z_Hlnll

different ordered partitions (A, ..., Ag) of [n] with |A;| = n;. So the definition
(53) of By, k(w,) as a sum of products over partitions of [n] with k blocks implies

k
n! W,
Bak(wa) =55 D Hm! (55)
)i=1

(nh“vnk

where the sum is over all compositions of n into k parts. In view of this formula,
it 1s natural to introduce the exponential generating functions associated with
the weight sequences v, and w,, say

o k

9 > g
v(f) = kaﬁ and w(¢) := iji,—!

k=1 j=1

where the power series can either be assumed convergent in some neighbourhood
of 0, or regarded formally. Then (55) reads

[ ¢n ] k
Bn k(we) = i—, ng) (56)
and (52) yields the formula
Bava,we) = |5 | o(w(@) 67)

known as the compositional or Faa di Bruno formula [351],[85, 3.4]. Thus the
combinatorial operation of composition of species of combinatorial structures
corresponds to the analytic operation of composition of exponential generating
functions. Note that (56) is the particular case of the compositional formula
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(57) when v, = 1(® = k), meaning v; = 1if j = k and 0 else, for some 1 < k < n.
Another important case of (57) is the ezponential formula [351]

n!

Buat ) = ] 0. (55)

where z* is the sequence whose kth term is z*

. For positive integer z, this
is the number of ways to partition the set [n] into an unspecified number of
blocks, and assign each block of size j one of w; possible structures and one of

x possible colors.
Exercises

1. [350, p. 14] The number of compositions of n with k parts is (Z:i), and the
number of compositions of n is 27~ 1.

2.* (Stirling numbers of the second kind) Let
Sn.k = Bn £(1%) = #{partitions of [n] into k blocks}, (59)

where the substitution w, = 1* means w, = 17 = 1. The numbers S, ; are
known as Stirling numbers of the second kind.

n Sn,l Sn,Z Sn,S Sn,4 Sn,S
1 1

2 1 1

3 1 3 1

4 1 7 1

5 1 15 25 10 1

Show combinatorially that the S, p are the connection coefficients determined
by the identity of polynomials in x

;L‘n = ZSn’k (I)k¢~ (60)

3.* (Stirling numbers of the first kind) Let
¢n k= Bn x((e — 1)!) = #{permutations of [n] with k cycles} (61)

where the substitution w, = (e — 1)! means w,, = (n — 1)!. Since (n — 1)! is the
number of cyclic permutations of [n], the second equality in (61) corresponds to
the representation of a permutation of [n] as the product of cyclic permutations
acting on the blocks of some partition of [n]. The ¢, ; are known as unsigned

n Cn 1 Cn 2 Cn.3 Cn 4 Cn .5

)

1 1
o . 2 1 1
Stirling numbers of the first kind. 3 3 1
4 6 11 6 1
51| 24 50 35 10 1
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Show combinatorially that

n n

(I)”T = Z Cn.k l‘k and (I)ni = Z Sn,kmk (62)

k=1 k=1

where the s, 5 = (—1)”_1“6,”c = B, x((—=1)*~'(e—1)!) are the Stirling numbers
of the first kind. Check that the matrix of Stirling numbers of the first kind is
the inverse of the matrix of Stirling numbers of the second kind.

4. (Matrix representation of composition) Jabotinsky [85]. Regard the
numbers B, x(w,) for fixed w, as an infinite matrix indexed by n,k > 1. For
sequences v, and w, with exponential generating functions v(§) and w(§), let
(v ow), denote the sequence whose exponential generating function is v(w(§)).
Then the matrix associated with the sequence (v o w), is the product of the
matrices associated with w, and v, respectively. In particular, for w, with
wy # 0, and w;! the sequence whose exponential generating function w=! is
the compositional inverse of w, so w=H{w(€)) = w(w™(€)) = €, the matrix
B(w; 1) is the matrix inverse of B(ws,).

5. (Polynomials of binomial type). Given some fixed weight sequence w,,
define a sequence of polynomials By, (z) by Bg(z) := 1 and for n > 1 B,(z) ==
B, (z*,w,) as in (58). The sequence of polynomials B, (z) is of binomial type,
meaning that

> (j) B;(2)Ba_y(y) = Balz +1). (63)

Conversely, it is known [336, 335] that if B, (z) is a sequence of polynomials of
binomial type such that B, (z) is of degree n, then B,(z) = B,(z,w,) as in
(58) for some weight sequence w,. Note that then w; = [2]B;(z).

6.* (Change of basis) Each sequence of polynomials of binomial type By (z)
with B, of degree n defines a basis for the space of polynomials in z. The
matrix of connection coefficients involved in changing from one basis to another
can be described in a number of different ways [336]. For instance, given two
sequences of polynomials of binomial type, say By, (z*,u,) and B, (z*,v,), for
some weight sequences u, and v,, with v1 # 0,

Ba(z*,us) = Y B k(ws) B;(z*, v,) (64)

where
w(€) := v (u(€)) is the unique solution of u(¢) = v(w(€)).

for u and v the exponential generating functions associated with u, and v,.
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7.* (Generalized Stirling numbers) Toscano [359], Riordan [332, p. 46],
Charalambides-Singh [74], Hsu-Shiue [170]. For arbitrary distinct reals o and
(3, show that the connection coefficients S:’If defined by

T)njo = Z Sn T)klp (65)

are

|
S28 = Bua((0 — @)eisa) = TN (€))F (66)
where
- ;AN tagfl 1) ifa 0,870
w (€)= (B —a)joray = B - 1) ifa=0
i=1 J: a~'log(1 + af) if =0.
(67)
n St Sns Swa | Sid
1 1
2 (B—a) 1
3 (8 —a)(B - 20) 3(8 — o) 1
A (B a)(B—2a)(F—3a) | B—a)(B—2a) +3(—a) | 6(—a) | 1
Alternatively
537’5 = anijjyka”_jﬂj_k (68)
j=k

where s, ; = S . 1s a Stirling number of the first kind and S; = S k is a
Stirling number of the second kind.

1.2 Moments and cumulants

Let (X¢,t > 0) be a real-valued Lévy process, that is a process with stationary
independent increments, started at Xy = 0, with sample paths which are cadlag
(right continuous with left limits) [34]. According to the exponential formula of
probability theory, i.e. the Lévy-Khintchine formula, if we assume that X; has
a convergent moment generating function in some neighbourhood of 0 then

E[e?t] = exp (t¥(0)) (69)

for a characteristic exponent ¥ which can be represented as

o0 gn
=> kn — (70)
n=1 '

where k1 = E(X1), k2 is the variance of X7, and

Ky = /Rl‘n/\(dl‘) (n=23,4,..)). (71)
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where o2 is the variance of the Brownian component of X; and A is the Lévy
measure of X;. Compare (69) with the exponential formula of combinatorics
(58) to see that the coefficient of #”/n! in (69) is

E(X]) = Bn(t*, Ke). (72)

Thus the moments of X; define a sequence of polynomials in ¢ which is the
sequence of polynomials of binomial type associated with the sequence x, of
cumulants of X;. Apart from some fiddling for n = 1 and n = 2, this is just the
sequence of moments of the Lévy measure of X;. Two special cases are worthy
of note.

Gaussian case If X is standard Gaussian, the sequence of cumulants of X
is ko = 1(e = 2). It follows from (72) and the combinatorial meaning of B,
that the nth moment p,, of By is the number of matchings of [n], meaning the
number of partitions of [n] into n/2 pairs. Thus

P if n 1s odd
BT/t _{ I1x3x---(n—1) if n is even. (73)

Exercises 4 and 5 offer some generalizations.

Poisson case If X; = N; is Poisson with mean 1, the sequence of cumulants
is kK4 = 1*. The positive integer moments of N; are therefore given by

> e~ tmmn n
E(N]) =Y, ——r— =2 Bas(1)F (n=12..)  (70)
m=0 ’ k=1

where the B, ;(1*) are the Stirling numbers of the second kind. These polyno-
mials in ¢ are known as ezponential polynomials. In particular, the nth moment
of the Poisson(1) distribution of Ny is the nth Bell number

Ba(1°,1%) = kz:)an,k(r) = [&] expies -1

which is the number of partitions of [n]. The first six Bell numbers are 1,2, 5, 15,52, 203.
Now (74) for ¢ = 1 gives the famous Dobiriski formula [96]

_ -1 o~ "
B,(1*,1*) = e mglm (75)

As noted by Comtet [85], for each n the infinite sum in (75) can be evaluated
as the least integer greater than the sum of the first 2n terms.
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Exercises

1. [243,85] Let X; be any random variable with a moment generating function
which is convergent in some neighbourhood of 0. Let u,, := E(X}) and let the
cumulants &, of X; be defined by the expansion (70) of ¥(f) := logE[e?X1].
Show that the moment and cumulant sequences p, and x, determine each other
by the formulae

n

o =D Bu(re) and ko = 3 (=1 (k= 1)!Bai(u)  (76)

k=1 k=1

for n = 1,2, .... These formulae allow the first n cumulants of X to be defined
for any X with E[|X|"] < oo, and many of the following exercises can be adapted
to this case.

2. (Thiele’s recursion) [156, p. 144, (4.2)], 264, p.74, Th. 2], [92, Th. 2.3.6].
Two sequences p, and k, are related by (76) if and only if

n—1

o=y <” B 1>Nmn_i (n=1,2..) (77)

=0
where pg = 0.

3. (Moment polynomials) [63], [157], [266, p. 80], [123] [124, Prop. 2.1.4].
Fort = 1,2,...1let S; = 22:1 X; where the X; are independent copies of X
with moment sequence p, and cumulant sequence x,. Then

E[SP) = Bu(ka)t* = Buk(pe)(t)ey- (78)

For n=0,1,..., and z real, let
" /n
Hn(z,t) =TE(z + S)"] = E <k> mkE[Sf_k] (t=0,1,2,..) (79)
k=0
where Sp := 0, and let
Hp(z,t) = pn(z,—1) (80)

where the right side is defined for each z by polynomial continuation of u, (z,1)

in (79). Then
(Hn(S;,%),t=0,1,2,..) is an (F;)-martingale (81)
where F; is the o-field generated by (Sy,u=0,1,...,1).

4. (Matchings and Stirling numbers). Check that for X; standard Gaus-
sian (78) for even n = 2q gives

F(SPT) =720 = Y Bag (e (t)ay.- (82)
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Compare with the definition (62) of Stirling numbers of the second kind to see
that

B2q,k(/10) = /12qu,1€(1.)~ (83)

Give a combinatorial proof of (83) and deduce more generally that

BQq,k(ﬂoIOM) = paqgBag k() (84)

for an arbitrary sequence x,, where the nth term of pez4/2 is pezg if n = 2q is
even, and 0 else.

5. (Feynman diagrams) [180, Theorem 1.28] [249, Lemma 4.5]. Check the
following generalization of (73): if Xi,..., X, are centered jointly Gaussian
variables, then

F(X: - Xa) = Y[ (X0 Yi) (35)

where the sum is over all partitions of [n] into n/2 pairs {ig,jx}, 1 < k < n/2.
See [249] for applications to local times of Markov processes.

6. (Poisson moments)[301] Deduce (74) from (62) and the more elementary
formula E[(N¢)ny] = t".

Notes and comments

Moment calculations for commutative and non-commutative Gaussian random
variables in terms of partitions, matchings etc. are described in [165]. There, for
instance, the fact that the Catalan numbers are the moments of the semicircle
law is related to Wigner’s limit theorem for the empirical distribution of the
eigenvalues of a random Hermitian matrix. Combinatorial representations for
the moments of superprocesses, in terms of expansions over forests, were given
by Dynkin [110], where a connection is made with similar calculations arising
in quantum field theory. This is further explained with pictures in Etheridge
[115]. These ideas are further applied in [118, 119, 334].

1.3 Random sums

Recall that if X, X1, X5, ... are independent and identically distributed non-
negative integer valued random variables with probability generating function

Gx(z) =E[zX]= ) P(X=n)",

and K is a non-negative integer valued random variable independent of X7, X, . ..
with probability generating function Gk, and Sk := X; + - -+ Xk, then, by
conditioning on K, the probability generating function of Sk is the composition

of G and Gx:
Gsk(2) = Gr(Gx(2)). (86)
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Comparison of this formula with the compositional formula (57) for B, (v,, ws)
in terms of the exponential generating functions v(z) = Y . v,2"/n! and
w(é) = Y07, w,€" /nl, suggests the following construction. (It is convenient
here to allow vy to be non-zero, which makes no difference in (57)). Let £ > 0 be
such that v(w(€)) < co. Let P¢ 4, w, be a probability distribution which makes

X; independent and identically distributed with the power series distribution

wpé" w(z€) .
Peyow, (X =n)=—=—=forn=12,..., s0 Gx(z) = 87
§,Ve, ( ) n'w(ﬁ) X( ) w(g) ( )
and K independent of the X; with the power series distribution
vpw(€)k

Peoow. (K =k) = m for k=0,1,2,... s0 Gg(y) = % (88)

Let Sk := X1+ -+ Xgk. Then from (86) and (57),

]P)E,Uo,wo (SK = 77,) = mBn (Uo;wo) (89)
Bu(ve,ws) = 20 (5k = n) (90)

E‘n
This probabilistic representation of By, (ve, w,s) was given in increasing generality
by Holst [169], Kolchin [214], and Kerov [200]. Rényi’s formula for the Bell
numbers B, (1*,1°*) in Exercise 1 is a variant of (90) for v, = w, = 1*. Holst
[169] gave (90) for v, and w, with values in {0,1}, when B,(v,,w,) is the
number of partitions of [n] into some number of blocks k with vy = 1 and each
block of size j with w; = 1. As observed by Rényi and Holst, for suitable
vy and w, the probabilistic representation (90) allows large n asymptotics of
By (ve,w,) to be derived from local limit approximations to the distribution
of sums of independent random variables. This method is closely related to

classical saddle point approximations: see notes and comments at the end of
Section 1.4.

Exercises

1. (Rényi’s formula for the Bell numbers)[328 p. 11]. Let (Nt > 0)
and (M, t > 0) be two independent standard Poisson processes. Then for
n=1,2,...the number of partitions of [n] is

B, (1*,1%) = nle® " 'P(Np = n). (91)

2. (Asymptotic formula for the Bell numbers)[241, 1.9]. Deduce from
(91) the asymptotic equivalence

B,(1°,1%) ~ %A(n)”"'l/%)‘(")_"_l as n — 00, (92)

where A(n)log(A(n)) = n.
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1.4 Gibbs partitions

Suppose as in Section 1.1 that (V o W)([n]) is the set of all composite V o W
structures built over [n], for some species of combinatorial structures V and W.
Let a composite structure be picked uniformly at random from (Vo W)([n]), and
let TI,, denote the random partition of [n] generated by blocks of this random
composite structure. Recall that v; and w; denote the number of V and W
structures respectively on a set of j elements. Then for each particular partition

{Aq, ..., Ax} of [n] it is clear that
P(T, = {A1, ..., Ax}) = p(JA1l, - - ., |Axl; ve, we) (93)

where for each composition (ny,...,ng) of n

Uk Hf—1 Wn,
p(nla"'ank;UO;wo) = B (U_ w ) (94)
n LB L]

with the normalization constant By, (ve,ws) = Y r_; vsBnx(ws) as in (52)
and (57), assumed strictly positive. More generally, given two non-negative
sequences vy = (v1,v2,...) and w, = (w1, ws,...), call I, a Gibbsy, (v, w,)
partition if the distribution of II, on P, is given by (93)-(94). Note that due to
the normalization in (94), there is the following redundancy in the parameter-
ization of Gibbsy,j(ve,w,) partitions: for arbitrary positive constants a,b and
¢,

Gibbsp,j(ab®v,, c*w,) = Gibbsp,1(vs, bw,). (95)

That is to say, the Gibbsp,j(ve,w,) distribution is unaffected by multiplying
vy by a constant factor a, or multiplying w, by a geometric factor ¢*, while
multiplying v, by the geometric factor 4* i1s equivalent to multiplication of w,
by the constant factor b.

The block sizes in exchangeable order The following basic theorem pro-
vides a fundamental representation of Gibbs partitions.

Theorem 3 (Kolchin's representation of Gibbs partitions) [214], [200] Let
(N,‘f’fl, ce Ns),(ll'lln) be the random composition of n defined by putting the block
sizes of a Gibbsy,)(ve, ws) partition I, in an exchangeable random order, mean-
ing that given k blocks, the order of the blocks is randomized by a uniform ran-

dom permutation of [k]. Then

(Nex

nlr--

"NT?,(IHIn) 4 (X1,...,XK) under P o, w, gven X1 4+ ---+ Xg =n

(96)
where P¢ 4, w, governs independent and identically distributed random variables
X1, Xo, ... with BE(z%1) = w(2€)/w(€) and K is independent of these variables
with E(y%) = v(yw(€))/v(w(€)) as in (87) and (88).
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Proof. Tt is easily seen that the manipulation of sums leading to (55) can be
interpreted probabilistically as follows:

k
nlvyg Wy,
PN, ..., N = = - . 97
(( n, 1 ) n,|H|n) (77,1, ’nk)) k!Bn(v.,w.) Zl:[l n;! ( )
for all compositions (n1,...,ng) of n. Compare with formula (89) and the
conclusion 1s evident. a

Note that for fixed v, and w,, the P¢,, «, distribution of the random in-
teger composition (Xi,..., Xk) depends on the parameter ¢, but the P¢ ,, 1,
conditional distribution of (X1,..., Xk) given Sk = n does not. In statistical
terms, with v, and w, regarded as fixed and known, the sum Sk is a sufficient
statistic for £&. Note also that for any fixed n, the distribution of II,, depends
only on the weights v; and w; for j < n, so the condition v(w(€)) < oo can
always be arranged by setting v; = w; =0 for j > n.

The partition of n Recall that the random partition of n induced by a
random partition II,, of [n] is encoded by the random vector (|II,|;,1 < j < n)
where |II,|; is the number of blocks of II,, of size j. Using (54), the distribution
of the partition of n induced by a Gibbs,)(v,, w,) partition II, is given by

. n! vy w1
p(|Hn|j:mja1§J§“):WH<-—]) o] (98)

where E;ﬂ m; = k and E;ﬂ jmj; = n. In particular, for a Gibbsp,j(1°, w,)
partition

(Malj1<j<n) £ [Mj1<j<n|d iM;=n (99)

j=1

where the M; are independent Poisson variables with parameters (w]{j/j!) for
arbitrary & > 0. This can also be read from (96). For v, = 1* the random vari-
able K has Poisson (w(€)) distribution. Hence, by the classical Poissonization
of the multinomial distribution, the number M; of ¢ such that : < K and X; = j
has a Poisson (w;&7/4!) distribution, and Sk = Zj JM; is compound Poisson.
See also Exercise 1. Arratia, Barbour and Tavaré [26] make the identity in
distribution (99) the starting point for a detailed analysis of the asymptotic
behaviour of the counts (|II,|;,1 < j < n) of a Gibbsp,j(1°*,w,) partition as
n — oo for w, in the logarithmic class, meaning that jw;/j! — 6 as j — oo for
some # > 0. One of their main results is presented later as Theorem 12.

Physical interpretation Suppose that n particles labelled by elements of
the set [n] are partitioned into clusters in such a way that each particle belongs
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to a unique cluster. Formally, the collection of clusters is represented by a par-
tition of [n]. Suppose further that each cluster of size j can be in any one of w;
different internal states for some sequence of non-negative integers w, = (w;).
Let the configuration of the system of n particles be the partition of the set of n
particles into clusters, together with the assignment of an internal state to each
cluster. For each partition 7 of [n] with k blocks of sizes ny, ..., ng, there are
Hle Wy, different configurations with that partition m. So B, x(w,) gives the
number of configurations with k clusters. For v, = 1(e = k) the sequence with
kth component 1 and all other components 0, the Gibbs(v,, w,) partition of [n]
corresponds to assuming that all configurations with & clusters are equally likely.
This distribution the set Py, 5] of partitions of [n] with k blocks, is known in the
physics literature as a microcanonical Gibbs state. It may also be called here
the Gibbs(w,) distribution on Py, k). A general weight sequence v, randomizes
k, to allow any probabilistic mixture over k of these microcanonical states. For
fixed w, and n, the set of all Gibbs(v,, w,) distributions on partitions of [n], as
v, varies, is an (n — 1)-dimensional simplex whose set of extreme points is the
collection of n different microcanonical states. Whittle [376, 375, 377] showed
how the Gibbs distribution (99) on partitions of n arises as the reversible equi-
librium distribution in a Markov process with state space partitions of n where
parts of various sizes can split or merge at appropriate rates. In this setting,
the Poisson variables M; represent equilibrium counts in a corresponding un-
constrained system where the total size i1s also subject to variation. See also
[105] for further studies of equilibrium models for processes of coagulation and
fragmentation.

Example 4 Uniform random set partitions. Let II, be a uniformly dis-
tributed random partition of [n]. Then TI,, is a random (V o V) structure on [n]
for V the species of non-empty sets. Thus IT,, has the Gibbs(1°*, 1*) distribution
on Pp,1. Note that P(|II,| = k) = By x(1*)/Bn(1*,1°) but there is no simple
formula, either for the Stirling numbers of the second kind B, x(1*), or for the
Bell numbers B, (1*,1*). Exercise 5 gives a normal approximation for [II,|. The
independent and identically distributed variables X; in Kolchin’s representation
are Poisson variables conditioned not to be 0. See [148] for further probabilistic
analysis of II,, for large n.

Example 5 Random permutations. Let W(F) be the set of all permuta-
tions of F' with a single cycle. Then w, = (n — 1)! so

w(é) =Y (n— 1)!% = —log(1 — &)
n=1 :
and N
e = mt1oel=0) = (1 — )~ = E(emi—v
n=0 :
So

Ba(1°,0(e — 1)1) = ()11 (100)
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In particular, for § = 1, B, (1%, (e —1)!) = (1)n41 = n!is just the number of per-
mutations of [n]. Since each permutation corresponds bijectively to a partition
of [n] and an assignment of a cycle to each block of the partition, the random
partition II,, of [n] generated by the cycles of a uniform random permutation
of [n] is a Gibbsp,j(1°, (e — 1)!) partition. While there is no simple formula for
the unsigned Stirling numbers B, ;((e — 1)!) which determine the distribution
of |, |, asymptotic normality of this distribution is easily shown (Exercise 4).
Similarly, for # = 1,2,... the number in (100) is the number of different ways
to pick a permutation of [n] and assign each cycle of the permutation one of
f possible colors. If each of these ways is assumed equally likely, the resulting
random partition of [n] is a Gibbsp,j(1°*, (e — 1)!) partition. For any > 0, the
X; in Kolchin’s representation have logarithmic series distribution

o 1 b

P Tlog(1—b) j

where 0 < b < 1 is a positive parameter. This example is developed further in
Lecture 3.

G=12..)

Example 6 Cutting a rooted random segment. Suppose that the internal
state of a cluster C' of size j is one of w; = j! linear orderings of the set C.
Identify each cluster as a directed graph in which there is a directed edge from
a to b if and only if a is the immediate predecessor of b in the linear ordering.
Call such a graph a rooted segment. Then B, y(e!) is the number of directed

@——2—6 &6
@—2 6 &6
@w—2 6 6 6
@ @ 6 6 6

Figure 1: Cutting a rooted random segment

graphs labelled by [n] with k such segments as its connected components. In
the previous two examples, with w; = 19 and w; = (j — 1)!, the B, x(w,) were
Stirling numbers for which there is no simple formula. Since j! = (f — @);_1}a
for « = —1 and B = 1, formula (66) shows that the Bell matrix B, x(e!) is the
array of generalized Stirling numbers

_ n—1\ n!
Bn,k(o!) = Sn 2’1 = <k B 1) 0 (101)

)
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known as Lah numbers [85, p. 135], though these numbers were already con-
sidered by Toscano [359]. The Gibbs model in this instance is a variation of
Flory’s model for a linear polymerization process. It is easily shown in this
case that a sequence of random partitions (II, x, 1 < k < n) such I, ; has the
microcanonical Gibbs distribution on clusters with & components is obtained
as follows. Let GGy be a uniformly distributed random rooted segment labelled
by [n]. Let Gg be derived from G4 by deletion of a set of £ — 1 edges picked
uniformly at random from the set of n — 1 edges of G1, and let II,, p be the
partition induced by the components of G. If the n — 1 edges of (G; are deleted
sequentially, one by one, the random sequence (II, 1,1, 3,...,1, ,) is a frag-
menting sequence, meaning that I, ; is coarser than II, ; for j < k, such that
IT,, . has the microcanonical Gibbs distribution on P, ) derived from the weight
sequence w; = jl. The time-reversed sequence (Il », I, n_1,...,I, 1) is then
a discrete time Markov chain governed by the rules of RKingman’s coalescent
[27, 209]: conditionally given II; with k components, TIx_; is equally likely to
be any one of the (g) different partitions of [n] obtained by merging two of the
components of IIy. Equivalently, the sequence (II,1,II,,...,II, ) has uni-
form distribution over the set R, of all fragmenting sequences of partitions of
[n] such that the kth term of the sequence has k components. The consequent
enumeration #R,, = n!(n—1)!/2"~! was found by Erdds and others [114]. That
II,, x determined by this model has the microcanonical Gibbs(e!) distribution
on Py, k) was shown by Bayewitz et. al. [27] and Kingman [209)].

Example 7 Cutting a rooted random tree. Suppose the internal state of
a cluster C' of size j is one of the w; = 4771 rooted trees labelled by C'. Then
By, i (#*~1) is the number of forests of k rooted trees labelled [n]. This time again
there is a simple construction of the microcanonical Gibbs states by sequential
deletion of random edges, hence a simple formula for B, 1.

'y, ®\§®\®E®\@® ST

6, ® ® ®

Figure 2: Cutting a rooted random tree with 5 edges

By a reprise of the previous argument [304],

Box(e*™1) = (Z) knn k-1 (102)

which is an equivalent of Cayley’s formula kn”~%~1 for the number of rooted
trees labeled by [n] whose set of roots is [k]. The Gibbs model in this instance
corresponds to assuming that all forests of k rooted trees labeled by [n] are
equally likely. This model turns up naturally in the theory of random graphs
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and has been studied and applied in several other contexts. The coalescent
obtained by reversing the process of deletion of edges is the additive coalescent
studied in [304]. The structure of large random trees is one of the main themes
of this course, to be taken up in Lecture 5. This leads in Lecture 6 to the
notion of continuum trees embedded in Brownian paths, then in Lecture 9 to
a representation in terms of continuum trees of the large n asymptotics of the
additive coalescent.

Note how in the two previous examples, the simple evaluation of B, x(w.,)
was closely related to a simple sequential constructon of a Gibbs(w,) fragmenta-
tion process, that is a fragmenting sequence of random partitions (II,, 1,11, 9, ..., I, »)
such that II,, ;. has the Gibbs(w,) distribution on Py, x}. This idea can be gen-
eralized to some extent, but just how far is not obvious. See Exercises 8§,6,

4

(.

Example 8 Random mappings. Let M, be a uniformly distributed random
mapping from [n] to [n], meaning that all n” such maps are equally likely. Let
I1,, the partition of [n] induced by the tree components of the usual functional
digraph of M,,. Then II,, is the random partition of [n] associated a random
(V o W) structure on [n] for V' the species of permutations and W the species of
rooted labeled trees. So IT,, has the Gibbs(e!, #*~1) distribution on Pln). Let I,
denote the partition of [n] induced by the connected components of the usual
functional digraph of M,,, so each block of T, is the union of tree components
in IT,, attached to some cycle of M,,. Then fIn is the random partition of [n]
derived from a random (V o W) structure on [n] for V' the species of non-empty
sets and W the species of mappings whose digraphs are connected. So I, has
a Gibbs(1°*, w,) distribution on Pp,; where w; is the number of mappings on []
whose digraphs are connected. Classify by the number ¢ of cyclic points of the
mapping on [j], and use (102), to see that

7 .
wj = Z(c— 1)!<-7)ij—c—1 =P(N; < )5 —1)led ~ (- 1)led as j = oo

e
(103)
where N; is a Poisson(j) variable. This example is further developed in Lecture

8.1.

c=1

Exercises

1. (Compound Poisson) Stam [347]. Let A;, Aq,... denote the successive
jumps of a non-negative integer valued compound Poisson process (X (t),t > 0)
with jump intensities A;,j = 1,2,..., with A := Zj A; € (0,00), and let N(2)
be the number of jumps of X in [0,¢]. The A; are independent and identically
distributed with distribution P(A; = j) = A;/A, independent of N (t), hence

P(X(1) = n|N(t) = k) = AE* /K
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where (Af*) is the k-fold convolution of the sequence (A,) with itself, with the
convention A%* = 1(n = 0),so for allt >0 and n =0,1,2,...

Cae e ke e
PIX(t)=n]=e > Ak ke
k=0

I B, (t*, ws) for w; := jlA;. (104)

Moreover for each t > 0 and each n = 1,2, ..,
(A1, .., Ang)) given X (t) =n (105)

has the exchangeable Gibbs distribution on compositions of n defined by (97)
for vy = 1 and w; = ¢j!A;. Let N;(t) be the number of i < N(¢) such that
A; = j. Then the N;(t) are independent Poisson variables with means A;t.
The random partition of n derived from the random composition (105) of n is
identical to

(Nj(t),1<j<n)given > jN;(t) =n, (106)

7j=1

and the distribution of (N;(¢),1 < j < n) remains the same with conditioning
on 2?21 N;(t) = n instead of Z;’il JN;(t) = n.

2. (Distribution of the number of components) For a Gibbs(1*,w,) par-
tition of [n],

Bnk(ws) _ n! (w(§))”

P([M,| = k) = Bn(w,) k€7 B, (w,)

]P)gyw.(sk = n) (107)
for 1 < k < n, where P¢ 4, governs S, as the sum of k independent variables
X, with the power series distribution (87), assuming that £ > 0 is such that
w(€) < oo, and the complete Bell polynomial B, (1%, ws) := > p_; Bnx(w,) is
determined via the exponential formula (58). Deduce from (107) the formula
(84]

B ) = e [ w0 (108

T B (10, w,) [ n! '

Kolchin [214, §1.6] and other authors [265], [84] have exploited the representa-
tion (107) to deduce asymptotic normality of |TT,,| for large n, under appropriate
assumptions on (w;), from the asymptotic normality of the P ,,, asymptotic
distribution of Sg for large k& and well chosen &, which is typically determined
by a local limit theorem. See also [26] for similar results obtained by other
techniques.

3. (Normal approximation for combinatorial squences: Harper’s method)
(i) (Lévy) Let (ag,a1,...an) be a sequence of nonnegative real numbers, with
generating polynomial A(z) := Y_;_;axz*, z € C, such that A(1) > 0. Show
that A has only real zeros if and only if there exist independent Bernoulli
trials X1, Xo,..., X, with P(X; =1) = p; € (0,1], 1 < ¢ < n, such that
P(X:1+Xo+ -+ X, =k) = ap/A(1), YO < k£ < n. Then the roots «a; of
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A are related to the p; by a; = —(1 — p;)/p;. See (ii) (Harper, [160]) Let

{ank};_, be a sequence of nonnegative real numbers suppose that H,(z) :=
ZZ:() anykzk,z € C with H,(1) > 0 has only real roots, say an; = —(1 —
Pn,i)/Pn,i- Suppose K, is a random variable with distribution
P,(k) =P (K, =k)=ani/Ha(l) (0<k<n).
Then %
2n = B d N(0,1) if and only if o, — oo,
On

where pi, == E(K,) = Y1 pni, and 02 := Var (K,) = > i pni(l — pni).
See [300] and papers cited there for numerous applications. Two basic examples
are provided by the next two exercises.

4. (Number of cycles of a uniform random permutation) Let a, ; =
B,k ((¢ —1)!) be the Stirling numbers of first kind, note that from equation
(60)
Hy(z)=z2(z+1)(z+2)---(z+n-1)
. Deduce that if K, be number of cycles from a uniformly chosen permutation
of [n] then E(K,) —logn = O(1), Var (K,) ~ logn, and hence
K, —logn 4

NET — N(0,1).

5. (Number of blocks of a uniform random partition) Let a, x = B, & (1°)
be the Stirling numbers of second kind. Let K,, be the number of blocks of a
uniformly chosen partition of [n].

(a) Show that B,11£(1%) = Bp k—1(1*) + k Bp 1 (1*).
(b) Using (a) deduce that

e Hpy1(z) = z% (e Hy(2)) .

(c) Apply induction to show that for all n > 1, H, has only real zeros.

(d) Use the recursion in (a) again to show

B,
pn = E[K,] = B:l —1, and
B By’
2 - n+2 n+1
= Var (K,) = — _1,
o, ar (Kp) B, < B, )

where B, := H,(1) = B,(1*,1°) is the nth Bell number.

(e) Apply (i) to get
I/n - HMn
Bn 7 Hn d N(0,1).

On

(Hint : Use Exercise 1 to show o, — o)
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Gibbs fragmentations [294]

6. (Problem: existence of Gibbs fragmentations) For given w,, describe
the set of n for which such a fragmentation process exists. In particular, which
w, does such a process exist for all n? Even the following particular case for
w; = (j — 1)! does not seem easy to resolve:

7. (Problem: cyclic fragmentations) Does there exist for each n a P,-
valued fragmentation process (II, x,1 < k < n) such that II, x is distributed
like the partition generated by cycles of a uniform random permutation of [n]
conditioned to have k cycles?

8. Show that for w, = 1°, for all sufficiently large n there does not exist
a Gibbs(w,) fragmentation process of [n]. [Hint: II,j; must have the same
distribution as the partition generated by n independent random variables with
uniform distribution on [k], given that all k values appear].

9. (Problem) For exactly which n does there exist a Gibbs(1*) fragmentation
process of [n]? What is the least such n?

Notes and comments

Harper [160] also proved a local limit theorem for such a sequence provided
the central limit theorem holds. Hence both kinds of Stirling numbers admit
local normal approximations. See also Bender [28, 29] and Canfield [69] for
more general analytic methods to obtain central and local limit theorems for
combinatorial sequences. Canfield [69] gives nice sufficient conditions for central
and local limit theorems for coefficients of polynomial of binomial type. Similar
results may also be derived using classical analytic techniques like the saddle
point approximation [280] and Hayman’s criterion [164].
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2 Exchangeable random partitions

This section recalls some basic ideas from Kingman’s theory of exchangeable
random partitions [209], as further developed in [11, 293]. See also [298] for a
review of these ideas from another perspective, and further references.

2.1 Finite partitions

A random partition II,, of [n] is called ezchangeable if its distribution is invari-
ant under the obvious action on partitions of [n] by the symmetric group of
permutations of [n]. Equivalently, for each partition {Aq, ..., Ax} of [n],

B(, = {4y, Agd) = p(1Aal, ..., | Ag])

for some symmetric function p of compositions (n1, ..., ng) of [n], called the ez-
changeable partition probability function (EPPF) of II,,. For instance, a Gibbs,)(v, , ws)
partition is exchangeable, with EPPF p(ny,..., ng;ve, w,) as displayed in (94).
In most applications, it is the sizes of blocks of an exchangeable random parti-
tion IT,, which are of primary interest. The next three paragraphs present three
different ways to encode these block sizes as a random composition of [n], and
show how the distributions of these encodings are determined by the EPPF p.

Decreasing order Let (Nr}L,p . -~aNr}L,Kn) denote the partition of n induced
by II,,, that 1s the random composition of n defined by the sizes of blocks of
IT,, with blocks in decreasing order of size. Then for each partition of n with
component sizes (n;) in decreasing order,

n!

1 4 _ _
]P)((Nn,b ey Nn,Kn) = (nl, ey nk)) = WP(TLl, ey nk) (109)
where m; = lezl 1(n, = 1) is the number of components of size i in the

given partition of n, and the combinatorial factor is the number of partitions
of [n] corresponding to the given partition of n, as in (54). Let ||, ; denote
the number of blocks of II,, of size j. Due to the bijection between partitions
of n and possible vectors of counts (m;,1 < i < n), the probability in (109),
regarded as a function of (m;,1 < i < n) instead of (n1,...,ng), for (m;) a
vector of non-negative integers subject to . m; = k and ), im; = n, equals

P(|I,; = m; for 1 <i < n), (110)

that is the probability that II,, has m; blocks of size ¢ for each 1 < ¢ < n. For
instance, if I1, is a Gibbs,j(vs, w,) partition, this formula simplifies to (98).

Size-biased order of least elements Let (N, 1,..., Nn,Kn) denote the ran-
dom composition of n defined by the sizes of blocks of II,, with blocks in order
of appearance. Then for all compositions (n1,...,ng) of n into k parts,

P((Npt,..., Nog,) = (n1,...,n8)) = (111)

)
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n!
= p(n1,...,ng) (112)
ng(ng +ng-1) - (nk 4o 4 m1) Tz (s = 1)!

where the combinatorial factor is the number of partitions of [n] with the pre-

scribed block sizes in order of appearance [99]. Note that (N, 1,...,Nn k,)

s a size-biased random permutation of (Ni,17 .. .,Ni Kn)’ meaning that given
the decreasing rearrangement, the blocks appear in the random order in which
blocks of these sizes would be discovered in a process of simple random sampling

without replacement.

Exchangeable random order It is often convenient to consider the block
sizes of a random partition of [n] in ezchangeable random order, meaning that

conditionally given II, = {A,..., Ay}, random variables (NS%, ..., N;%) are
constructed as Np; = [As(;)| where o is a uniformly distributed random per-

mutation of [k]. Then

eExr er n 1 ¢
]P)((Nnyl,..., n,Kn) =(n1,...,nk)) = (nl N nk)ﬁp(nl’“"nk)' (113)

This is most easily understood by the following inverse construction. Let (N3%, .

be a random composition of n such that given K,, = k the random variables
T

(N;f’xl, ..., N%) are exchangeable, for each 1 < k£ < n. Let a random partition
Il of [n] be constructed as follows: given K, = k and (Vg5 N ) =
(n1,...,ng)) let II,, be obtained by first picking uniformly at random one of
the (nl,.T.L.,nk) ordered partitions (Aj,..., Ag) of [n] with |A;] = n; for each
1 <@ < k, then letting IT,, be the unordered partition {A4,..., Ag}. Then II, is
an exchangeable random partition of [n] whose EPPF is obviously determined

by (113).

Partitions generated by sampling without replacement. TLetTI(z1,...,2

denote the partition of [n] generated by a sequence 1, ..., z,. That is the parti-
tion whose blocks are the equivalence classes for the random equivalence relation
i~jiff e, = 2;. If (Xq,...,X,) is a sequence of exchangeable random vari-
ables, then obviously TI(Xy,...,X,) is an exchangeable random partition of
[n]. Moreover, the most general possible distribution of an exchangeable ran-
dom partition of [n] is is obtained this way. To be more precise, there is the
following basic result. See Figure 3 for a less formal statement.

Proposition 9 [11] Let II,, be an exchangeable random partition of [n], and
let m, = (NT‘lLZ-,l < i < K,) be the corresponding partition of n defined by
the decreasing’rearmngement of block sizes of Il,,. Then the joint law of 11,
and m, is that of TI(X1, ..., X,) and m,, where conditionally given m, the se-
quence (X1, ..., Xp) is defined by simple random sampling without replacement
from a list x1,...,x, with Ni,i values equal to i for each 1 < 1 < K,,, say

(X1,.., Xn) = (To(1), - - -, To(n)) where o is a uniform random permutation of

exr )

n)
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0w o~
ilw|lo|>

11| 2 11| 2
10|56 |7 516(10| 7

Block sizes in decreasing order Block sizes in the size-biased
of the size : (5,3,2,1) order of the least element :
(3,2,5,1)

Figure 3: A random partition IT1; of [11]. To state Proposition 9 less formally:
if IT,, is exchangeable, then given that the block sizes of Il,, in decreasing order
define some pattern of boxes, as above left for n = 11, known as a Ferrer’s
diagram, corresponding to a partition of the integer n, the partition of [n] is
recovered by filling the boxes with numbers sampled from [n] without replace-
ment, then taking the partition generated by the columns of boxes, to get e.g.

I, = {{4,9,3,8,10},{1,11,5},{2,6},{7}} as above.

Exercises

1. Prove Proposition 9.

2. Corresponding to each probability distribution @ on the set P, of partitions
of n, there is a unique distribution of an exchangeable partition of [n] which
induces a partition of n with distribution @: given m,, the partition of n with
distribution @, the partition of [n] has uniform distribution on the set of all
partitions of [n] whose block sizes are consistent with .

3. A function p defined on C, = U;_,Cy  is the EPPF of some exchangeable
random partition II,, of [n] if and only if p is non-negative, symmetric, and

- n 1
Z Z N N yp(nl,...,nk)zl.
E—1 1y« k .

=1(n1,...,nk)€ECn k

4. (Serban Nacu) . Let X; be the indicator of the event that ¢ is the least
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element of some block of an exchangeable random partition II,, of [n]. Show
that the joint law of the (X;,1 < i < n) determines the law of II,,.

5. (Problem) Characterize all possible laws of strings of 0’s and 1’s which can
arise as in the previous exercise. Variants of this problem, with side conditions
on the laws, are easier but still of some interest. Compare Exercise 3.1.4.

2.2 Infinite partitions

For 1 < m < n let II,, , denote the restriction to [m] of II,,, an exchangeable
random partition of [n]. Then II,, , is an exchangeable random partition of [m]
with some EPPF p, : C,, = [0, 1]. So for each partition {A1,..., Ax} of [m]

Py ={A41,..., Ax}) = pa(|41], .. ., |Ak])

where the definition of the EPPF of II,,, that is p, : €, — [0, 1], is extended
recursively to Cp, for m = n — 1,n— 2,...,1 using the addition rule of proba-
bility. Thus the function p = p,, satisfies the following addition rule: for each
composition (ny,...,nx) of m < n

k
p(n1, ..., ng) :Zp(...,nj—i—1,...)+p(n1,...,nk,1) (114)

j=1

where (...,n;+1,...) is derived from (n4, ..., ng) by substituting n; + 1 for n;.
For instance,

1=p(1)=p(2) +p(1,1) (115)

and

p(2) =p(3) +p(2,1); p(1,1)=p(1,2)+p(2,1)+p(1,1,1) (116)

where p(1,2) = p(2, 1) by symmetry of the EPPF.

Consistency Call a sequence of exchangeable random partitions (II,,) consis-
tent wn distribution if I, has the same distribution as II,,, , for every m < n.
Equivalently, there is a symmetric function p defined on the set of all integer
compositions (an infinite FPPF) such that p(1) = 1, the addition rule (114)
holds for all integer compositions (n1,...,ng), and the restriction of p to C,
is the EPPF of II,. Such (II,) can then be constructed so that II,, = I, »
almost surely for every m < n, in which case the sequence of random partitions
M := (I1,) is called an infinite exchangeable random partition, and regarded
in an obvious way as a random element of the set Py of partitions of N, the
set of all positive integers [209, 11, 293], equipped with the o-field generated by
the restriction maps from Py to P, for all n. One motivation for the study
of exchangeable partitions of N is that if II,, is any sequence of exchangeable
partitions of [n] for n = 1,2,... which has a limit in distribution in the sense

that I1,, i) Il,, o for each m as n — oo, then the sequence of limit partitions
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(I 00, m =1,2,...) is evidently consistent in distribution, hence constructible
as an exchangeable partition of N. This notion of weak convergence of random
partitions is further developed in Section 2.4.

Partitions generated by random sampling Let (X,) be an infinite ex-
changeable sequence of real random variables. According to de Finetti’s theo-
rem, (X,) is obtained by sampling from some random probability distribution
F'. That is to say there is a random probability distribution F' on the line, such
that conditionally given F' the X; are i.i.d. according to F'. To be more explicit,
if

i=1

is the empirical distribution of the first n values of the sequence, then by combi-
nation of de Finetti’s theorem [104, p. 269] and the Glivenko-Cantelli theorem
[104, p. 59]

F(z) = lim F,(z) uniformly in z almost surely. (117)

Let T be the exchangeable random partition of N generated by (X, ), meaning
that the restriction II,, of Tl to [n] is the partition generated by (X71,..., Xy),
as defined above Proposition 9. Clearly, the distribution of Ty, := (II,) is
determined by the distribution of (Pii,z' > 1), where PZ»l is the magnitude of the
ith largest atom of F'. Note that 1 — 3", PZ»i is the magnitude of the continuous
component of F'; which might be strictly positive, and that almost surely each
i such that X; is not an atom of F' contributes a singleton component {i} to
IIo. To summarize this setup, say Il is generated by sampling from a random
distribution with ranked atoms (Pii,z' > 1). According to the following theorem,
every infinite exchangeable partition has the same distribution as one generated
this way. This is the infinite analog of Proposition 9, according to which every
finite exchangeable random partition can be generated by a process of random
sampling without replacement from some random population.

Theorem 10 (Kingman’s representation [207, 209]) Let Ty, := (II,,) be an
exchangeable random partition of N, and let (N‘L

n,1)

i > 1) be the decreasing
rearrangement of block sizes of I1,,, with Nii =0 of I, has fewer than i blocks.

Then Ni,i/” has an almost sure limat PZ»i as n — oo for each i. Moreover the

conditional distribution of Ilo, given (Pii,z' > 1) is the same as if o were
generated by random sampling from a random distribution with ranked atoms

Proof. (due to Aldous [11]) Without loss of generality, it can be supposed
that on the same proability space as Il,, there is an independent sequence of
1.1.d. uniform [0, 1] variables U;. Let X; = U; if i falls in the jth class of Il to
appear. Then (X;,7=1,2,...) is exchangeable, and hence Tl is generated by
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random sampling from F' which is the uniform almost sure limit of

AU
Fu(u) ==Y I(X; <u)=)_ 51 (Ui < w)

n 00
1
n .

i=1 i=1

for some II,-dependent rearrangement Un,z’ of the U;. By the almost sure uni-
formity (117) of convergence of F,, to F, the size Niyi/n of the ith largest atom
of F, has almost sure limit PZ»i which is the size of the ith largest atom of F'. O

Theorem 10 sets up a bijection (Kingman’s correspondence) between prob-
ability distributions for an infinite exchangeable random partition, as specified
by an infinite EPPF, and probability distributions of (Pl-i) on the set

77[%71] ={(p1,p2,.-.) :p1 >p2>--->0and Zpi <1} (118)

i=1

of ranked sub-probability distributions on N. As a general notation, for z > 0,
P, will denote the set of real partitions of x, that is decreasing sequences with
sum z, and for an interval I, P := UyerPs.

Note that the set of all infinite EPPF’s p : U3, C,, — [0, 1], with the topology
of pointwise convergence, is compact.

Theorem 11 (Continuity of Kingman’s correspondence [206, §5], [208, p. 45])
Pointwise convergence of EPPF’s is equivalent to weak convergence of finite
dimensional distributions of the corresponding ranked frequencies.

A similar result holds for the frequencies of blocks in order of appearance. See
Theorem 24. Assuming for simplicity that I1, has proper frequencies, meaning
that >, PZ»i = 1 a.s., Kingman’s correspondence can be made more explicit as
follows. Let (P;) denote any rearrangement of the ranked frequencies (Pl-i)7
which can even be a random rearrangement. Then

p(ni,....ne) = > EJ[PM (119)

(d1,--00k)  1=1

where (j1,...,Jx) ranges over all permutations of k positive integers. This is
easily seen from Kingman’s representation for (P;) = (Pl-i). The formula holds
also for any rearrangement of these frequencies, because the right side is the
expectation of a function of (P, Ps,...) which is invariant under finite or infinite
permutations of its arguments. In particular (P;) could be the sequence (E) of
limit frequencies of classes of (TI,,) in order of appearance, which is a size-biased
random permutation of (PZ»‘L). A much simpler formula in this case is described

later in Theorem 24.
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Exercises

The first two exercises recall some forms of Polya’s urn scheme [128, VII.4],
which allow explicit sequential constructions of exchangeable sequences and ran-
dom partitions. See [251],[298] for more in this vein.

1. (Beta-binomial) Fix a,b > 0. Let S, := Xy +- -+ X,,, where the X; have
values 0 or 1. Check that

a+ S,

P(Xn+1:1|X1,...,Xn):m

(120)

for all n > 0 if and only if the X; are exchangeable and the almost sure limit of
Sy /n has the beta(a, b) distribution.

2. (Dirichlet-multinomial) Fix ay,...,amym > 0. Let (X,,n = 1,2,...) be a
process with values in {1,...,m}. If for each n > 0, given (X1,..., X,) with n;
values equal to ¢ for each 1 <7 < m, where ny + .-+ ny = n,

a; + Ny
ar+ -+ am+n

Xn4+1 = ¢ with probability

then (X,) is exchangeable with asymptotic frequencies m; with the Dirichlet(aq, .. ., am)
distribution (50), and conversely.

3. (Sampling from exchangeable frequencies) Let p(ny,...,ng) be the
EPPF corresponding to some sequence of random ranked frequencies (Pli, ., P
with >0, PZ-i = 1 for some m < oco. Let (Py,..., Py) be the exchangeable
sequence with 7" P; = 1 obtained by putting these ranked frequencies in
exchangeable random order. Then

p(ni,...,ng) = (m)p E

k
G
i=1
4. (Coupon Collecting) If P = 1/m for 1 < i < m then

k
p(n1,...,ng) = (Mm)gy/m" where n := an (121)

i=1

5. (Sampling from exchangeable Dirichlet frequencies) [371] If (Py, ..., Py)
has the symmetric Dirichlet distribution (50) with parameters a1 = -+ = ay, =
K > 0, then
k ~
Hi:l(h)nzT. (122)

p(TL1, R nk) = (m)k‘l‘ (mh)nT

Note that the coupon collectors partition (121) is recovered in the limit as
K — 00.
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6. (The Blackwell-MacQueen urn scheme) [55]. Fix § > 0. Let (X,,) with

values in [0, 1] be governed by the following prediction rule: n > 0,

OAC) + i WX € )
f+n

where A(+) is Lebesgue measure on [0, 1]. Then (X, ) is exchangeable, distributed
as a sample from a Dirichlet(#) process Fp as in (49).

P(Xpp1 €-1X1,..., X)) = (123)

7. (The Ewens sampling formula) [122, 25, 121] As m — oo and &k = 0
with msx — 6, the EPPF in (122) converges to the EPPF

91«
pop(ni,...,ng) = —— || (n; — 1)! (124)
(6)nt E
Such a partition is generated by X, ..., X, governed by the Blackwell-McQueen
urn scheme (123). The corresponding partition of n has distribution

n! 6" 1

P([Mp); = m;, 1 <i<n)= (6) HiMzm»'
ntl i=1 v

n

(125)

for (m;) asin (110). The corresponding ranked frequencies are the ranked jumps
of the Dirichlet(f) process. The frequencies in order of appearance are described
in Theorem 25.

8.* (Continuity of Kingman’s correspondence) Prove Theorem 11.

Notes and comments

The theory of exchangeable random partitions described here, following [11]
and [293], is essentially equivalent to Kingman’s theories of partition structures
[206, 207] and of ezchangeable random equivalence relations [209]. The theory is
simplified by describing the consistent sequence of distributions of partitions of
[n] by its EPPF, rather than by the corresponding sequence of distributions of
integer partitions, which is what Kingman called a partition structure. Gnedin
[147] presents a parallel theory of composition structures, whose extreme points
are represented by open subsets of [0, 1]. See also [98], [167] for similar studies
involving random orders.

2.8 Structural distributions

Let (Pi)~be a random discrete probability distribution with size-biased permu-
tation (P;). So in particular P; = P, (1) where

P(o(1)=i| P, Ps,..) =P (i=1,2,..).

It follows that for an arbitrary non-negative measurable function f, there is the
formula

w3 () %P) -/ By 20

=FE Zf(ﬁj) =E
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where & denotes the distribution of Py on (0, 1]. Following Engen [111], call & the
structural distribution associated with a random discrete distribution whose size-
biased permutation is (faj) Formula (126) shows that the structural distribution
v encodes much information about the entire sequence of random frequencies.
Taking f in (126) to be the indicator of a subset B of (0,1], formula (126)
shows that the point process with a point at each P; € (0, 1] has mean intensity
measure p~1o(dp). If (P;) = (Pii) is in decreasing order, for x > % there can be
at most one PZ»i > x, so the structural distribution 7 determines the distribution

of PiL = max; P; on (%, 1] via the formula

P(P} > 2)=v(z,1]= /( ; plo(dp) (x> 1) (127)

Typically, formulas for IP(Pli > z) get progressively more complicated on the
intervals (%, %], (%, %], -+ See e.g. [286, 317]. Note that by (119) for £ = 1 and
n; =n and (126)

P(n)ZEZ PP=EP ' =pn—-1) (n=12--) (128)

where p(q) is the qth moment of the distribution o of Py on (0,1]. From (115),
(116), and (128) the following values of the EPPF of an infinite exchangeable
random partition Il,, are also determined by the first two moments of the
structural distribution of P;, the frequency of the class of IT., containing 1:

p(1,1) = 1= (1) p(2,1) = p(1) = u(2); p(1,1,1) = 1 - 3u(1) +2u(2). (129)

So the distribution of Tl3 on partitions of [3] is determined by the first two
moments of P;. However the distribution of II,, is not determined for all n by
the structural distribution (Exercise 4).

Exercises

1. (Improper frequencies) Show how to modify the results of this section to
be valid also for exchangeable random partitions of the positive integers with
improper frequencies. Show formula (119) is false in the improper case. Find
the patch for that formula, which is not pretty.

2. (Mean number of blocks) Engen [111]. For an infinite exchangeable par-
tition (IT,,) with P; the frequency of the block containing 1,

E(|M ) = Elka (P1)] (130)
where ky, (v) := (1 — (1 — v)")/v is a polynomial of degree n — 1.

3. (Proper frequencies) [298] For an infinite exchangeable partition (II,)
with frequencies P;, the frequencies are proper, meaning ) . P; = 1 almost
surely, iff ]P’(]Bl > 0) = 1, and also iff |IT,|/n — 0 almost surely.
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4. (The structural distribution does not determine the distribution
of the infinite partition) Provide an appropriate example.

5. (Problem: characterization of structural distributions) What is a
necessary and sufficient condition for a probability distribution F on [0, 1] to be
a structural distribution? For some necessary and some sufficient conditions see

[314].

2.4 Convergence

There are many natural combinatorial constructions of exchangeable random
partitions II,, of [r] which are not consistent in distribution as n varies, so not
immediately associated with an infinite exchangeable partition I1,,. However,
it 1s often the case that a sequence of combinatorially defined exchangeable
partitions (IT,) converges in distribution as n — oo meaning that

Iy s 4, I, oo for each fixed m as n — oo (131)

where I, , is the restriction to [m] of II,, and (I, oo,m = 1,2...) is some
sequence of limit random partitions. Let p,(ni,...,n;) denote the EPPF of
I1,,, defined as a function of compositions (n1,...,ng) of m for every m < n,
as discussed in Section 2.1. Then (131) means that for all integer compositions
(Ry,...,ng)

pn(n1,...,nk) = p(n1, ..., ng) as n = oo (132)
for some limit function p. It i1s easily seen any such limit p must be an infinite
EPPF, meaning that the sequence of random partitions I, oo in (131) can
be constructed consistently to make an infinite exchangeable random partition
I := (Omeo,m = 1,2,...) whose EPPF is p. Let (ﬁl) and (Pii) denote the
class frequencies of Il,, in order of appearance, and ranked order respectively.
And let (N, ;,i> 1) and (NT‘LL ;» > 1) denote the sizes of blocks of II,,, in order
of appearance and ranked order respectively, with padding by zeros to make
infinite sequences. It follows from the continuity of Kingman’s correspondence,
Proposition 9, and the obvious coupling between sampling with and without
replacement for a sample of fixed size as the population size tends to co, that
this notion (131) - (132) of convergence in distribution of TI,, to Tl is further
equivalent to

(NY/n)iz1 L (PHis: (133)

K3

meaning weak convergence of finite dimensional distributions, and similarly
equivalent to

(Nai/n)is1 2 (Py)ist (134)
in the same sense. Let (U;) be a sequence of independent and identically dis-

tributed uniform (0,1) variables independent of the TI,. Another equivalent
condition is that for each fixed u € [0, 1]

(o]

S Wi/ )1 (U; < u) 5 F(u) (135)

i=1
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for some distribution of F'(u) on [0, 1]. According to Kallenberg’s theory of pro-
cesses with exchangeable increments [189], a limit process (F(u),0 < u < 1) can
then be constructed as an increasing right-continuous process with exchangeable
increments, with F(0) = 0 and F(1) = 1 a.s., and the convergence (135) then
holds jointly as u varies, and in the sense of convergence in distribution on the
Skorohod space D[0, 1]. To be more explicit,

F(u) :im(Ui <)+ (1— 32, P)u (136)

where the U; with uniform distribution on [0, 1] are independent of the P;, and
cither P, = P, as in (iii) or P; = Pii as in (iv). The limit partition T, can
then be generated by sampling from any random distribution such as F' whose

ranked atoms are distributed like (Pl-i).

2.5 Limits of Gibbs partitions

As an immediate consequence of (96) the decreasing arrangement of relative
sizes of blocks of a Gibbs,)(v,, w,) partition II,,, say

(Ny 1/, N /) (137)
has the same distribution as the decreasing sequence of order statistics of
(X1/n,..., XK /n) given Sg/n =1

where the X; have distribution (87) and K is independent of the X; with distri-
bution (88), for arbitrary £ > 0 with v(w(§)) < oco. Since the distribution of a
Gibbs,1(ve, w,) partition depends only on the v; and w; for 1 < j < n, in this
representation for fixed n the condition v(w(€)) < oo can always be arranged
by setting v; = w; = 0 for j > n. It is well known that if X, ;,..., X 5, is
for each n a sequence of independent and identically distributed variables of
some non-random length k,, with &k, — co as n — oo, then under appropriate

conditions
kn (o)

S X ST =30}
i=1 i=1

where Jli > J2i > ... > 0 are the points of a Poisson point process on (0, o)
with intensity measure A(dz), for some Lévy measure A on (0, c0) with

U()) = /000(1 — e M) A(dz) < 0 (138)

for all A > 0. Then
A(z,00) = lim k,P(Xp1 > 2)

n— 00
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for all continuity points  of A, and the Laplace transform of 7" is given by the
Lévy-Khintchine formula

E(eT) = exp(~¥(A)).

It 1s also known that if such a sum Zf:"l Xn,i has T as its limit in distribution

as n — 0o, then the convergence in distribution of Zfznl Xn,i to T holds jointly
with convergence in distribution of the k largest order statistics of the X, ;,1 <

t < kp, to the k largest points Jli, cey Jli of the Poisson process.

It is therefore to be anticipated that if a sequence of Gibbsp,j(vs, ws) parti-
tions converges as n — oo to some infinite partition I, where either v, = vEn)
Or Wy = wEn) might be allowed to depend on n, and vEn) 1s chosen to ensure
that the distribution of the number of components K, of II,, grows to co in
a deterministic manner, say K,/k, — s > 0 for some normalizing constants
ks, then the distribution of ranked frequencies (P-i) of II,, obtained from the

convergence of finite-dimensional distributions
(N} i /n)is1 5 (PHist with Ku/ky — s (139)
should be representable as

(Piz1 £ () izt | T = 1) (140)
for the ranked points J;L’Z- of a Poisson process with intensity sA, with 3, Jii =
Ts, such as the jumpsof (T,,,0 < u < s), where (T, u > 0) is a subordinator with
no drift and Lévy measure A. Then for vEn) chosen so that K, /k, converged in
distribution to S for some strictly positive random variable S, the limit law of
(Pii) in (139) should be

/OO P((J};) €T = 1)P(S € ds). (141)

To make rigorous sense of this, it is first necessary to give a rigorous meaning to
the law of (J;Lyi) given T; = 1, for instance by showing that for fixed s the law

of (sz) given T; = ¢ can be constructed to be weakly continuous in ¢. Second,
to jusfify weak convergence of conditional probability distributions it necessary
to establish an appropriate local limit theorem.

This program has been carried out in two cases of combinatorial significance.
One case, treated in detail in [26], covers the class of logarithmic combinatorial
assemblies:

Theorem 12 [159, 26] Let wy = (w;) be a sequence of weights with w; ~

0( — 1)y as j — oo for some 8 > 0 and y > 0. Let T1,, be a Gibbs[n](11£n), W)
partition, either for UEH) = 1°*, or more generally for any array of weights vﬁn)
such that |II,|/logn converges in probability to 8 as n — oo. Then I, con-
verges in distribution to Tls, as n — oo, where Il is a (0, 6)-partition with
EPPF (124), whose Poisson-Dirichlet(0,0) frequencies are the ranked jumps of

a gamma process (T, 0 < u < f) given Ty = 1.
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Sketch of proof. The case when vﬁn) = 1* can be read from the work of [26],
where it is shown that in this case |II,|/logn converges in probability to 6 as

n — 00. The extension to more general vEn) is quite straightforward. ad

Two cases of Theorem 12 of special interest, discussed further in following
lectures, are

o II, generated by the cycles of a uniform random permutation of [n], when
w;=(G-Dhy=10=1;

o II, generated by the basins of a uniform random mapping of [n], with w;
as in (103), with w; = (j — 1)! f:_ol iy =re0=1.

See [26] for many more examples. Note that mixtures over 8 of (0, §) partitions
could arise by suitable choice of v{™ so that ITL,|/logn had a non-degenerate
limit distribution, but this phenomenon does not seem to arise naturally in
combinatorial examples.

Another case, treated by Pavlov [282, 283, 284], and Aldous-Pitman [5] cov-
ers a large number of examples involving random forests, where the limit involves
the stable subordinator of index % A more general result, where the limit par-
tition is derived from a stable subordinator of index « for a € (0,1), can be
formulated as follows:

Theorem 13 Let w, = (w;) be a sequence of weights with exponential gener-
ating function w(&) := Z;‘;l Elwj/j! such that w(€) = 1 for some & > 0. Let
(pj,j = 1,2,...) be the probability distribution defined by p; = &lw;/j! for &
with w(§) = 1, and suppose that

i» S s oo (142)
j_ipﬂ T(l-a)

for some a € (0,1). Let II,, be a Gibbsy, (UEH),w.) partition, for any array of
weights vﬁn) such that |I1,,|/n® converges in probability to s asn — co. ThenTl,
converges n distribution to Iy, as n — oo, where My, has ranked frequencies

distributed like the
ranked jumps of (Ty,0 < u < es) giwen Tes = 1, (143)

where (Ty,u > 0) is the stable subordinator of inder o with Eexp(—AT,) =
exp(—uA®).

Sketch of proof. This was argued in some detail in [5] for the particular
weight sequence w; = 471, corresponding to blocks with an internal structure
specified by a rooted labeled tree. Then € = ¢!, o = %, and the limiting par-
tition can also be described in terms of the lengths of excursions of a Brownian
motion or Brownian bridge, as discussed in Section 4.4. The proof of the result
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stated above follows the same lines, appealing to the well known criterion for
convergence to a stable law, and the local limit theorem of Ibragimov-Linnik

[171]. 0

The limiting partition [T, appearing in Theorem 13 is called later an («a|es)
partition. It will be seen in the next two lectures that mixtures of these distri-
butions, obtained by randomizing s for fixed «, arise naturally in a number of
different ways.

Exercises

1. (Problem: Characterizing all weak limits of Gibbs partitions) Intu-
itively, the above discussion suggests that the only possible weak limits of Gibbs
partitions are partitions whose ranked frequencies are mixtures over s of the law
of ranked jumps of some subordinator (73,0 < u < s) given T, = 1, allowing
also the possibility of conditioning on the number of jumps in the compound
Poisson case. Show that if the conditioning is well defined by some regularity
of the distribution of 7§ for all s, then such a partition can be achieved as a
limit of Gibbs partitions, allowing both v, and w, to depend on n. But due
the difficulty in giving meaning to the conditioning when 7, does not have a
density, it is not clear how to formulate a rigorous result. Can that be done?
Does it make any difference whether or not w, is allowed to depend on n?

2.6 Coalescents

This Section is a brief introduction to the theory of coalescent processes. As
shown by Kingman, the theory of exchangeable random partitions and associ-
ated random discrete distributions provides a natural mathematical framework
for the analysis of such processes. The first paragraph introduces Kingman’s
coalescent. Later paragraphs recall how this process has been generalized to
construct various other partition-valued coalescent processes. This Section is
not intended to review all of that work. Rather, the point is to introduce quickly
some general terminology for the discussion of such processes, to be studied in
more detail in later lectures.

Kingman’s coalescent Motivated by applications in the theory of genetic di-
versity, concerning the evolution over time of the distribution of different genetic
types in a large population, Kingman [209] discovered the remarkable Py-valued
process described by the following theorem. As shown by Kingman, this process
arises naturally as a limit process governing lines of descent, viewed backwards
in time, from numerous natural models of population genetics, with the first n
integers labelling the first n individuals sampled from a large population.

Theorem 14 Kingman [209] There exists a uniquely distributed Py-valued pro-
cess (Tl (¢),t > 0), called Kingman’s coalescent, with the following properties:
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o T1.(0) is the partition of N into singletons;

o for each n the restriction (I, (¢),t > 0) of (Il (t),t > 0) to [n] is a
Markov chain with cadlag paths with following transition rates: from state
I = {A1,..., Ax} € Pn] , the only possible transitions are to one of the
(g) partitions I1; ; obtained by merging blocks A; and A; to form A; UA;,
and leaving all other blocks unchanged, for some 1 <1 < j <k, with

Il - 1I; ; at rate 1 (144)

Proof. This follows easily from the consistency of the descriptions for different
n, and Kolmogorov’s extension theorem. Or see Exercise 1. |

If (TTe (¢),% > 0) is Kingman’s coalescent, then it is easily shown that T (¢)
is an exchangeable random partition of N for each ¢ > 0, with proper frequencies
for each ¢ > 0, which may be described as follows. Let D; := |l (¢)]. The
process (Dy,t > 0) is the homogeneous Markovian death process with state
space N whose only transitions are n — n — 1 at rate (g), with initial condition
D(04) = oo. This process can be constructed in an obvious way from its
sequence of holding times ¢, in state n > 2, where ZZOZQ €n < 00 a.s.. The
frequencies of Tl (¢), in exchangeable random order, can then be constructed
as the lengths of intervals obtained by cutting [0,1] at D; — 1 independent
points Ui, ...,Up,—1, where Uy,Us, ... is a sequence of independent uniform
[0, 1] variables independent of (D;,¢ > 0). So the conditional EPPF of Tl (¢)
given Dy = m is defined by (122) for k = 1. The unconditional EPPF of T ()
is then obtained by mixing with respect to the distribution of D;, which is known
explicitly [?] but complicated. If Z, denotes the interval partition of [0, 1] into D
intervals, so defined, then Tl () can be constructed as the partition generated
by ~¢, where ¢ ~; j iff V; and V; fall in the same component interval of Z;,
where Vi, Vs, ... is a further independent sequence of independent uniform [0, 1]
variables.

Coalescents defined by a collision kernel One natural generalization of
Kingman’s coalescent, considered already by Marcus [248] and Lushnikov [244],
is to allow the rate of collisions between two blocks to depend on the number
of elements in the blocks. More generally, it is convenient to allow the collision
rate to depend on some other measure of the blocks besides their size.

Let p be a mass distribution on [n], say pu(A) = ) ;4 pi for some p;, and
assume g; > 0 to avoid annoyances. Let K (z,y) be a non-negative symmetric
measurable function of z,y € [0, 1], called a collision rate kernel. Recall that
Prny is the set of partitions of the set [n] and P, the set of partitions of the
integer n.

Definition 15 Call a Pp,j-valued process (IL(t),t > 0) a K-coalescent with mass
distribution p if (TI(¢),¢ > 0) is a continuous time Markov chain, with right-
continuous step function paths, with the following time-homogeneous transition
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rates: from state Il = {A1,..., Ay} € P, the only possible transitions are to

one of the (g) partitions II; ; obtained by merging blocks A; and A; to form
A; U Aj, and leaving all other blocks unchanged, for some 1 <i < j < k, with

T — I at rate K (p(A;), u(A;)). (145)
To illustrate, three cases of special interest are
e Kingman’s coalescent with K (z,y) = 1;

o the multiplicative coalescent with K (z,y) = zy, discussed further in Sec-

tion 5.3;
o the additive coalescent with K (z,y) = x + y, discussed further in Section
9.2.
Let Pémte be the set of finite real partitions, meaning decreasing sequences

of non-negative reals (21, zs,...) with only a finite number of non-zero terms.
Then (21, 22, ...) may be called a finite real partition of ), z;. Let X () be the
sequence of ranked g-masses of blocks of II(t). If (II(Z),# > 0) is a Pp,)-valued
K-coalescent with mass distribution p then the corresponding ranked coalescent
(X(t),t > 0), is then a Markov chain with the following transition mechanism,
which depends neither on n nor on the choice of the mass distribution p.

Definition 16 For K a collision kernel as in Definition 15, a Pémte-valued K-
nite) With right-
continuous step function paths governed by the following time-homogeneous

coalescent is a continuous time Markov chain with state-space Pé

transition rates: from state z = (z1,22,...) € Pémte the only possible transi-
tions are to one of the states z®() .= (I?(Z’J), mf(m), ...) derived from z by
picking indices 7 < j with 2; > 0 and z; > 0, and replacing the two terms z;

and z; by a single term z; + z;, and re-ranking, with
z — 2%07) at rate K(z;, z;). (146)

Note that for each n the set P,, of partitions of the integer n may be regarded
as a subset of Pénite' Then for p the counting measure on [n], the ranked coa-
lescent (X (¢),t > 0) provides a natural representation of the process of integer
partitions induced by a Pp,j-valued K-coalescent (II(t),¢ > 0) with mass defined
by counting measure. This model for a coalescing process of set partitions and
associated integer partitions was first studied by Marcus [248]. Lushnikov [244]
showed that for kernels K of the special form K (z,y) = zk(y) + yk(z) for some
function k, and initial state TT(0) that is the partition of [n] into singletons, TI(#)
has a Gibbs distribution with weights w;(t) determined as the solutions of a
system of differential equations.

The advantage of working with a Pp,j-valued coalescent (TI(t),% > 0) is that
this process keeps track of the merger history of which blocks collided with which
over time, with a nice consistent labeling system for all time. In passing to the
ranked coalescent (X (¢),¢ > 0) there is some loss of information in the merger
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history, which makes these processes difficult to handle analytically. But ranked
coalescents allow coalescent processes derived from sets of different sizes to be
readily compared by suitable scaling. Note the special feature of Kingman’s
coalescent that the Pp,j-valued processes can be defined consistently as n varies
to induce a Py-valued coalescent whose ranked frequencies are then governed
by the corresponding ranked-mass coalescent with state-space Pénite, provided
the time parameter ¢ is restricted to ¢ > 0. As shown in the next paragraph,
this construction can be generalized to a larger class of coalescent processes, but
this class does not appear to include K-coalescents for any non-constant K.

Given an arbitrary collision rate kernel K (z,y), subject only to joint sym-
metry and measurability in z and y, the above discussion shows how to define a
Markov process of jump-hold type with state space Pé the set of finite real
partitions. Since Pénite is dense in various spaces of finite or infinite partitions
meaning decreasing sequences (z;), equipped with suitable metrics, it is natural
to expect that under suitable regularity conditions on K it should be possible to
define a nice Markov process with such a state space, by continuous extension
of the coalescent transition mechanism defined on ,P%iLnite' For a general ker-
nel K subject to a Lipshitz condition, such a result was obtained in [120], but
only for restricted spaces of partitions equipped with particular metrics. Par-
ticular results for the multiplicative and additive coalescents will be discussed
in later lectures, as indicated above. See [304, 120] for further background on
Markovian coalescent processes, and [19] for a broader review of stochastic and
deterministic models for coalescent evolutions.

nite’

Consistent Markovian coalescents Consider now a Py-valued coalesent
process, which has the property of Kingman’s coalescent that for each n its
restriction to [n], say (I, (¢),t > 0), is a Markov chain with stationary transition
probabilities. To start with a simple case, suppose that each of these processes
evolves according to the following dynamics:

e when TI,,(¢) has b blocks each k-tuple of blocks of TI,, (¢) is merging to form
a single block at rate Ap

Clearly, the law of such a process is determined by the rates {A x : 2 < k < b}.
Not all collections of rates {Ap x : 2 < k < b} are possible however. For instance,
you cannot have both Az 3 =1 and Ay 2 = 0.

Theorem 17 Such a process exists for all starting partitions of N ff the rates
satisfy the consistency condition

Aok = Aopik T Aop1 ke (2< Kk <D),
wmn which case )
Ab k :/ 721 — )" FA(dx) (147)
0

for some finite A on [0,1]. Then the sequence of coalescents (I1,,(t),t > 0), with
T1,,(0) the partition of [n] into singletons, defines an exchangeable Py-valued
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coalescent (Tl (t),1 > 0), called a A-coalescent. The frequencies of T (t) sum
to one for allt > 0 off

1
/ 7 A(dz) < oo,
0

wn which case these frequencies define a ranked Markovian coalescent with state-
space the set of real partitions of 1.

Sketch of proof. The necessity of the consistency condition is evident by
consideration of the following rates:

{1, {6 = {1, ..k}, {k+ 1}, ... {b} at rate Ay

. b+ 1= {1, ..k b+ 1}, {k+ 1}, ..., {b} at rate Apy1 k41
b+ 1y = {1, ..k}, {k+ 1}, ..., {b+ 1} at rate App1

Sufficiency is clear by the elementary criterion for a function of a Markov chain
to be Markov [?]. The integral representation (147) follows from the consistency
condition by de Finetti’s theorem. a

Examples:
e A=4dp: My = 1(k = 2) (Kingman’s coalescent)

e A=U[0,1]: Ao = Lk;(i_mf;—kﬁ (the Bolthausen-Sznitman coalescent [59]
The second of these processes has the following amazing property: when started
with initial state all singletons, the distribution of ranked frequencies of Tl (¢) is
that of the ranked jumps of a stable(a) subordinator Ts(a), 0 < s < 1 normalized
by Ts(a), for @ = e7t. See [59, 305, 43, 41] for various proofs of this fact, and
more about this remarkable process. The probabilistic meaning of the measure
A is clarified as follows:

Corollary 18 [305] Let 7, ; be the least t such that i and j are in the same
block of Il (t). Given 7;; > 0 and |l (7 j—)| = oo a random variable X; ;
with distribution A(-)/A[0, 1] is obtained as the almost sure relative frequency of
blocks of Il (7; j—) which merge at time 7; ; to form the block containing both
1 and j.

See [305] for the proof, and a more careful statement which applies also to
the case when |l (7 ;—)| < oco. In particular, the corollary applies to the
Bolthausen-Sznitman coalescent, and shows that in this process, each time a
collision occurs, the relative frequency of the blocks which merge to form the
new block is a uniform(0, 1) variable. Note that in this case, and whenever the
number of blocks stays infinite (see Exercise 3), the set of collision times is a.s.
dense in Rq.
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Coagulation operators

Definition 19 For a partition 7 of [n], where n € NU{oo} and [00] := N, write
7= {A1, Ay, ...} to indicate that the blocks of 7 in increasing order of their least
elements are A;, A, ..., with the convention A; = {§ for 7 > |n|. For a partition
7= {A1, As,...} of N and a partition T := {By, Ba, ...} of [n] with n > |x] let
the Il-coagulation of m be the partition of N whose blocks are the non-empty
sets of the form Uj¢p, A; forsome ¢ = 1,2, .. .. For each probability distribution
p on Py, define a Markov kernel p-COAG on Py, the p-coagulation kernel, as
follows: for m € Py let p-coaG(mw, ) be the distribution of the II-coagulation
of m for II with distribution p.

Think of IT as describing a coagulation of singleton subsets into the blocks
Bi, By, .. .. Then the II-coagulation of 7w describes a corresponding coagulation
of blocks of 7.

Let TIZ, be a Py-valued coalescent process with TI7, (0) = 7 for some 7 with
|m| = n € NU {oo}. Then it is easily seen that

7%, (t) = the I, (¢)-coagulation of 7 for ¢t >0 (148)

for some uniquely defined P,,-valued coalescent process II,, with initial state 17,
the partition of [n] into singletons.

Theorem 20 [305, Theorem 6] A coalescent process NI, starting at 7 with
|| = n for some 1 < n < oo is a A-coalescent if and only if TI,, defined by (148)
is distributed as the restriction to [n] of a standard A-coalescent. The semigroup
of the A-coalescent on Py is thus given by

P (M (1) € -) = p-coac(r, -) (149)

where p(-) == ]P’A’lw(l_[oo (t) € -) is the distribution of an exchangeable random
partition of N with the EPPF p(ni,...,ng) which is uniquely determined by
Kolmogorov equations for the finite state chains I, forn=23,...

Unfortunately, it seems possible to describe the EPPF p(ny,. .. n) explictly
only in very special cases, most notably the Kingman and Bolthausen-Sznitman
coalescents. See [305] for further discussion.

Note from Definition 19 that no matter what the distribution p on Py, each
of the kernels K = p-C0AG acts locally on Py, meaning that if II™ denotes a ran-
dom partition of N with distribution K (m, -), then for each n the distribution
of R,II™ depends on 7 only through R, 7. It follows that any Py-valued Markov
process Ilo,, each of whose transition kernels is of the form p-coAG for some
p, 1s such that the P,-valued process R,Il, is a Markov chain. Such a coales-
cent process I, with cadlag paths can therefore be constructed more generally
from a consistent family of Markov chains with more complex transition rules,
allowing not just multiple collisions in which several blocks merge to form one
block, but simultaneous multiple collisions, in which several new blocks might
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be formed, each from the merger of two or more smaller blocks. The description
of all possible semigroups of such coagulation operators is then provided by the
larger class of coalescents with stmultaneous collisions described in the next para-
graph. Note that there is a composition rule for coagulation kernels associated
with exchangeable distributions p; on Py which induces a semigroup operation
on these distributions, or equivalently on S¥: (p1 -COAG)(p2 -COAG) = p3 -COAG
where p3 is determined explicitly by [305, Lemma 34].

Coalescents with simultaneous multiple collisions Following Schweins-
berg [340], consider a coalescent process in which each restriction to a finite
set has the only transitions of the following kind: if the current partition has b
blocks, there may be a (b; k1, ..., kr;s)-collision, which takes b blocks down to
r + s blocks in such a way that

e s blocks contain one of the original blocks,
e other blocks contain kq,...,k, > 2 of the original blocks.

where b = k1 + -- -+ k. + s, and the order of k1, ..., k, is irrelevant.

Definition 21 [340] A coalescent with simultaneous multiple collisions is a Py-
valued process Tlo, = (TTeo (2),% > 0) such that for all n, when TI,, (¢) has b blocks,
each (b; k1, ..., kr;s)-collision is occurring at some fixed rate Ap.g,, ks

As shown in [340], all possible collections of collison rates Ap.k, . k,..s can be
characterized by an integral representation over P[io 1] which is a generalization

of (147), and there are corresponding generalizations of Corollary 18.

Limits of Ancestral Processes These coalescents with simultaneous mul-
tiple collisions can also be characterized as the weak limits obtained from Can-
nings’ model [70] for the evolution of the genetic makeup of a population of
fixed size. In Cannings’ model,

e there are N individuals in each generation;

e there are infinitely many generations, forwards and backwards in time;

(a) (a)

with v) 5, ...,¥y5 n the family sizes in the ath generation backwards in
time;

e distribution of family sizes is the same for all generations;
e all generations are independent;
o the joint distribution of v; n,...,vN N is exchangeable;

Now sample n individuals at random from the Oth generation. Construct a Pr,-
valued Markov chain (II,, v (a))52 such that ¢ and j are in the same block of
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II, v (a) if and only if the ith and jth individuals in the sample have the same
ancestor in the ath generation backwards in time. Let

en = P(two random individuals have the same ancestor in the previous generation).

Then there is the following generalization of Kingman’s derivation of his coales-
cent process from classical genetics models:

Theorem 22 Mohle and Sagitov [338], [261] Suppose that

im PL0N)ky - (v )k,
Nosoo Ntk =7y

(150)

exists for all v > 1, k1,..., kr > 2, and that

lim ey = 0.
N—>oo

Then as N — oo

(I ([t/en]),t > 0) 5 (a0 (1), 1> 0)

where the limit process is the collection of consistent Markovian restrictions to
[n] of some exchangeable Py-valued Markovian coalescent process.

In particular, if
tim _El,n)s]
N—o0 NE[(I/LN)Q]

the limit 1s Kingman’s coalescent, if

=0

Jim N2y Bl(v1,n)a(va,n)2] = 0
the limit if a A-coalescent as in Theorem 17 for some A, and without such as-
sumptions the coalescent is one of Schweinsberg’s coalescents with simultaneous
multiple collisions, whose transition rates can be identified in terms of the limits

(150). See [340] for details.

Exercises

1. (Construction of Kingman’s coalescent from a Poisson process)
[340]. Show how to construct T (¢) explicitly for each ¢ > 0 as a function of
points of a Poisson random measure on a suitable space.

2. (The Ewens sampling formula derived from Kingman’s coalescent )[209]
This construction has well known interpretations in terms of standard models
of population genetics, due to Wright and Fisher, Moran, and Cannings [70],
See [357, 372], and [272] for more recent developments. Fix n. Let the integers
represent individuals located along a horizontal line. Time is vertical. Given a
realization of the restriction of [n] of Kingman’s coalescent, say (IT,,(¢),t > 0),
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starting with the partition into singletons, start by drawing lines of descent
vertically up from each individual, until the first coalescent event at time T}
say. If say {7} merges with {j} to form {i,j}, identify the tips of these two
lines of descent at time 7}, and continue upwards with n — 1 lines, until the
next coalescence, when the tips of two lines are identified, continue upwards
with n — 2 lines, and so on, until the time 7,,_; when the last two lines meet.
This defines a random tree 7 with edge-lengths, whose set of leaves is [n], with
n — 2 internal nodes at levels T; for 1 < 1 < n — 1, each of degree 3, and an
exceptional node at level T;,_; of degree 2. Now let Ny denote a Poisson process
of marks, called mutations along all branches of this treee at rate /2 per unit
length. Define a random partition IT, of [n] to be the partition generated by
the random equivalence relation i ~? j iff there is no mutation on the unique
path in 7 that joins i to j. Then TI? is an exchangeable random partition of
[n], whose distribution is given by the EPPF (124) corresponding to the Ewens
sampling formula (125). Note that the random trees defined by this construc-
tion are consistent in an obvious sense as n varies. The completion of their
union (relative to the metric defined by distance measures along branches) is
a relatively simple kind of continuum random tree, discussed in [15, §4.1] and

[117].

3. (Coming down from infinity) [305, 341] Let (ITex(t),¢ > 0) be a A-
coalescent starting with all singletons. If [T (¢)| = oo for all ¢ > 0, say the
process stays infinite, whereas if |TIo(¢)] < oo for all t > 0, say it comes down
from infinity. Assume A has no atom at one. Then either the A-coalescent
either comes down from infinity almost surely or it stays infinite almost surely.
Let v, be the rate at which the number of blocks is decreasing:

" :é(k- 1) (Z) Mok

Then the A-coalescent comes down from infinity if and only if

(o]
E’yb_l < 00.
b=2

For instance, if A is the beta(a,b) distribution the A-coalescent comes down
from infinity if and only if @ < 1. In particular, for a = b = 1, the Bolthausen-
Sznitman coalescent stays infinite. Whereas, for A = §p, Kingman’s coalescent
comes down.

Notes and comments

This section is based on [120, 305] and [340]. Thanks to Jason Schweinsberg for
his help in summarizing some results of [340].
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2.7 Fragmentations

The operation of time reversal introduces a fundamental duality between a pro-
cess of coalescence and a process of fragmentation. If one is a Markov pro-
cess, then so will be the other. However, that the dual by time-reversal of a
time-homogeneous Markov process will usually not be time-homogeneous. This
complicates considerably the discussion of duality relations between processes
of fragmentation and coagulation. The idea of looking for some kind of duality
by time reversal (or inversion, or some other transformation that reverses the
direction of time) has proved very fruitful, though difficult to formalize as part
of any general theory. It was argued in [305] that the following definition of a
fragmentation operator associated with a probability distribution p on Py 1s dual
in a number of intuitive ways to the Definition 19 of the coagulation operator
associated with p.

Definition 23 For each probability measure p on Py, define a Markov kernel
p-FRAG on Py, the p-fragmentation kernel as follows. Let p-FRAG(m, -) be the
distribution of a random refinement of m whose restriction to the mth block of
7 is the restriction of TI{™) to that block, where the (H(m),m =1,2,...) are
independent random partitions of N with distribution p.

Note the key fact that this definition is local, in the sense discussed below
Defintion 19. So if such kernels are used to make a Markov process, then its
restrictions to [n] will be Markovian for every n. Note also that if a distribution
p on Py is assumed exchangeable, and so is ¢, and (Pii) and (Qj) denote the
ranked frequencies of random partitions governed by p and ¢ respectively, and
r(:) = [ p(dm)q-FRAG(w, ), call it a the distribution of a ¢-fragmentation of
a p-partition, then the ranked frequencies associated with r are the ranked
rearrangement of the collection of frequencies

{PIQ}, .05 > 1}

where the (Q;L],j > 1) are a collection of independent copies of (Qj,j > 1) which

are independent of (Pl-i). Thus these fragmentation operators have a natural
action on the space 77[‘%71] of proper or improper ranked frequencies. Some ex-
amples of identities involving such fragmentation kernels and the two-parameter
family of random partitions introduced in the next lecture were pointed out in
[317], [314]. These identities were generalized and related by time-reversal to to
corresponding identities for coagulation kernels in [305]. The general problem
of characterizing semigroups of both coagulation and fragmentation operators
of the form introduced in Definitions 19 and 23 was posed in [305, §3.3]. The
solution in the case of coagulation operators is provided by Schweinsberg’s coa-
lescents with simultaneous multiple colisions, discussed in the previous section,
while the solution for fragmentation operators is provided by the theory of of
homogeneous fragmentation processes due to Bertoin [39]. In some loose sense,
this theory is dual to the theory of [305, 340] for coagulation semigroups. The
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method of analysis, using consistent rates to define Lévy measures on partitions,
and the Poisson constructions for both kinds of processes are very similar The
fragmentation theory introduces the concept of erosion of mass in the fragmen-
tation process, which is roughly dual to the way in which there can be creation
of mass in the coalescent theory, as in [Proposition 26][305]. Bertoin went on
to characterize a more general class of self-similar fragmentation processes in
[40]. See also [132],[37]. Tt is not clear however what if any class of coalescent
processes should be regarded as the dual of these fragmentation processes.

Exercises

1. (Problem: Fragmentation processes associated with the Ewens
family) The construction of Exercise 2.6.2 can easily be arranged to construct
a family of random partitions (HZ, 6 > 0) which is refining or fragmenting as 6
increases from 0 to oo, such that M2 = {[n]} and M’ for § > 0 has the Ewens
EPPF (124) with parameter 6. Call a process with these properties a Fwens
fragmentation process. Compare with the Brownian fragmentation process de-
rived similarly in Lecture 7 from the tree in a Brownian excursion. Show that
when regarded for fixed n, the Ewens fragmentation process just defined is not
Markovian. What if the state is regarded as an infinite partition? Does this
Ewens fragmentation process admit any nice autonomous description? Is there
any natural construction of a Markovian Ewens fragmentation process? Clearly,
there exists some such process, by copying the inhomogeneous transition rates
of a non-Markovian one. But it does not seem easy to compute these rates
for any construction. Another construction, probably also non-Markovian and
different to the above, can be made as follows, by application of Theorem 25.
Let N? be a Poisson process on [0, 1] with intensity fz~!dz, arranged to be
intensifying as # increases. Let Z? be the interval partition generated by cutting
[0,1] at the points of N?, and construct IT%, simultaneously for all §, by uniform
random sampling from [0, 1] partitioned by Z¢. Note that if (T1%,6 > 0) is a
Ewens fragmentation process, then for each fixed § > 0, TI? given |TI%| = k has
the microcanonical Gibbs distribution on Pp,) with weights w; = (j —1)!. If one
could construct the fragmentation so this was true also for the fixed random
time @ replaced by a random times ©; > @5 > --- so that [[I®%| = k, then
one would have constructed a Gibbs ((e — 1)!) fragmentation on [n]. But it is
not obvious that this is possible. Mekjian and others [75, 235, 256, 257] have
considered Ewens partitions with parameter # as a model for fragmentation
phenomena, with the intuitive notion that increasing # corresponds to further
fragmentation, but it does not seem obvious how to construct a nice Markovian
fragmentation process corresponding to this idea.

Notes and comments

See [305], [120] and papers of Bertoin cited above, for treatment of various
technical problems related to regularity of different partition-valued Markov
processes, transformations between different representations, and so on.
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3 Sequential constructions

3.1 The Chinese restaurant process

Consistent random permutations Consider a sequence of random permu-
tations (¢,,n = 1,2,--) such that

(i) oy is a uniformly distributed random permutation of [n] for each n;

(i1) for each n, if o, is written as a product of cycles, then ¢, _1 is derived
from o, by deletion of element n from its cycle.

For example, using standard cycle notation for permutations,

if o5 = (134)(25) then o4 = (134)(2);
if o5 = (134)(2)(5) then o4 = (134)(2).

It is easily seen that these requirements determine a unique distribution for
the sequence (o,), which can be described as follows.

An initially empty restaurant has an unlimited number of circular tables
numbered 1,2, ..., each capable of seating an unlimited number of customers.
Customers numbered 1,2,--- arrive one by one and are seated at the tables
according to the following:

Simple random seating plan. Person 1 sits at table 1. For n > 1 suppose
that n customers have already entered the restaurant, and are seated in some
arrangement, with at least one customer at each of the tables j for 1 < j < k
say, where k is the number of tables occupied by the first n customers to arrive.
Let customer n + 1 choose with equal probability to sit at any of the following
n + 1 places: to the left of customer j for some 1 < j < n, or alone at table
k + 1. Define oy, : [n] = [n] as follows. If after n customers have entered the
restaurant, customers 7 and j are seated at the same table, with i to the left of
J, then o, (i) = j, and if customer 7 is seated alone at some table then o, (7) = ¢.
The sequence (oy,) then has features (i) and (ii) above by a simple induction.

Many asymptotic properties of uniform random permutations can be read
immediately from this construction. For instance, the number of occupied tables
after n customers have been seated is

K,=#{cyclesof o} =Z1+---+ Z, (151)

where the 7; is the indicator of the event that the jth customer is seated at a
new table. By construction, the Z; are independent Bernoulli(1/j) variables,
hence,
K, K, —1
™1 almost surely, n T 0BT d B (152)
logn (logn)t/2

where Bj is a standard Gaussian variable. This and other results about random
permutations now recalled are well known.

Let TI,, be the partition of [n] generated by the cycles of o,,. Then II, is
an exchangeable random partition of [r], and the II,, are consistent as n varies.
Thus the sequence Ty, := (TI,,) is an exchangeable random partition of N. Let
X, be the indicator of the event that the (n + 1)th customer sits at table 1.



3.1 The Chinese restaurant process 59

Then the sequence (X,),>1 is an exchangeable sequence which evolves by the
dynamics (120) of Polya’s urn scheme witha = b = 1. Hence S,, := X1+ -+ X,
has uniform distribution on {0, 1, ... n}, corresponding to the fact that the size
Sp+1 of the cycle of ¢, 41 containing 1 has uniform distribution on {1,...,n+1}.
The asymptotic frequency of the class of II, containing 1 is the almost sure
limit of S,, /n, which evidently has uniform distribution on [0, 1].

The limit frequencies Let (N, 1,..., N, k,) denote the sizes of blocks of
II,,, in order of least elements. In terms of the restaurant construction, Ny, ; is
the number of customers seated at table i after n customers have been seated.
From above, N, 1 has uniform distribution on [n]. Similarly, given N, 1 = ny <
n, Ny 2 has uniform distribution on [n — n1]. And so on. Asymptotic behavior
of this discrete uniform stick-breaking scheme is quite obvious: as n — oo, the
relative frequencies (N, ;/n,i > 1) of the sizes of cycles of o, which are in a
size-biased random order, converge in distribution to the continuous uniform
stick-breaking sequence

(P, Ps,..) = (U1, U Uy, U1TU5Us, ...)

where the U; are independent uniform[0, 1] variables, and U := 1 — U. By an
obvious combinatorial argument, the corresponding infinite EPPF, which gives
for each n the probability that II,, equals any particular partition of [n] with n;
elements in the ith cycle, for some arbitrary ordering of cycles, is

k
1
poi(n, . ome) = — JJ(mi = 1)L
Ti=1

Compare with (124) to see that this continuous uniform stick-breaking sequence
(Py, Py, ...) has the same distribution as a size-biased permutation of the jumps
of the Dirichlet process with exchangeable increments

(Ty/T1,0<u<1).

where (T'y,u > 0) is a gamma subordinator. Since the limiting ranked frequen-
cies PZ»i are recovered from the (P;) by ranking, it follows that if 'y is a standard

exponential variable independent of the limiting ranked frequencies PZ?L defined
by the Chinese restaurant construction of random permutations, then

[P >T P >TPE > >0

are the ranked points of a Poisson point process whose intensity measure 2~ le~%dz

on (0,00) is the Lévy measure of the Gamma process. This allows calculation
of moments of the Pii. For instance

F#{i Flpii >y}l = FEi(y) = / e %de.
y
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So as n = oo the asymptotic mean fraction of elements in the longest cycle of
a uniform random permutation of [n] is

E(P}) = (T, )E(P}) = BT, PY) = /00(1 — e P1@)ydy.

This technique of random scaling to simplify the probabilistic structure of ran-
dom partitions has many other applications. The distribution of (Pli, Pzi, ),
constructed here from random permutations using the Chinese restaurant pro-
cess, 18 known as the Poisson-Dirichlet distribution with parameter 1. Some ref-
erences: Shepp-Lloyd [344], Vershik-Shmidt [366, 367], Flajolet-Odlyzko [134],
Arratia-Barbour-Tavaré [26].

Generalization The Chinese restaurant construction is easily generalized to
allow construction of a sequence of random permutations o, of [n] such that
the associated sequence of random partitions I, := (II,) is the most general
possible exchangeable random partition of integers. In terms of the Chinese
restaurant, the permutation o, is thought of as a configuration of n customers
seated at K, tables, where K, is the number of cycles of o,. For present
purposes, we only care about the random partition II, induced by the cycles
of o,,. So for 1 < i < K,, the statement “customer n + 1 is placed at occupied
table 77 means II,, 41 is the partition of [n + 1] whose restriction to [n] is II,,
with n + 1 belonging to the ith class of II,,. Similarly “customer n + 1 is placed
at a new table” means II,, 11 is the partition of [n + 1] whose restriction to [n]
is TT,,, with {n 4+ 1} a singleton block. Given an infinite EPPF p(nq,...,ng), a
corresponding exchangeable random partition of N (IT,,) can thus be constructed
as follows.

Random seating plan for an exchangeable partition The first customer
is seated at the first table, that is TIy = {1}. For n > 1, given the partition
IT,,, regarded as a placement of the first n customers at tables of the Chinese
restaurant, with k& occupied tables, the next customer n + 1 is

e placed at occupied table j with probability p(...,n;+1,...)/p(n1, ..., nk)

e placed at new table with probability p(ni,...,ng, 1)/p(n1,..., ng)

In particular, it is clear that a simple product form for the EPPF will cor-
respond to a simple prescription of these conditional probabilities. But before
discussing specific examples, it is worth making some more general observa-
tions. Any sequential seating plan for the Chinese restaurant, corresponding to
a prediction rule for the conditional distribution of II,, 41 given Il for each n,
whereby n + 1 is either assigned to one of the existing blocks of II,, or declared
to be a singleton block of T, 41, can be used to construct a random partition
Me := (M,) of the positive integers. Most seating plans will fail to produce a
II that is exchangeable. But it is instructive to experiment with simple plans
to see which ones do generate exchangeable partitions. Recall that a necessary
condition for Il to be exchangeable is that for each 7 there exists an almost
sure limiting frequency P; of customers seated at table i. More formally, this
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is the limit frequency of the ith block of I, when blocks are put in order of
appearance. The simplest way to achieve this is to consider the following:

Random seating plan for a partially exchangeable partition Let
(P;,i=1,2,...) be an arbitrary sequence of random variables with P; > 0 and
>; P; < 1. Given the entire sequence (P;,i =1,2,...) let the first customer be
seated at the first table, and for n > 1, given the partition II,,, regarded as a
placement of the first n customers at tables of the Chinese restaurant, with &
occupied tables, let the next customer n + 1 be

¢ placed at occupied table j with probability P;

e placed at new table with probability 1 — Zle P

O O O
O
© O O
O
O~—0 O~ O
15t table 20d taple £th table new table

Figure 4: Chinese Restaurant Process with random seating plan

It follows immediately from this construction that the probability that II,
is any particular partition of [r] into sets of sizes (n1,...,ng), in order of least
elements, is p(n1,...,ng) as in formula (153) below. Such a random partition
of [n] may be called partially exchangeable [293]. The partition II,, will be
exchangeable iff p(n1, ..., ng) is a symmetric function of (ny, ..., ng). Butin any
case, 1t is clear by construction and the law of large numbers, that for each i the
limiting frequency of customers seated at table 7 will exist and equal P;. These
considerations lead to the following variation of Kingman’s representation:

Theorem 24 [293] Let (P;) be a sequence of random variables with P; > 0 and
> P <1, and let

2

k k—1 3
pni, ) =E| [P T [1-D0 P (153)
i=1 7j=1

i=1

(i) There exists an exchangeable random partition Tlo, of N whose block fre-
quencies in order of appearance (P;) are distributed like (P;) if and only if the
function p(ny,...,ny) defined by (153) is a symmetric function of (n1,...,ng)

for each k.
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(ii) If Moy is such an exchangeable random partition of N with block frequencies

(Pi), then the EPPF of Uy, is p(ni,...,ng) defined by (153) for P; = P;, and
the conditional law of Tl given (P;) is governed by the random seating plan for
a partially exchangeable partition, described above.

Proof. The “if” part of (i) is read from the previous argument. See [293] for
the “only if” part of (i). Granted that, part (ii) follows easily. O

Exercises

1. Let Tlo := (I,) be an infinite exchangable (or partially exchangeable)
random partition, with N, ; the number of elements of [n] in the ith class of
Il to appear, and ﬁl = lim,, Nn,l/n The conditional distribution of Nn,1 -1
given ﬁl is binomial(n — 1, ]31), hence the distribution of Nn,l is determined by
that of ﬁl via

P(Npi=j) = (’;: DE[?{*Q —P)"I (1<j<n).

Use a similar description of the law of (Nn,h e Nn,k) given (ﬁ’l, e pk) to
show that for each n, k > 1 the law of (N, 1, -+, Ny &) is determined by that of
(Pla"'apk)~

Notes and comments

Basic references on random permutations are Feller [125] and Goncharov [150]
from the 1940’s. There is a nice bijection between the structure of records and
cycles. For this and more see papers by Ignatov [174, 173], Rényi, Goldie [149],
Stam [349, 348]. The fact that the cycle structure of uniform random permu-
tations is consistent as n varies was pointed out by Greenwood [153]. Lester
Dubins and I devised the Chinese Restaurant Process in the early 1980°s as
a way of constructing consistent random permutations and random partitions.
The notion first appears in print in [11, (11.19)]. See also Joyce and Tavaré [187],
and Arratia, Barbour and Tavaré [26] for many further results and references.
The Chinese Restaurant Process and associated computations with random par-
titions have found applications in Bayesian statistics [94, 240, 177, 179].

3.2 The two-parameter model

The EPPF’s calculated in (122) and (124) suggest the following seating plan for
the Chinese restaurant construction of a random partition of N, say I, := (II,,),
starting from IT; := {1}.

(a, ) seating plan [293] Given at stage n there are k occupied tables, with
n; customers at the ith table, let the next customer be
e placed at occupied table ¢ with probability (n; — a)/(n + 0),
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e placed at new table with probability (6 + ka)/(n + 6).

O O O
el ) @

O n+06
O~—0 O~ O

15t table 2nd ¢able Eth table new table

Figure 5: Chinese Restaurant Process with («, ) seating plan

To satisfy the rules of probability it is necessary to suppose that

e cither o = —k <0 and § = mk for somem =1,2,... (154)
e or 0<a<land @ > —ca.

Case (o = —k < 0 and # = mk, for some m=1,2,...) Compare the («,6)
seating plan with Exercise 2.2.5 to see that in this case Il is distributed as if
by sampling from a symmetric Dirichlet distribution with m parameters equal
to . This can also be seen by comparison of (122) and (155) below.

Case (o« = 0 and 6 > 0) This is the weak limit of the previous case as Kk = 0
and mk — 6. By consideration of this weak limit, or by the Blackwell-MacQueen
urn scheme (123), such a Il is distributed as if by sampling from a Dirichlet
process with parameter . The case § = 1 corresponds to Il,, generated by
the cycles of a consistent sequence of uniform random permutations, as in the
previous section.

(Case (0 < @ < 1 and 6 > —a) This case turns out to be related to the
stable subordinator of index «, as will be explained in detail in Section 4.2.

Theorem 25 [293] For each pair of parameters (o, 0) subject to the constraints
above, the Chinese restaurant with the («, 0) seating plan generates an exchange-
able random partition llo, of N. The corresponding EPPF 1s

k
(0 + a)k—11a[[i (1 = @)nimin
Pao(n1,...,nk) = = : 155
o ( ) (0_1'1)71—11‘1 ( )
The corresponding limit frequencies of classes, in size-biased order of least ele-
ments, can be represented as

(P1, Py, ..) = (Wi, WiWsy, WiWoWs, ...) (156)
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where the W; are independent, W; has beta(l — o, 0 + i) distribution, and
Wi =1- VVZ

Proof. By construction, the probability that II, is any particular partition
of [n] is found to depend only on the sizes (ni,...,ng) of the blocks of the
partition, as indicated by pa g(n1,...,ng). Since this function is symmetric in
(n1,...,ng), each TI, is exchangeable, and by construction the sequence (II,)
is consistent. So IT := (TI,) is an exchangeable random partition of N. The
joint law of the W; can be identified either using formula 153, or by repeated
application of the beta-binomial relation described around (120). a

Definition 26 GEM and PD distributions For (a, ) subject to the con-
straints (154), call the distribution of size-biased frequencies (pj), defined by
the residual allocation model (156), the Griffiths- Engen-McCloskey distribution
with parameters (a, §), abbreviated GEM(«, #). Call the corresponding distri-
bution on P[i(n] of ranked frequencies (P»i) of an (a,f) partition, obtained by

K3

ranking (P;) with GEM(a, ) distribution, the Poisson-Dirichlet distribution
with parameters («, f), abbreviated PD(a, ).

Explicit but complicated formulae are known for the joint density of the first
J coordinates of a PD(a,f) distributed sequence [317], but these formulae are
of somewhat limited use.

Characterizations of the 2-parameter scheme. It is easily seen that the
closure of the two-parameter family of models consists of the original two-
parameter family subject to the constraints on (e, ) discussed above, plus the
following models:

o the degenerate case with II, the partition of singletons for all n; this arises
for @« = 1 and as the weak limit of («,#) partitions as § — oo for any fixed
a€[0,1).

o for each m = 1,2,... the coupon collectors partition (121) defined by m
frequencies identically equal to 1/m; this is the weak limit of (—«, mk) partitions
as kK — oo for fixed m.

Theorem 27 [200, 297] Suppose that an exchangeable random partition I, of
N has block frequencies Pj (in order of least elements) such that 0 < P <1
almost surely, and either

(i) The restriction I, of Il to [n] is a Gibbsy,](ve,ws) partition, meaning its
EPPF is of the product form (94), for some pair of non-negative sequences v,
and w,, or

(i1) the frequencies ]5j are of the product form (156) for some independent ran-
dom vartables W;.

Then the distribution of T, is either that determined by (o, ) model for some
(a,8), or that of a coupon collectors partition, for some m = 2,3, ...
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Proof. Assuming (i), the form of the EPPF is forced by elementary arguments
using addition rules of an EPPF [200]. Assuming (ii), the form of the distribu-
tion of the W; is forced by symmetry of the EPPF and the formula (153). See
[297] for details. O

See also Zabell [383] for closely related characterizations by the simple form
of the prediction rule for (II,,) defined by the (a,6) seating plan. Note in
particular the following consequence of the previous theorem:

Corollary 28 McCloskey [253]. An ezchangeable random partition Ty of N
has block frequencies Pj (in order of least elements) of the product form (156)
for some sequence of independent and identically distributed random wvariables
W; with 0 < W; < 1 if and only if the common distribution of the W; is beta(1, 0)
for some § > 0, in which case T is generated by the (0,6) model.

This result of McCloskey is easily transformed into another characterization
of the (0, 0) model due to Kingman. The following formulation is adapted from
Aldous [11, p. 89].

Corollary 29 Let Ily, be an exchangeable random partition of the N. The
distribution of T, is governed by the (0,0) model iff for each pair of integers i
and j, the probability that i and j belong to same component of Mo, is 1/(1 +
), and Tl has the following further property: for each pair of non-empty
disjoint finite sets of positive integers A and B, the event that A is a block of
the restriction of llo, to AU B s independent of the restriction of Il to B.

Proof. That the (0,6) model satisfies the independence condition is evident
from the form of its EPPF. Conversely, in terms of the general Chinese restau-
rant construction, the exchangeability of Il plus the independence condition
means that the process of seating customers at tables 2,3, ... watched only
when customers are placed at one of these tables, can be regarded in an obvious
way as a copy of the original process of seating customers at tables 1,2,3, ..
and that this copy of the original process is independent of the sequence of
times at which customers are seated at table 1. It follows that if the block
frequencies (16]) of Tl are represented in the product form (156), then the
asymptotic frequency P, = W, of customers arriving at table 1 is independent
of the sequence (W3, Ws,...) governing the relative frequencies of arrivals at

tables 2,3, ..., and that (W, Ws,...) 4 (W1, Ws,...). So the W; are i.i.d. and
the conclusion follows from Corollary 28. a
Problem 30 Suppose an exchangeable o, has block frequencies (PZ) such that
0 < P <1 and Py is independent of the sequence (P;/(1 — Py),i > 2). Is T
necessarily some («, 0) partition?
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Exercises

1. (Deletion of Classes.) Given a random partition Il of N with infinitely
many classes, for each £ = 0,1, - let TIox (k) be the partition of N derived from
I by deletion of the first & classes. That is, first let TI. (k) be the restriction
of [, to Hy :=N— Gy —--- Gy where G4, - -Gy are the first k classes of I,
in order of appearance, then derive Tloo (k) on N from II/_ (k) by renumbering
the points of Hg in increasing order. The following are equivalent:

(1) for each k, T (k) is independent of the frequencies (ﬁl, e f’k) of the
first k classes of Il

(i) e is an (a, #)-partition for some 0 < @ < 1 and # > —a, in which case
M (k) is an (o, @ + ka)-partition.

2.* (Urn scheme for a (3, 0) partition) Let an urn initially contain two balls
of different colors. Draw 1 is a simple draw from the urn with replacement.
Thereafter, balls are drawn from the urn, with replacement of the ball drawn,
and addition of two more balls as follows. If the ball drawn is of a color never
drawn before, it is replaced together with two additional balls of two distinct
new colors, different to the colors of balls already in the urn. Whereas if the
ball drawn is of a color that has been drawn before, it is replaced together with
two balls of its own color. Let II,, be the partition of [n] generated by the colors

of the first n draws from the urn. Then Tl := (TI,) is a (%, 0) partition.

3.* (Number of blocks) Let P, g govern Il = (II,) as an (a, §) partition,
for some (a, #) subject to the constraints (154). Let K,, be the number of blocks

of I1,,:
K, = |Hn| = Z |HTL|] = ZXZ
j=1 i=1

where |II,|; is the number of blocks of II, of size j, and X; is the indicator
of the event that i is the least element of some block of T, (customer ¢ sits
at an unoccupied table). Under P, 4 the sequence (K, )n>1 is a Markov chain,

starting at K; = 1, with increments in {0, 1}, and inhomogeneous transition
probabilities
k 6
Poo(Knr = k+1|Kp,... Ko = k) = :Jjg (157)
Poo(Kngs = k| K1, .., Kn = k) = k2 (158)
a0\ BAntl = N1y, A = - In+9
The distribution of K, is given by
4 —1ta
By o(Kp = k) = OF Dkita g gy (159)

(0 +1)n-11

where

Saln,k) = By (1 - a)ery) = 5517 (160)
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as in (66) is a generalized Stirling number of the first kind. The expected value
of K,, is

- 0
n — if @ =0
Fo6 (Kn) :Z% = ;69“_1 ) (161)
= i-1t B S A

al+1)p_14  «

4. (Serban Nacu)(Independent indicators of new blocks) Compare with
Exercises 2.1.4 and 4.3.6. Let X; be the indicator of the event that ¢ is the least
element of some block of an exchangeable random partition II,, of [n]. Show
that the X;,1 < i < n are independent if and only if TI,, is a (0, 6) partition
of [n] for some 6 € [0, o0], with the obvious definition by continuity in the two
endpoint cases.

5. (Equilibrium of a coagulation/fragmentation chain)[252, 95, 307] Let
77% be the space of real partitions of 1. Define a Markov kernel Q on 77% as fol-
lows. For p = (p;) € 73%, let I and J be independent and identically distributed
according to p. If I = J then replace pr by two parts prU and pr(1 — U) where
U is uniform(0, 1) independent of I,.J, and rerank, but if 7 # J then replace
the two parts pr and p; by a single part pr 4+ py, and rerank.

e (a) Show that PD(0, 1) is a Q-invariant measure.

(b) (Hard [95]) Show PD(0, 1) is the unique @-invariant measure.

)
(c) Modify the transition rule so that PD(0, #) is an invariant measure.
)

(d)(Open problem) Show that PD(0,#) is the unique invariant measure
for the modified rule.

(d)(Open problem) Define some kind of coagulation/fragmentation kernel
for which PD(a, #) is an invariant measure.

6. The probabilities g4 g(n, k) := Pa (K, = k) can be computed recursively
from the forwards equations

— ka (k- e

n
N Lk)= — g a(n, k wolnk—1), 1<k<n. (162
oa(n+ 1K) = =g (k) + g pln k= 1), 1<k < ne (162)

and the boundary cases

(1—a)n_1T (9+a)n—11‘a
a,6(n, 1) = =" qap(n,n) = Z———— 163
1 79(’”' ) (6 + l)n—lT 1 79(’”' n) (9 + 1)n—1To¢ ( )
For instance, the distribution of K3 is as shown in the following table:
k | 1 | 2 | 3

P o(Ks = ) (T-a)2-a) | 3(I-a)(+a) | (+a)(@+20a)
@3 G+1)0+2) | G+1)(0+2) 6+ 1)(6+ 2)
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7. Take 6 = 0 and use (159) to obtain a recursion for the S, (n, k):

Sa(n,1) = (1 —a)p_14; Sa(n,n)=1 (164)
Sa(n+1,k) = (n—*ka)Sa(n, k) + Sa(n, k—1). (165)

Toscano [359] used this recursion as his primary definition of these numbers,
and obtained from it the formula

1
Saln k) = 1A () (166)
. =0
where AX is the kth iterate of the operator Ag ¢, defined by Ag, = %

(Jordan[lé5]) and for a # 0,

(et = 1S a)
Check Toscano’s formula
k
Saln k) = ﬁ Y-y C") [—kaln  (a#0). (167)

8. [111] Deduce the formula (161) for E, o (K,) by integration from the general
formula (130) and the beta(l — a, f + «) distribution of the frequency Py of the
first block.

9.* Forreal p > 0let [k], :=T'(k+p)/T(k) so that [k], = (k)ps for p=1,2,....
For 0 < a < 1, and all real p > 0,

Eo,o[Knlp = (168)

3.3 Asymptotics
The asymptotic properties of («,f) partitions of [n] for large n depend on

whether « is negative, 0, or positive.

Case (@ < 0). Then § = —ma for some positive integer m, and K, = m for
all sufficiently large n almost surely.

Case (@ = 0). Immediately from the prediction rule, for a (0, #) partition, the
X; are independent Bernoulli(6/(6 + i — 1) variables. Hence [217]

lim =10, as.Pgg for every 6 > 0. (169)
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Moreover, it follows easily from Lindeberg’s theorem that the Pg ¢ distribution
of (Kn — flogn)/+/flogn converges to standard normal as n — co. By consid-
eration of the Ewens sampling formula (125), for each fixed &

Poso: (Maljod >1) % (Zoj,j>1) (170)

meaning that under Py g which governs I, as a (0, #) partition, the finite dimen-
sional distributions of the counts (|II,|;,j > 1) converge without normalization
to those of (Zp ;,j > 1), where the Zj ; are independent Poisson variables with
parameters 6/j. See [26] for various generalizations and refinements of these
results.

Case (0 < a < 1). Now K, is a sum of dependent indicators X;. Tt is easily
seen from (161) and Stirling’s formula that

reg+1)
al (0 + «) "

Ea,p Kn ~
which indicates the right normalization for a limit law.
Theorem 31 For 0 < a <1, § > —a, under Py 9 as n — oo,
K,/n* — S, almost surely (171)

and in pth mean for every p > 0, for a strictly positive random variable S, , with
continuous density

Pog(S €ds) = ga,n(s) = ngga(a‘)ds (s >0) (172)

where go = ga o is the Mittag-Leffler density (46) of the P, o distribution of S,
whose pth moment is T(p+ 1)/T(pa+1).

Proof. Fix a € (0,1). Let F, be the field of events generated by II,. The
formula (155) for the EPPF of II,, under PP, 4 gives the likelihood ratio

d]:P)OC o /n
Mocﬂ,n = ! = f 79(1& )
dPoo|z Ji,6(n)

(173)

where for 0 > —a

O+ a)k—1a F(%‘f‘k) N k?/
@era  TE+ TR " TET D

o

fayg(k’) =

as k — oo. (174)

Thus, for each 8 > —a,

(Magn,Fo;n=1,2,..) is a positive P, o-martingale.
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By the martingale convergence theorem M, g, has a limit M, g almost surely
(Po,0). Theorem 25 shows that IIo, has infinitely many blocks with strictly
positive frequencies, and hence K, — oo almost surely (Po,0) so (174) gives

Moc,@,n ~

nOC

re+1) (K, \"*
F((T—i—l——l)) (x_) almost surely (P a,0) (175)

Moreover the ratio of the two sides in (175) is bounded away from 0 and oo.
Using (168), it follows that for each § > —a, the martingale M, ¢ , is bounded
in L,, hence convergent in L? (P, o) for every p > 1. Hence

T 0 Mays = 1. (176)
But also by (175),

T +1) (Kn)g/“ L0 +1)
VT (2n S My = ——2-80/" 177
TE+1) \ne * = T@/a+) ()
P, o almost surely and in L?, where S, := My o/T (o + 1). Now (176) and (177)

yield the moments of the P, o distribution of S. Since these are the moments
(45) of the Mittag-Leffler distribution, the conclusions of the theorem in case
# = 0 are evident. The corresponding results for § > 0 follow immediately from
the results for § = 0, due to the following corollary of the above argument. O

Corollary 32 Let P, denote the distribution on Py of an (a,8)-partition

M = (II,). For each 0 < a < 1, § > —a, the laws Pog and P, are

mutually absolutely continuous, with density
dPoe T(0+1)
dPao  T(£+1)

Si (178)

where S, is the almost sure limit of |Il,|/n® under P, g for every 8 > —a.

Proof. This is read from the previous argument, by martingale theory. a

In view of Corollary 32, the limit random variable
Se = lim |TT,,|/n® (179)
n
plays a key role in describing asymptotic properties of an (a, #) partition T.

Definition 33 Say that an exchangeable partition of N I, has a-diversity S,
if the limit (179) exists and is strictly positive and finite almost surely.

This limit random variable S, can be characterized in a number of different
ways, by virtue of the following lemma. According to Theorem 31 and Corollary
32, the conditions of the Lemma apply to an (a,#) partition T, for each
a € (0,1), and each § > —a.

Write A; ~ B; if A;/B; — 1 almost surely as ¢ — oo.
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Lemma 34 Fiz o € (0,1), An exchangeable random partition T, has a-
diversity S,, defined as an almost sure limit (179), which is strictly positive

and finite, 1f and only if
P~ ZimY% g5 i 5 0 (180)

for some random variable 7 with 0 < Z < co. In that case S, and Z determine
each other by
77 =T —«a)S,

and the following conditions also hold:
(1= P)~al(1—a)/Zk' "V as k — o (181)
where P; is the frequency of the ith block of Il wn order of appearance;
II.|; ~ pa,jSan® for each j =1,2,... (182)

where |I1,|; ts the number of blocks of II,, of size j, and (paj,j = 1,2,..) is
the discrete probability distribution defined by

Paj = (=1)"7" (a) _ ol = alin (183)

J J!

and
IL,|; /I, = pa; for every j =1,2,... a.s. as n — oo. (184)

Sketch of proof. By Kingman’s representation, it suffices to establish the
Lemma for Il,, with deterministic frequencies Pii. Most of the claims in this
case can be read from the work of Karlin [193] and Rouault [337], results in
the theory of regular variation [54], and large deviation estimates for sums of
bounded independent random variables obtained by Poissonization [136]. o

The discrete probability distribution (183) arises in other ways related to
the positive stable law of index a. See the exercises below, and [299, 303] for
further references.

The ranked frequencies

Theorem 35 Case (o = 0) [131] A random sequence (Pii) has PD(0,6) distri-
bution iff for Ty a gamma(#) variable independent of(PZ-‘L), the sequence (FgPZ-‘L)
is the ranked sequence of points of a Poisson process on (0,00) with intensity
Bz le dz.

Proof. This follows from previous discussion.

Theorem 36 Case (0 < a < 1)
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(i) [288] A random sequence (P}) with > P} =1 has PD(a,0) distribution iff
the lumat
Se := lim il(1 — a)(PH)* (185)

71— 00

ezists almost surely, and the sequence (S;l/aPii) 1s the ranked sequence of points

of a Poisson process on (0, 00) with intensity aT'(1 — o)~ lz=*1dz.

(i) [299] For 6 > —a, and (Pii) the PD(«, ) distributed sequence of ranked
frequencies of an (o, 0)-partition Ty, the limit S, defined by (185) exists and
equals almost surely the a-dwersity of I, that s

So = limy, o0 |, | /0. (186)

(iii) [288] For 6 > —a, the PD(«a,0) distribution is absolutely continuous with
respect to PD(a,0), with density

dPD(e,6) _T(#+1)

dPD(a,0)  T(L£+1)

2
o
]

for Sy as in (185).

Proof. Part (i) follows from results of [288] which are reviewed in the next
section. If a sequence of ranked frequencies admits the limit (185) almost surely
in (0,00), then it can be evaluated as in (186) using the associated random
partition Tls,. This was shown by Karlin [193] for T, with deterministic fre-
quencies, and the general result follows by conditioning on the frequencies. This
gives (ii), and (iii) is just a translation of Corollary 32 via Kingman’s correspon-
dence, using (ii). O

In particular, parts (i) and (ii) imply that if S is the a-diversity of an (a, 0)
partition Ty, then S~/ has the stable(a) law whose Lévy density is aT'(1 —
a)lz=®~ldz. This can also be deduced from Theorem 31, since we know
from (46) that a random variable S has Mittag-Leffler(a) law iff S~/ has this
stable(a) law. Tt must also be possible to establish the Poisson character of
the random set of points {S‘l/an} = {S~'/*P;} by some direct computation
based on the prediction rule for an (a, 0) partition, but T do not know how to

do this.

Exercises

1. [299](Poisson subordination) Fix a € (0,1), and let Z be the closure of
the range of a stable subordinator of index a. Let N be a homogeneous Poisson
point process on R+ and let X; be the number of points of N in the ith interval
component of the complement of Z that contains at least one point of N. Then
the X; are independent and identically distributed with distribution (ps ;) as
in (183). Generalize to a drift-free subordinator that is not stable.
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2. If P, governs independent X7, Xs,... with distribution (183), as in the
previous exercise, then

o (zX) =1—(1-2)~ (187)
Let S, .= X1+ -+ Xg. Then
Po(Sk = n) = [7](1 - (1 - 2)7)* (18)

so the generalized Stirling number S, (n, k) in (159), (160), (166), (167), acquires

another probabilistic meaning as

|
So(n, k) = %a—kpa(sk =n) (189)

and the distribution of K, for an (a, /) partition is represented by the formula

. S (e !
]P)QVQ(IXH = ]{7) =« 1m FPQ(Sk = n) (190)

3.* (A local limit theorem) [303] In the setting of Theorem 31, establish the
local limit theorem

Pog(Kn =k) ~ gas(s)n™ as n — oo with k ~ sn®. (191)

Deduce from (159) and (191) an asymptotic formula for S,(n, k) as n = oo
with k ~ sn®.

4. For 0 <a <1, as n — oo, for each p > 0

TE+p+1)L(H+1)
[(0+pa+ )L +1)

Fa,0 (K7) ~ n® (192)

Notes and comments

Lemma 34 is from unpublished work done jointly with Ben Hansen. There is
much interest in power law behaviour, such as described by Lemma 34, in the
literature of physical processes of fragmentation and coagulation. See [258] and
papers cited there.
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4 Poisson constructions

This section presents some constructions of random partitions, including the
two-parameter family of Section 3.2, based on a Poisson point process of random
lengths. The lengths can be interpreted as the jumps of a subordinator, or as
the lengths of excursions of some Markov process. Section 4.5 provides further
detail about partitions derived from the lengths of excursions of a Brownian
motion.

4.1 Size-biased sampling

Following McCloskey [253], Kingman [205], Engen [111], Perman-Pitman-Yor
[286, 288, 317], consider the ranked random discrete distribution (PY) := (J}/T)
derived from an inhomogeneous Poisson point process of random lengths

> Jp> >0

by normalizing by the total length 7' := Y7, Jii. For each interval 7 it is

assumed that Ny := >~ 1(J} € I) is a Poisson variable with mean A(I), for
some Lévy measure A on (0, 00), and the counts Ny, , - - -, Ny, are independent for
every finite collection of disjoint intervals Iy, - -+, I. The following assumption
will also be made so that various conditional probabilities can be defined easily:
Regularity assumption. The Lévy measure A has a density p(x) and the
distribution of T' is absolutely continuous with density

F(t) == P(T € dt)/dt

which is strictly positive and continuous on (0, 00).
For A > 0 let

6= [ (193

and note that the regularity assumption implies

P(oo—) = /000 p(z)de = oco. (194)

(Otherwise the distribution of T"is compound Poisson with P(7 = 0) = exp(—1(co—) >
0.) Tt is well known that f is uniquely determined by p, either via its Laplace
transform

E(e=*T) = /DO e~ f(x)dr = exp[—¢(N)] (195)

0

or as the unique solution of the integral equation

fWZAP@W—W%v (196)
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which is obtained by differentiation of (195) with respect to A. Let (P;) be a
size-biased permutation of the normalized lengths (P}) := (J#/T) and let (J;) =
(T'P;) be the corresponding size-biased permutation of (J}). Then [253, 288]

IMLeduTeﬁ):MMMj@—Mﬁ; (197)

which can be understood informally as follows. The left side of (197) is the
probability that among the Poisson lengths there is some length in dv near v,
and the sum of the rest of the lengths falls in an interval of length dt near ¢ — v,
and finally that the interval of length about v is the one picked by length-biased
sampling. Formally, (197) is justified by the description of a Poisson process in
terms of its Palm measures [288]. Note that (196) is recovered from (197) be
integrating out v. See also Exercise (1) for another interpretation of (196).
Immediately from (197), there is the following formula for the density of the
structural distribution of Py := jl/T givenT =t: forO<p<lwithp:=1—p

= w1y =t o) L. (198)

P(P,€dp|T =1)
dp

For j =0,1,2,---let
7 oo
Tj::T—Z k= Z k (199)
k=1 k=j+1

be the total length remaining after removal of the first j Poisson lengths Ji, . . ., jj

chosen by length-biased sampling. Note that Ty := T Then a calculation similar
to (197) yields:

Lemma 37 [288, Theorem 2.1] The sequence (TO, T, Ty, .. .) is a Markov chain
with stationary transition probabilities

P (t - tl) f(tl)

dty (200)

where p.(z) == zp(x).

Now
i1
Pp=W; | [(1-Wi) (201)
=1

1=

where 1 — W; = ﬂ/j}_l with ffo = T and the joint law of the j} given T' =1 is

described by Lemma 37. This description of the conditional law of (P;) given
T = t determines corresponding conditional distributions for the associated

P[io 1]—Valued ranked sequence (PZ;) and for an associated exchangeable random

partition Iy, of positive integers. Each of these families of conditional distri-

butions is weakly continuous in ¢. For the size-biased frequencies (P;) this is
clear by inspection of formula (200). For the others it follows by continuity
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of the associations. A formula for the joint density of (Pli, -, PY) for (Pii)
given T =t was obtained by Perman [286] in terms of the joint density p1(Z, z)
of T and JiL. This joint density can be described in terms of p and f as the
solution of an integral equation [286], or as a series of repeated integrals [317].
The EPPF of an exchangeable partition (II,,) of positive integers, whose ranked
frequencies are distributed like (Pz-i) given T' = ¢, is now determined by either
of the previous formulae (119) and (153). But a simpler way to compute this
EPPF is to use the following formula:

Lemma 38 [295] For each particular partition {As, ..., Ax} of [n], and arbi-
trary x; > 0 andt > 0,

P(IL, = {Ay,..., Ap}, J; € day, 1 < i< k,T € dt)

k k
25\ 1Al
- (H p(:pi)d;ri) flt—st)dt ] (7) . (202)
i=1 i=1
Proof. This is derived in much the same way as (197) and (200). O

See [295] and exercises below for various applications of this formula.
Exercises

1. (Size-biasing) [361] For a non-negative random variable X with E(X) < co
let X* denote a random variable with the size-biased distribution of X, that is

P(X* € dz) = 2P(X € da)/E(X).

The distribution of X* arises naturally both as an asymptotic distribution
in renewal theory, and in the theory of infinitely divisible laws. For A > 0

let x(\) := E[e=*X]. Then the Laplace transform of X* is Ee=*X"] =
—px'(A)/E(X) where px’ is the derivative of ¢x. According to the Lévy-
Khintchine representation, the distribution of X is infinitely divisible iff

e [T e
ox (V) +f Alde)

for some ¢ > 0 and some Lévy measure A, that is iff
Ele™ "] = ex(N)ey ()
where Y is a random variable with

P(Y € dy) = (cdo(dy) + yA(dy)) /E(X). (203)

Hence, for a non-negative random variable X with E(X) < oo, the equation

xLx + Y 1s satisfied for some Y independent of X if and only if the law of
X is infinitely divisible, in which case the distribution of Y is given by (203) for ¢
and A the Lévy characteristics of X. See also [26, 320] for further developments.
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2. [295] Derive from (202) a formula for the infinite EPPF associated with
random ranked frequencies (J;/T,i > 1) given T = t. Deduce that the infinite
EPPF associated with random ranked frequencies (ji/T,i > 1) is given by the
(k + 1)-fold integral

- [ e = fv)dv Hf:1 plxi)zide; :
p(nl, ey nk) - /0 /0 (u + Eizlmi)n . (204)

Use b=" = T'(n)~! fooo A"~ 1e=2M ) to recast this as

k

-1 n—=k [e%e]
p(n, ... ) = %/0 AP Ldxe= ) TT o) () (205)
' i=1

where W()) is the Laplace exponent (138) and WU)()\) is the jth derivative of
W(A). Check from (205) that the gamma(f) Lévy density (206) corresponds to
a (0, 6) partition, and the stable(a) Lévy density (42) corresponds to an («,0)
partition.

3. Show that formula (205) and an obvious generalization of (204) give the
infinite EPPF associated with random ranked frequencies (J;/T,i > 1) with-
out any regularity assumption on the Lévy measure besides ¥(A) < oo and
¥ (0o—) = 00.

4. (Problem) What conditions on a function ¥ are necessary for (205) to
define an EPPF? Must ¥ be the Laplace exponent of some infinitely divisible
distribution on (0, 00)?

Notes and comments

This section is based on [288] and [295]. See James [179] for a closely related
approach to partition probabilities associated with sampling from random mea-
sures derived from Poisson processes, and applications to Bayesian inference.

4.2 Poisson representation of the two-parameter model
Case(a = 0) Consider the particular choice of Lévy density
ple) =0z"te " (206)

where 0 > 0 and b > 0. This makes 7' = To/b where (T's,s > 0) is a standard
Gamma process. The formulae of the preceding section confirm that in this case
the W; in (201) are independent beta(1, §) variables, so (JSJ) has the GEM(0, §)
distribution of frequencies of blocks of a (0, §)-partition of positive integers, as
described in Theorem 25. The corresponding distribution of ranked frequencies
(Pii) is Poisson-Dirichlet(0, #), by Definition 26. See [26] for further study of
this distribution, which has numerous applications. Two special properties, each
known to be characteristic of this Lévy density (206) [288], are that

T is independent of the sequence of ranked frequencies (PZ»‘L), (207)
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T is independent of the size-biased frequency P;. (208)

Case(0 < o < 1) Consider next the stable(a) Lévy density p(z) = spq(z) for
some s > 0 where

Q 1
o) = ——— 0 209
o) =t (@20 (200)
In contrast to (207), a feature of this choice of p(z) is that
T is a measurable function of the ranked frequencies (PZ-‘L), (210)
specifically

(s/0(1—a))/®

T= - T
lim; o0 i1/ P;

(211)

This formula holds, by the law of large numbers for the underlying Poisson
process, whenever p(z) ~ spo(z) as x | 0. A special feature of p(x) = spa(z),
shown in [288] to be characteristic of this case, is that

Ty := T(1 — Py) is independent of the size-biased frequency P;. (212)

To see this, and derive the distributions of T and }31, observe from (197)~ that
for general p(z) the joint density of Ty :=T — Jy and Uy :=T1 /T =1— Py is

Fry o, (b w) = ui'ps (%tl) F(t1) (213)

where 41 := 1 — uy and p.(z) := zp(x). For p(z) = spa(z), by scaling there is
no loss of generality in supposing s = 1, when (213) simplifies to

fi, v, (b, w) = Koul ™ a7 fo(t) (214)

for some constant K, where f,(t) is the stable(a) density of 7". This confirms
the independence (212), and shows that

Uy :=1— P; has beta(e, 1 — a) distribution, (215)

T: has density at ¢ proportional to t=*f, (). (216)

In view of the independence of U; and Tl, formula (216), and the homogeneous
Markov property of T T, T, ... provided by Lemma 37, the random variable
U, = Tl/T is independent of (Tl,Tz, ...), and the joint density of Ty and
Uy = T2/T1 at (t1,u1) relative to that of Ty and Uy := Tl/T at (t1,u1), is
some constant times (¢1/u1)”%. Hence Uy, Us and Ty are independent, the

distribution of Us is beta(2«, 1 — ), and
T, has density at ¢ proportional to =2 f, (t). (217)

Continuing like this, it is clear that the U; are indepedendent, with the distri-
bution of U; is beta(ia, 1 — &), and

T; has density at ¢ proportional to t=7*f, (). (218)
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A little more generally, if P, denotes the probability measure governing the
original scheme with 7" distributed according to the stable(«) density, and P, 4
denotes the probability measure which is absolutely continuous with respect to
P, with density C'OéygT_g for some 6 > —a;, then since T' = j“l/Ul we find from
(214) that the joint density of (Tl, Uy) at (t1,u1) under P, g is

-8
. - tq . o —a,—f—
Kou™ a7t f(t1) Cao (—) = KoCopuf** ay 7= f (1)

That is to say, under P, 4 the random variables U; and Tl are independent, U
with beta(a + 6,1 — «) distribution, and Ty distributed like T' under Pogto-
Combine this calculation with the homogeneous Markov property of (7" =
To,fl,fg, ...) under P, 4 for each 6, and set W; = 1 — fi/j}_l to obtain the
following conclusion:

Theorem 39 Let P, govern a Poisson process of lengths with intensity spo ()
for some s > 0 and 0 < a < 1, so the sum T of these lengths has a stable
law of inder o, and let ]3j = jj/T where (j7) s the sequence of lengths in a
length-biased random order. Let P, ¢ denote the probability measure which is
absolutely continuous with respect to P, with density proportional to T=? for

some § > —a. Then under P, g the sequence (P;) admits the representation
j-1
Py =w; [T -wi)
i=1

where the W; are independent and W; has beta(l — a, 0 + i) distribution.

Compare with Theorem 25 to see that if IT,, is the exchangeable random par-
tition obtained by sampling from random frequencies defined by normalizing
the Poisson lengths with sum T, then P, g governs I, as an (a, §) partition.
To complete the proof of Theorem 36, it has to be seen that the a-diversity
lim,, [T, |/n® of such a partition equals T~% almost surely, but this is easily

checked.

4.3 Representation of Infinite Gibbs partitions

Consider again the setup of Corollary 32, with P, ¢ the distribution of an («, )
partition T, of positive integers, for o € (0, 1), and § > —a. Keep in mind that
if # =0 or § = a, then P, ¢ can be interpreted as the distribution of a partition
defined by excursions of a Bessel process or Bessel bridge as the case may be,
and that in either case the a-diversity S, (Tls) is just a multiple of the local
time at zero. According to Corollary 32, the density of P, ¢ with respect to Py o
is function of the a-diversity S, (Il ). Consequently, for each fixed o € (0, 1),
the one-parameter family of laws {P, 9,6 > —a} shares a common conditional
distribution for e, given Sy (Tlss). To be more precise:
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Lemma 40 For each o € (0,1) there exists a unique family of probability laws
{Py5,0 < s < 00} on partitions of positive integers such that

Pos(-) = Pa(-| S = 5) for all § > —a (219)

and s — P, s weakly continuous in s, where S, := lim, |Il,|/n®. Under P,
the frequencies of classes of llo, are distributed like

the jumps of (Ty,0 <u < s) given Ty =1,
or, equivalently, like
the jumps of (Tu/T1,0 < u < 1) given T} = s
where (Ty,,u > 0) is the stable(a) subordinator with
Ele=*T+] = exp(—u\®).

Moreover, P o|(So = s) =1 forall s, and Py,(-) is the weak limit of Py 6(- | K,y =
kn) as n — oo for any sequence ky, with k,/n® — s.

Proof. This is read from Theorem 39, with the last sentence a particular case
of Theorem 13. a

By combining Theorem 31 and Lemma 40, for each a € (0,1) there is the
disintegration

Pao() = / Pos(-)ga,a(s)ds (220)
0
where gq ¢ asin (172) is the probability density of S, under P, . In particular,
the EPPF p, g of an (a, §) partition, displayed in (155), is disintegrated as
poa()= [ putsClgaals)ds (221)
0

where py|s is the EPPF of Il governed by P,,. The form of this EPPF is
made explicit by the following theorem:

Theorem 41 [295] For each a € (0,1) and each s > 0, the EPPF p,), of Il
governed by P, is of the Gibbs form

k
Pags(n, . ...ne) = vp ™ TI(1 = a)n,-14 (222)
i=1
where n =), n; and
vZ’als = aksn/“Ga(n —ka, 5_1/0‘) (223)
where . .
Galg,t) = m/o falt —v)v?  dy (224)

with fo as in (40) the stable (o) density of the P, o distribution of (Sy)~ =,
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Proof. That the EPPF p,|; must be of the Gibbs form

k
vk [J(1 = @)n,—1 (225)
i=1

for some weights v,  depending on a and s can be seen without calculation as
follows. Let Tl := (TI,) be an (a,#) partition, with K, := |II,,|. Immediately
from the prediction rule for construction of the sequence (II,), the random
partition II,, of [n] and the inhomogeneous Markov chain (K, Ky41,...) are
conditionally independent given K,. So for each n < m and each choice of
km € [m], the conditional law of TI,, given K,, = k,, is some mixture over k of
the conditional laws of I, given K,, = k, for 1 < k < n. That is to say, by
(155), T, given K,,, = kp, is an exchangeable partition of [n] with EPPF of the
Gibbs form (225) for all compositions (n1, ..., ng) of n, for some v, ; depending
on m and kp,. According to Lemma 40, the P, distribution of II, is some
weak limit of such laws, and any such limit is evidently of the same form. The
precise formula (223) is deduced from Lemma 38. O

Theorem 42 An exchangeable random partition of positive integers Ilo, with
winfinite number of blocks has an EPPF of the Gibbs form

k
E o
p(ny, -, ng) = cnkawnl wheren =) ;_ n; (226)
i=1
for some positive weights w1 = 1, ws, w3, ... and some c, . if and only of w; =

(1 —a)j4 for all j for some 0 < a < 1. If a = 0 then the distribution of Il is
P Po.gv(db) for some probability distribution v on (0, 00), whereas if 0 < o < 1
0 )

then the distribution of Ty, 15 fooo Py)sy(ds) for some such 7.

Sketch of proof. That the weights w; chosen with w; = 1 are necessarily of the
form w; = (1 —a);4 for some o € [0, 1) can be seen by elementary consideration
of the addition rules of an EPPF, much as in Kerov [200] and Zabell [383]. For
given a, the Gibbs prescription specifies the law of I1,, given K,,, K41, .... The
extreme laws for this specification are then identified using the general theory
of such problems [93], combined with the facts that K, /logn — 6 under Py g
and K,/n* — s under P, for 0 < a < 1. O

Exercises

1. [295] Check that the function defined by (222) satisfies the addition rule for
an EPPF.

2. Let II,, be a Gibbs partition of [n] such that given TI, has k blocks, the
block sizes in random order are distributed like (Xi,..., Xx) given Sy = n,
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with Sg := X7 + - -+ X, for some distribution of X; with

P(X;>z)~ % as ¥ — 0o (227)

so that Spspa1/n 4, Tes as n — oo where (Ty, s > 0) is the stable(a) subordinator
with E(e~*T+) = exp(—sA?) and Lévy density a/T(1—a)z~'~% at z > 0. Then
according to Theorem 13

(IL, given |II,| = [sn®]) % TI(®1e®) (228)

o0
where the frequencies of HE,?J'“) are the jumps of (Ty,0 < u < es) conditioned
on Ty = 1. According to Lemma 40, if II,,, o denotes the restriction to [m] of

the limiting partition ngof | cs), then
I, 00 |/m* — cs almost surely as m — oo. (229)

Let II,,, , be the restriction to [m] of the Gibbs partition II,,. Then (228) and
(229) imply that for each fixed s

(L n|/m® given [II,| = [sn®]) 4 ¢s as m,n — 0o with n(m,s) <n (230)

for some n(m, s) tending to oo as m — oo .

3. (Problem) In the setting of the previous exercise, explain how the dis-
tribution of |IL, »|/m® given |II,| = [sn®]) adjusts itself from being concen-
trated around es for m,n — oo with n(m,s) < n to being concentrated at s as
m,n — oo with m = n.

4. (Problem) In Theorem 42 it is supposed that the exchangeable partition
M = (T1,,) is such that II, is a Gibbs[n](vgn) , w,) for some weight sequence w,

which does not depend on n, and vEn) which does. What ifI1,, is a Gibbs,) (vE"), wEn))
partition, allowing both weight sequences to depend on n. Is a larger family of
distributions of Il, obtained? T guess no.

5. (Problem) Formulae (249) and (257) in Section 4.5 show that in the case
a= % the integral G,(q,t) in (224) can be simply expressed in terms of an entire
function of a complex variable the Hermite function, which has been extensively
studied. Tt is natural to ask whether G4 (g,?) might be similarly represented in
terms of some entire function with a parameter «, which reduces to the Hermite

function for o = %

6. (Problem: Number of components a Markov chain) (Compare Exer-
cises 2.1.4 and 3.2.4) Suppose Tl is an exchangeable partition of N such that
(M,|,n = 1,2,...) is a Markov chain, with possibly inhomogeneous transition
probabilities, which increases to infinity. Is I1., necessarily of the form described
by Theorem 427
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4.4 Lengths of stable excursions

Following Lamperti [221], Wendel [373], Kingman [205], Knight [211], Perman-
Pitman-Yor [286, 288, 312], consider the following construction of random par-
titions based on a random closed subset 7 of [0, 00) such that Z has Lebesgue
measure 0 almost surely. Without loss of generality, Z may be regarded as the
closure of the zero set of some random process. For fixed or random 7" > 0 let

VHT) > VHT) > >0 (231)

be the ranked lengths of component intervals of the set [0, 71\ 7. For i > 1 let

PHT) = VHT)/T. (232)

(3

Then (PZ?L(T),Z' > 1) is a sequence of ranked relative lengths with sum 1, which
may be regarded as the frequencies of an exchangeable random partition Tl (77)
of positive integers. Such a random partition could be generated by the random
equivalence relation ¢ ~ j if TU; and T'U; fall in the same component interval
of [0,T1\Z, where the U; are independent and identically distributed uniform
[0, 1] variables, independent of 7 and T.

This construction is of particular interest when Z is the closure of the zero
set of some strong Markov process X started at zero. If X is recurrent, and
Z is not discrete, then it is well known that Z is the closure of the range of a
subordinator (7, £ > 0) which is the inverse of a continuous local time process
of X at zero, say (L, ¢ > 0).

The stable case If X isself-similar,e.g. a Brownian motion or Bessel process,
or a stable Lévy process, then (7, £ > 0) is necessarily a stable(a) subordinator
for some 0 < a < 1, so

Elexp (—AT)] = exp(—¢K A®) (233)
for some K > 0.

Theorem 43 [312, 288, 317] If Z is the closure of the range of a stable(a)
subordinator then

(P#(T))i>1 has PD(a,0) distribution (234)

1. for each fized time T > 0, and
2. for each inverse local time T = T} for some £ > 0.

Proof. Recall from Definition 26 ﬁhat PD(a, f) is the distribution of the se-
quence derived by ranking (W; Hz:_ll(l — Wi))j>1 for W; independent with

W; 4 Bi—a,a+jo. Case 2 of the theorem is read from Theorem 39. Case 1
1s left as an exercise. O
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Tt is shown in [316] that (234) also holds for a number of other random times

T besides inverse local times, for instance 7' the first time ¢ that V¥(t) = v, for

arbitrary fixed v > 0and n = 1,2, .. .. As observed in [316], it follows from (211)

that for any fixed or random T, a random partition I, (7) with frequencies
(PZ»'L(T),i > 1) has a-diversity

Sallleo(T)) = T(1 = a) lim i(PHT))* = 2T

71— 00

almost surely. (235)

In particular, if 7' is a constant time, the a-diversity of I, (T) is just a constant
multiple of the local time Ly, whereas if T is an inverse local time, the a-
diversity is a constant multiple of T~%. So the two cases of (234) described in
Theorem 43 are consistent with the consequence of (44) that Lzp/T* has the
same distribution for any fixed time 7" as for T' = T} for any £ > 0, when Ly = /.
Let

Gr =sup(ZNJ0,T)); Dr =inf(Z N [T, 0)). (236)
A fundamental difference between fixed times and inverse local times is that if T’
is fixed then Gp < T < Dy almost surely whereas if T' = Ty then Gp =T = Dy
almost surely. In the former case, the meander interval (Gr,T) is one of the
component intervals whose lengths are ranked to form the sequence (Vii(T), 7>
1),80 T —Gr = Vf\l}T (T) for some random index Np. To prove (234) for fixed
times 7' it seems essential to understand the joint distribution of the length of
the meander interval and the ranked lengths of the remaining intervals. This is
specified by the following corollary of all known proofs of (234) for fixed T

Corollary 44 [312, 288, 317] For each fized time T, the length of the meander
wterval T — G 1s a size-biased pick from the whole collection of ranked interval

lengths (V»i(T))Z'Zl:

(3

P(Np=n|PHT),i> 1) = PHT), (237)
(Pii(GT))izl has PD(a, a) distribution, (238)

and
the meander length T — Gr is independent of (PZ»‘L(GT))QL (239)

As a check, recall the well known fact that the distribution of G /T is beta(a, 1—
«a) for each fixed T'. So the distribution of (T'— Gr)/T is beta(l — a, ). Ac-
cording to Corollary (44), this is the structural distribution of a size-biased pick
from the ranked relative lengths (Pii(T))Dl. This agrees with (234) for fixed T,
because the structural distribution of PD(a, 0) is beta(l — a, ). Granted (234)
and (237), the assertions (238) and (239) follow from Exercise 3.2.1, because
(Pj(GT),i > 1) is derived from (Pl-i(T),i > 1) by deleting a term picked by
size-biased sampling, then renormalizing the rest of the terms.

Recall the definition of standardized bridges and excursions derived from a
self-similar Markov process X. Then (Pf(GT),i > 1) is the sequence of ranked
lengths of excursions of the bridge of length 1 derived by rescaling the path of
X on [0, Gr]. Then (234) and (238) yield:
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Corollary 45 For each a € (0, 1),

e the sequence of ranked lengths of excursions of a standard Bessel process
of dimension 2—2a«, up to time 1 and including the meander length 1 — G,
has PD(a,0) distribution;

e the sequence of ranked lengths of a standard Bessel bridge of dimension
2 — 2a has PD(a, o) distribution.

Exercises

(Proof of Case 1 of (234) and Corollary (44)) See [312], [288] and [299] for
three different approaches. Basically, what is required is a good understanding
of, on the one hand, the joint law of (PZ?L(T))Z'>1 and (T'— Gr)/T, for fixed T,
which is provided by the last exit decomposition at time Gy given by excursion
theory, and on the other hand, the joint law of (Pii(Tz))iy and a size-biased
pick ﬁl(Tz), which 1s provided by Lemma 37. If both are computed they are
found to be identical, and the conclusion follows, along with Corollary (44). The
approach of [299] is to use sampling with points of a Poisson process to reduce
the result to an elementary combinatorial analog, involving sums of independent
variables X; as in Exercise 3.3.1.

Notes and comments

This section is based on [312, 288, 317]. See [317] for a thorough treatment of the
two-parameter family of Poisson-Dirichlet distributions. The study of ranked
lengths of excursion intervals has a long history which is reviewed there. See
[316, 314, 315] for various generalizations to do with ranked lengths, and [321]
regarding ranked values of other functionals of self-similar Markovian excursions,
such as their heights or areas.

4.5 Brownian excursions

Suppose in this section that P governs B as standard Brownian motion started
at 0. Let T, := (II,,) be the Brownian excursion partition. That is the random
partition of positive integers defined by the random equivalence relation i ~ j
iff U; and Uj fall in the same excursion interval of B away from 0, where the
U; are independent and identically distributed uniform [0, 1] independent of B.
According to the result of [312] and [293] recalled at the end of the last section,

M, is a (%, 0) partition. (240)

That is, the sequence of partitions (TT,,,n = 1,2,...) develops according to a
variation of Polya’s urn scheme for random sampling with double replacement,
described in Exercise 3.2.1. Equivalently, the sequence (}3]) of lengths of excur-
sions of B on [0, 1], in the size-biased order of discovery of excursions by the

sampling process, has the GEM(%, 0) distribution defined by the products of
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independent beta variables (156). And the sequence (P-i) of ranked lengths of

excursions of B on [0,1] has PD(1,0) distribution. Note that each of the se-
quences (}5]) and (Pii) has a term equal to the length 1— G} of the final meander

interval. The common distribution of P; and 1 — G is beta(%, %), commonly
known as the arcsine law.
With conditioning on By = 0, the process B becomes a standard Brownian

bridge, and we find instead that
(Me | By =0) is a (%, %) partition. (241)

Let Ly be the local time of B at 0 up to time 1, with the usual normalization of
Brownian local time as occupation density relative to Lebesgue measure. Note
from (235) that the %—diversity of s is V2 L1 . So the number K, of components
of T, grows almost surely like V2nly as n — oo, both for the unconditioned
Brownian excursions under P, and for the excursions of Brownian bridge under
P(-| By = 0). According to well known results of Lévy, unconditionally, L; has
the same law as |Bj|, that is

P(Ly € d\) = P(|B1| € dA) = 20(\)dA (A > 0)

where ¢(z) = (1/V/2m) exp(—%:ﬂ) is the standard Gaussian density of By,
whereas the conditional law of L, given By = 0 is the Rayleigh distribution
derived by size-biasing its unconditional law:

P(Ly € dX| By = 0) = /7/2 p(A\)dA (A > 0). (242)

Conditioning on the local time For A > 0 let II(A) denote a random
partition of positive integers with

Moo (A) £ (Moo | Ly = A) £ (oo | Ly = A, By = 0) (243)

where £ denotes equality in distribution, the second equality in distribution is
due to Lemma 40, and the law of TIo, () is easily seen to be weakly continuous
as a function of A. The following lemma summarizes this discussion in terms of
a family of conditioned Brownian bridges, which turn out to be of interest in a
number of contexts.

Lemma 46 [306] There exists for each A\ > 0 a unique law on C[0,1] of a
process BY := (B (u),0 < u < 1) such that
BY £ (B* | Ly(B™) = A) (244)

and the law of Bkr 1s a weakly continuous function of A. The law of BEF i
uniquely determined by the following two properties:

1. The complement of the zero set ofBEr 1s an exchangeable random partition
of [0, 1] into open intervals such that the corresponding partition T ()
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of positive integers, whose frequencies are the ranked lengths of these in-
tervals, has the distribution denoted pll\/ﬂ in Lemma 40, so T (A) has
71V2

1 - z
5 -dwersity V2.

2. Conditionally given the interval partition generated by its zero set, the ex-
cursion of | BY"| over each interval of length t is distributed as a Brownian
excursion of length t, independently for the different intervals, with the
signs of excursions chosen by a further independent process of fair coin
tossing.

, , : . . . d
In particular, BY" is a standard signed Brownian excursion, meaning | BY*| = B,
and the sign of the unique excursion of BY" away from 0 is chosen by a fair coin-
toss independent of | BE™|.

Let P;(\) denote the frequency of the jth class of Tl (A). So (Pj(A),j =
1,2...) is distributed like the lengths of excursions of B over [0, 1] given L; =
A, as discovered by a process of length-biased sampling. In view of Lévy’s
formula for stable(%) density, the general formula (198) reduces for a = % to
the following more explicit formula for the structural density of T, (A):

P(Py()) € dp) = \/%p_%(l—p)_% exp (—/\; a fp)) dp (0<p<1) (245)
or equivalently
PR <p =20 (\ /)1 0<y<) (246)

where ®(z) := P(B; < z) is the standard Gaussian distribution function. Now
(246) amounts to

~ i B? d 1

Pi(X) = = 24
= B T T (247)

where (Tx, A > 0) is the stable(%) subordinator with E(e=¢7%) = exp(—Ay/2€).

Furthermore [22, Corollary 5], by a similar analysis using Lemma 37, the whole

sequence (Pj(A),j > 1) may be represented as

/\2

Pj(\) = Rj_1(\) — Rj(A) with Rj(\) = X5,

(248)

for S; = 25:1 X; with X; independent and identically distributed copies of BZ.

Then I (A) can be constructed from (P;(A),j > 1) by Theorem 24 (ii).

Moments of the structural distribution of Tl (A\) From (247), for ¢ > —%
the gth moment of the structural distribution of P; (A) is

AW =E | (%)] CE(BP hosg(N)  (249)
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where )

L'(g+3) _ 2_qF(2q +1)
I'(3) L(g+1)

by the gamma( ) distribution of 2B and the duplication formula for the gamma

function, and h_s, is the Hermite function of index —2¢, that is hg(A) = 1 and

for g £0

(| By [*7) = 2 (a>-3) (250)

h_og(A) = (j!) . (251)

]:0

The second equality in (249) is the integral representation of the Hermite func-
tion provided by Lebedev [234, Problem 10.8.1], and (251) is read from [234,
(10.4.3)]. Note that h, forn = 0,1,2,..., which can be evaluated from (251) by
continuity as —2¢q approaches n, is the usual sequence of Hermite polynomials
orthogonal with respect to the standard Gaussian density ¢(z). The function
h_1(z) for real z is Mill’s ratio [184, 33.7]:

12 (% 1
hoi(z) = —————= =e€2" / e” 27 dz. (252)
T
For all complex v and z, the Hermite function satisfies the recursion

hyt1(z) = zhy(2) — vhy_1(2), (253)
which combined with (252) and hg(z) = 1 yields

h_o(z) =1—2zh_1(x) (254)
2lh_3(z) = —z + (1 4+ 2)h_1(z) (255)
3h_y(x) =24 2% — 3z + 2°)h_y(2) (256)

and so on, as discussed further in [295]. Theorem 41 now yields:

Corollary 47 The distribution of Il (A), a Brownian excursion partition con-
ditioned on L1 = A, is determined by the EPPF

k
TTIVON GIPTS Eb i Sy TRRRPHOVY ] (€ FEeS (257)

i=1

To illustrate, according to (128) and (249), or (257) for n = 2, given L; = A,
two independent uniform [0, 1] variables fall in the same excursion interval of a
Brownian motion or Brownian bridge conditioned on L; = A with probability

Pivan(2) =E[PL(A)] = hos(X) = 1 = Ah_1(}) (258)
and in different components with probability

Y (259)
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Note that this function increases from 0 to 1 as A increases from 0 to co, as
should be intuitively expected: given L; is close to 0 the Brownian excursion
partition most likely contains one large interval of size close to 1, whereas given
L 1s large the Brownian excursion partition most likely has maximum interval
length close to 0. The inequality P(By > A) < ¢(A)/A for A > 0 is of course the
standard estimate of a Gaussian tail probability.

Exercises

1. (Proof of Lemma 46)

2. (The Brownian pseudo-bridge) [47] Let 7, := inf{¢ : L;(B) > a} where
L:(B),t > 01is the local time process at 0 of an unconditioned Brownian motion
B. Let B.[0, 7] is the standardized path defined as in (12), then for each a > 0

P(B.[0, 4] € ) = /000 P(BY € ~)\/§e‘§”dA. (260)

Deduce that the common distribution of the Brownian pseudo-bridge B, [0, 7,]
for all @ > 0 is mutually absolutely continuous with respect to that of BP", and
describe the density. To check (260), use the basic switching identity

(B0, 7] given 7, = t) £ (B"* given L;(B") = a) (261)

where BP"! is a Brownian bridge of length ¢, and both conditional distributions
in (261) are everywhere determined by weak continuity ¢ and a.

3. Show that the function h,(A) defined by (249) for v < 1 and A > 0 satisfies
the recursion (253) for the Hermite function.

4. Check that I (A) can be constructed using the following seating plan in
the Chinese Restaurant, which obeys the rules of probability by virtue of the
recursion (253) for the Hermite function: given that at stage n there are n; > 1
customers at table j for 1 < j < k with Z§:1 n; = n, the (n 4 1)th customer
sits at table j with probability (2n; — 1)hg_2n—1(X)/hr—2n+41(A), and at a new
table with probability Ak _2n(X)/hk—an+1(A).

5. [299, Corollary 3]. Let 1 < k < n. For the partition of n uniform random
sample points generated the excursions of an unconditioned Brownian motion

2n—k—1 —on o
]P(|Hn|:k):< L )2’““ 2 (262)

(if you find this difficult, come back to it after Lecture 5!) whereas for the
Brownian bridge

P[] = k| By = 0) = ]{7((“7_1)!]@(|Hn|:k) (263)

Jn—1t

rol—
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and for I, (A) distributed like either of these partitions given L; = A [295]

(277, — k- 1)' Ak_lhk+1_2n()\)
(n = F)l(k = 1)12n*

P(I.(A)| = k) = (264)

6. (Problem: existence of a-fragmentations) It is shown in Lecture 9 that
for a = % there is a natural construction of (Il (A), A > 0) as a partition
valued fragmentation process, meaning that T, () is constructed for each A on
the same probability space, in such a way that II () is a coarser partition
than Tl (1) whenever A < p. The question of whether a similar construction
is possible for index a instead of index % remains open. A natural guess is that
such a construction might be made with one of the self-similar fragmentation
processes of Bertoin [40], but Miermont and Schweinsberg [260] have recently

shown that a construction of this form is possible only for a = %

Notes and comments

See [76] for more about conditioning B®* on its local time at 0, and [18], [370]
regarding the more difficult problem of conditioning a Brownian path fragment
on its entire local time process.
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5 Random walks and random forests

The main point of this lecture is summarized by the following paragraph, which
I quote from Harris’s 1952 paper [162, §6]:

Walks and trees. Random walks and branching processes are both
objects of considerable interest in probability theory. We may con-
sider a random walk as a probability measure on sequences of steps-
that is, on “walks,” as defined below. A branching process is a
probability measure on “trees,” as defined below. The purpose of
the present section is to show that walks and trees are abstractly
tdentical objects and to give probabilistic consequences of this corre-
spondence. The identity referred to is nonprobabilistic and is quite
distinct from the fact that a branching process, as a Markov process,
may be considered in a certain sense to be a random walk, and also
distinct from the fact that each step of the random walk, having two
possible directions, represents a twofold branching.

5.1 Cyclic shifts and Lagrange inversion

For a sequence x := (z1,...,&y) the walk with steps x is the sequence sq =
0,81,...,8, with s; := >"7_, @;. Say the walk first hits b at time n if s; # b for
i <nands, =b. For i€ [n]let x(*) denote the ith cyclic shift of x, that is the
sequence of length n whose jth term is x;4; with ¢ + j mod n. The following
elementary lemmais a useful variant of the classical ballot theorem [353]:

Lemma 48 [353],[374, §3] Let x := (21,...,%n) be a sequence with values in
{-1,0,1,2,...}, and sum —k for some 1 < k < n. Then there are eractly k
distinct i € [n] such that the walk with steps x\*) first hits —k at time n.

Proof. Consider i = m, the least ¢ such that s; = minj<;<, 5; to see there is
at least one such i. By first replacing x by x(") it may be assumed that the
original walk first hits —k at time n. But in that case, the walk with steps x(?)
first hits —k at time n iff 7 is one of the k strict descending ladder indices of the
walk, meaning the original walk first hits —¢ at time i for some 1 </ <k. O

As observed by Takdcs [353], it follows immediately from this lemma that
if X := (X1,...,Xp) is a sequence of non-negative integer random variables,

which is eyelically exchangeable, meaning X (%) 2 X for each 1 <i¢<mn,and
J
Sj = Xi, (265)
i=1

T p:=inf{j >0:5; —j=—k}=mnf{j >0:5; =j—k}, (266)
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then for each 1 < k <n

P(T_p=n) = %]P’(Sn =n—k). (267)

In particular, this formula holds for all n if S7,S55,... is a random walk with

independent steps X; with some arbitrary common distribution (pg,p1,...) on

the non-negative integers, as first shown by Kemperman [195],[196, (7.15)].
For |z| < 1 let

9() = Y il = B (268)

be the probability generating function of the X;, and for £ =1,2,... let
hi(2) = 3 P(Tog = )2 = ("), (269)
n=1

Because T_y is the first passage time to —k of the walk (S, — n)p=0,1,2,.. which
can move downward at most 1 at each step, T_j is the sum of k& independent
copies of T_1. Thus

hi(2) = h(z)k (270)

where h(z) := h1(z). Moreover, by conditioning on X7, the generating function
h of T_1 solves
h(z) = 2g(h(=)). (271)

In particular, it is well known [163] that the hitting probability
P(T_j < 0) = h (1) = ¢~ (272)

where ¢ := hy(1) is the least non-negative root of ¢ = g(q). Sog=1o0r ¢ <1
according as u < 1 or g > 1, where p := 3", ip; and it is assumed that p; < 1.
This brings us to:

Theorem 49 (Lagrange inversion formula [88]) Let g(-) be analytic in a neig-
bourhood of 0 with g(0) # 0. Then the equation h(z) = zg(h(z)) has a unique
analytic solution h(-) in a neighbourhood of 0 whose expansion in powers of z is
such that L

() = L) (273
Remark. While stated here in an analytic form, it is known that the Lagrange
inversion formula can be regarded as an identity of formal power series. The
formula has numerous variants and generalizations. See [351, §5.4] and papers
cited there.
Sketch of proof. [325, 374] Tt is quite easy to establish existence and unique-
ness, and to see that if g(z) := >~ pnz™, then both sides of (273) are polyno-
mials in pog, ..., p,. But Kemperman’s formula (267) immediately yields (273)
for arbitrary non-negative pq, . . ., p, subject to 2?20 pi < 1, and the conclusion
follows by polynomial continuation. a
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To be more explicit, it is immediate from the probabilistic interpretation
that both [2"]h(2)* and [z"~*]g(z)" are polynomials in py,...,p, with non-
negative integer coefficients, which can be interpreted as follows. On the right
side of (273), the coefficient of [, pI'* in [z"~*]g(z)" is evidently

n
n no = 1 i = d in; =n—k) = 274
Fro,onn <n0,...,nn) (ZZ:n n an Xi:m n —k) (274)

#{lattice paths from (0,0) to (n, —k) with n; steps of size i — 1,0 < i < n}.
(275)
Whereas on the left side, the coefficient of [], pI'* in [z"]A(2)* is the number of
such paths which first hit —k at time n, say #n,, . n,{ first hit —k at n } So
(273) reduces to the fact that the ratio of these two numbers is

#n07~.~7nn{ ﬁrSt hlt _k at n } — E (276)

#Tluy~~~;nn n
for every choice of non-negative integers ny, . . ., n, with ZZ n; = n and ZZ in; =
n — k. This combinatorial fact (276) can be seen directly from Lemma 48.

Summary The Lagrange inversion formula (273) can be interpreted either
probabilistically or combinatorially in terms of lattice paths. The key factor of
k/n, appearing in the Lagrange inversion formula and its combinatorial equiv-
alent (276), is interpreted by Kemperman’s formula (267) as the conditional
probability that the walk (S; — j)j=0,1,2,.. first hits —k at step n given that
Sp —n = —k, for any sequence of partial sums S; of exchangeable non-negative
integer valued random variables. The same factor of k/n appears, but is not so
easy to interpret, in a number of other combinatorial expressions of the Lagrange
formula presented in the exercises of the next subsection.

Exercises

1. (Discrete form of Vervaat’s transformation) [303] Let S; := X; +-- -+
X; where (X1,...,Xy,) is cyclically exchangeable with values in {—1,0,1,...},
and S,, = —1. Let
M, :=min{7:S; = 1 L
min{i : S 11511;%1” S;}

Then M,, has uniform distribution on {1, ..., n}, the cyclically shifted walk with
steps (Xar,+;,1 < j < n), for addition is mod n, is independent of M,,, and the
cyclically shifted walk is distributed like the original walk given it first hits —1
at time n.

2. (Vervaat’s transformation) [368, 45] Let S; := X; + - - + X; for inde-
pendent and identically distributed integer-valued X; with mean 0 and variance
1. Deduce from the previous exercise and the conditioned forms of Donsker’s
theorem (6) and (9) that if p is the a.s. unique time at which BP" attains its
minimum, then the process (Bﬁfl_t — BEF, 0 <t < 1), with addition mod 1, is a
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standard Brownian excursion, independent of y, which has uniform distribution
on [0, 1]. See [303] for a more elementary justification of the passage to the limit,
using almost sure instead of weak convergence.

3. (Vervaat’s transformation of a Lévy bridge) [80, 259] Generalize the
result of the previous exercise to bridges and excursions derived from a suitable
Lévy process with no negative jumps instead of Brownian motion.

Notes and comments

See also [81] and [76] for further variations of Vervaat’s transformation.

5.2 Galton-Watson forests

It 1s well known to combinatorialists that the enumerations of lattice paths
(275)-(276) related to the Lagrange inversion formula can also be expressed,
by suitable bijections, as enumerations of various sets of trees and forests. See
[325, 220, 86, 351].

The term forest will be used here for a finite rooted forest, that is a directed
graph /' C V x V with a finite set of vertices V', such that each connected
component of F' is a tree with edges directed toward some root vertex. A forest
with vertex set V' = V(F) is said to be labeled by V. For vertices v and w of

a forest F write v w, to show that (v, w) is a directed edge of F', and say
v 1s the child of w, or w is the parent of v. Note that the direction of edges
is from child to parent. In a plane forest F' with k component trees, the set of
roots of the tree components is ordered, as is the set of children of w for each
vertex w of F. Regard a plane forest with k root vertices as a collection of
family trees, one for each of k initial individuals, with each vertex in the forest
corresponding to an individual, and with the order of the roots and the orders
of children corresponding to the order of birth of individuals. A plane forest is
often depicted without labels as on the top left panel of Figure 6, and called an
unlabeled plane forest. However, there is a natural way to identify each vertex
of a plane forest by a finite sequence of non-negative integers which indicates
the location of the vertex in the forest. So, following the convention of [163] for
labeling family trees, the set of vertices V(F) of a plane forest F' can always be
identified as a subset of the set of all finite sequences of integers, as illustrated
in the top right panel of Figure 6. For a plane forest F' with n vertices, two
useful relabelings of V/(F) by [n] are provided by the depth-first and breadth-first
searches of V(F'), whose definition should be obvious from the examples in the
lower panels of Figure 6.

Following Otter [281] and subsequent authors [163, 204, 107], regard a Galton-
Watson process started with k individuals, with offspring distribution (pg, p1, . . .),
as generating a collection of k£ family trees, which combine to form a random
famaly forest Fy,. Let #Fy be the total progeny of the branching process, mean-
ing the number of vertices of Fy. On the event (#F; < c0) the random family
forest Fj can be defined in an elementary way as a random element of the count-
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Figure 6: A plane forest, variously labeled. Top left: no labels needed. Top
right: natural labeling of vertices by finite sequence. Bottom left: labeling by
depth-first search. Bottom right: labeling by breadth-first search.
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able set F of all plane forests. The distribution of Fy, is then the sub-probability
distribution on F defined by the formula [281]

PFe=F)= ] pewr =[]  ¥k>1 FeFy™e  (217)
veV (F) i>0

with the following notation

e V(F) is the set of vertices of F';

o c(v,F) =#{w:w LN v} is the number of children or in-degree of of v in
the forest I ;

o n;(F) = ZUEV(F) 1(c(v, F') = i) is the number of vertices of F with ¢
children ;

)

. Fil‘me is the set of plane forests with £ root vertices.

The distribution of #F induced by this distribution of Fx on Fil‘me, with
total mass P(#Fy < oo) < 1, was found by Otter [281] and Dwass [108]. Com-
bining their result with Kemperman’s formula (267), for 1 <k <mn

P(#Fr=n)=P(T_r=n)= %P(Sn =n—k) (278)

where T_j as before is the first hitting time of —k by the walk (S, — n)n=01,...
with increments X; — 1 for a sequence of independent offspring variables X; with
distribution (pg, p1,...). Thus

#Fn LT 4 foreach k=1,2,.... (279)

One way to see (278) is to argue that the sequence of probability generating
functions of #F; must solve equations (270) and (271), which according to
Lagrange is solved uniquely by the sequence of generating functions hg of T_.
But more insight is gained from the following bijective proof of (279).

Bijection between plane forests and lattice walks The following lemma
i1s well known and easily checked.

Lemma 50 Guwen a plane forest F' of k trees with n vertices, let x; be the
number of children of vertex © of F' in order of depth-first search. This coding
of F' sets up a bijection

F o (..., ) (280)

between Fgl‘me and sequences of non-negative integers (z1,...,&y) such that the
lattice walk with steps x; — 1 first reaches —k at time n. Moreover, if the trees
of the forest are of sizes ny,...,ng, then for each 1 < ¢ < k, the walk first
reaches —i at the time ni + - - - + n; when the depth-first search of the ith tree
1s completed.
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The same 1s true with breadth-first instead of depth-first search of each
tree of F'. Call the lattice walk with increments z; — 1 so associated with a
forest F', the depth-first walk or the breadth-first walk as the case may be. This
transformation from forests to walks has a well known interpretation in terms
of queuing theory [197, 353, 354]. Variations of the bijection then correspond
to various queue disciplines (last in first out, first in first out, etc).

To put the lemma in probabilistic terms, let X/ be the number of children
of the ith individual in the depth-first search order of a Galton-Watson family
forest Fy started with k£ individuals. Then provided #F; < oo the sequence
(X1,..., Xjyx,) determines the plane forest Fj uniquely, and there is the fol-
lowing refinement of (279):

(X7, Xlyr ) #Fr < 00) £ (X1, .00, X )1(Tog < 00) (281)

where on the right side the X; are independent offspring variables T_j, is the
first time j that > 7_,(X; — 1) = —k. Keep in mind that Fx and the infinite
sequence X1, Xs, ... might be defined on different probability spaces. However,
by use of the bijection, it is clear that provided p; < 1 and }~, ip; < 1, so that
P(#F, < o0) = P(T—p < o0) = 1, there is defined on the same probability
space as X1, Xs,... an a.s. unique sequence of Galton-Watson forests Fy, k =
1,2, ... such that (281) holds with almost sure equality instead of equality in
distribution. Then F; is the formed by the first j trees of Fj, for each j < k.
The jth tree of Fy for every j < k is the unique tree whose depth-first walk has
steps Xp_;_,y4i — Lfor 1 <a KT =T (4).

Exercises

1.* (Enumeration of plane forests by type) [112, 116, 281, 326] The type of
a forest F' is the sequence of non-negative integers (n;), where n; is the number
of vertices of F' with 7 children. Let 1 < k < n and let (n;) be a sequence of
non-negative integers with

Zni:nand Zini:n—k. (282)

A forest of type (n;) has n vertices and n — k non-root vertices, hence k root
vertices and k tree components. For 1 < k < n and (n;) subject to (282) the
number NP!%¢(ng ny,...) of plane forests of type (n;) with k tree components
and n vertices is

k n
NP1 (ng,my, .. ) = _<n0 n > (283)

2. (Enumeration of labeled forests by type) [351, Cor. 3.5], [302, Th. 1.5]
For 1 < k < n and (n;) subject to (282), the number N[?l(ng,ny,...) of forests
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labeled by [n] of type (n;) with k tree components and n vertices is

N (ng,ny,.. ) = g(:)%(nonn) (284)

3. (Enumeration of labeled forests by numbers of children) [304],[351,
Thm. 3.4] For all sequences of non-negative integers (c1,...,¢,) with ). ¢; =
n — k the number N(eq,. .., ¢,) of forests F' with vertex set [n] in which vertex
i has ¢; children for each ¢ € [n] (and hence F' has k tree components) is

N(ety ... en) = %(:) <c1n_ kCn) (285)

4. (Cayley’s multinomial theorem) The enumeration (285) amounts to the
following identity of polynomials in n commuting variables z;,1 <7 <n:

- c(d k - R

FeFy ni=1

where the sum is over the set Fy, ,, of all forests with k tree components labeled
by [n], and ¢(i, F) is the number of children of 7 in the forest F'. Take the z; to
be identically 1 in (286) to recover the well known enumeration

#Fy =k (Z) pn—k-1 (287)

which is equivalent to Cayley’s [73] formula
#{ forests with root set [k] and vertex set [n] } = kn" %71, (288)

which was derived already in (102). In particular, for & = 1 the number of
rooted trees labeled by [n] is n®~!. Equivalently, the number of unrooted trees
labeled by [n] is n”~2. For various approaches to these formulae of Cayley, see

[263, 304, 324, 346, 351, 355, 329).

Notes and comments

This section is based on the work of Harris [162]. The exercises were suggested
by the treatment of tree enumerations in Stanley’s book [351]. Solutions can be
found in [302]. See also Lecture 9 for another approach to Cayley’s multinomial
theorem.

5.3 Critical random graphs and the multiplicative coales-
cent

Aldous [3] made a significant application of the ideas in the previous section to
the asymptotic behaviour of component sizes in the Erdos-Rényi random graph
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process G(n,p) in the critical regime p & 1/n as n — oo. Recall that G(n, p) is
the model of an undirected random graph on [n] in which each of (7) undirected
edges is present with probability p, independently. The random partition of [n]
generated the connected components of G(n,p) is evidently exchangeable. But
the asymptotic theory of exchangeable partitions is of little use in this example,
because the interesting behaviour in the critical regime lies beyond the reach
of Kingman’s theory. The key to understanding this behaviour is the following
algorithm for constructing the connected components of G(n,p) in the size-
biased order of their least elements.

The breadth first walk [3, §1.3] Start by considering a fixed undirected
graph G with vertex set [n]. So G is a subset of the set of () subsets of [n]
of size 2. Construct a rooted ordered spanning forest of G, say F["](G), with
vertices labeled by [n], as follows. The root vertices (or zeroth generation of
the forest) are the least elements of components of G, with their natural order
from [n]. The children of a particular root vertex v are the vertices w such
that there is an edge from v to w in GG. These children, which form the first
generation of the forest, are ordered firstly by the order of their parents, and
secondarily by their natural order from [r]. In general, for m > 0, given that
the first m generations of the forest have been defined and the vertices of the
mth generation have been ordered, the (m + 1)th generation is the set of all
vertices w such that there is an edge from w to some v in the mth generation,
and w is not in generations 0, ..., m. Then w is the child of the first such v with
respect to the order on the mth generation, and the vertices in the the (m+1)th
generation are ordered firstly by the order of their parents, and secondarily by
their natural order from [n]. The breadth-first search of [n] induced by G is the
permutation fg : [n] — [n] where B¢ (i) is the ith vertex in the list of vertices
of F["](G), starting with the zeroth generation, then the first generation, then
the second generation, and so on, where the vertices of the mth generation are
put in the order they were given in the construction of F["](G). Put another
way, B (i) is the label of the ith vertex of FI?1(G) visited in the usual breadth-
first search of F["](G) regarded as a plane tree by ignoring the vertex labels.
The breadth first walk derwed from G is the breadth first walk derived from
Fprang (G). See [3, Fig. 1]. To be precise, the walk is (wg, w1, ..., wy), where
wy =0, and for 1 <7< n

wi —wi—1 =¢ —1

where ¢; is the number of children of the vertex labeled B¢ (7) in F["](G). Con-
sequently, by the variant of Lemma 50 for breadth-first search, the component
sizes of (7, in order of least elements, say Ny, N, ..., can be recovered from its
breadth first walk as

Nj =T = T(j-1)

where
T_; :=min{i: w; = —j}.
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To discuss the distribution of the walk induced by a random graph, one more
concept is needed. In the breadth-first search of [n] induced by G, after 7 steps,
call a vertex v marked at stage 7 if v is not in the set {8g(j),1 < j < i} of
vertices searched in the first ¢ steps, but v is a child of one of these vertices in
F(G), meaning there is an edge of G joining v to {fg(j),1 < j < i}. Let M;
denote the number of marked vertices at stage ¢. Note that M; is determined
by the first i steps of the walk. Also M; < Np(i)(Ti) + Nugiy41(Ti), where T;
is the tree component of B¢(i) in F(G), h(i) is the height of (i) in T;, and
N;(T;) is the number of vertices of T; at height j. Thus M; is at most the
number of vertices in two slices through a tree component of F'(G), which turns
out to be negligible relative to ¢ in the asymptotic regimes discussed here. It
follows from these definitions and the definition of G(n, p) that the dynamics of
the breadth-first walk derived from G(n, p) can be described as follows:

Lemma 51 Fiz n. Let (Wy,...,W,) be the breadth-first walk derived from
G(n,p). Then for each i > 1,

Wig1 — Wi given (W1, ..., W;) £ BINOMIAL(n — i — M, p) — 1 (289)

where BINOMIAL(m, p) denotes a binomial variable with parameters m and p,
and M; 1is the number of marked vertices after i steps, which is some function

Of(Wl,...,VVZ')‘

Suppose now that n — co and p = A/n — 0. Then it is clear that for some
large finite number of steps the numbers W; 1 — W; +1 of children of vertices of
Fprang (G) in order of breadth-first search will be approximately independent
Poisson(A) variables. Thus one easily obtains:

Lemma 52 Let T1(n,p) be the plane tree derived from the subtree rooted at
1 in the forest F(G) derived from G by breadth-first search, for G distributed
according to G(n,p). Let A € (0,00) and h > 0. Then as n — oo, the restriction
of Ti(n, A/n) to levels below height h, converges in distribution to the restriction
to levels below h of a Galton-Watson tree with Poisson()) offspring distribution.

Since the limiting Poisson-Galton-Watson (A) tree is sub-critical, super-
critical, or critical according to whether A < 1 ; A > 1 or A = 1, this analysis
leads to the following well known result:

Theorem 53 (Erdos -Rényi[113]) As n — oo with p = A/n for some X €
(0, 00),
If A < 1, then the largest component of G(n,p) has size O(logn).

If X > 1, then the largest component has size (1 + o(1))Py where Py with
exp —AP\ = 1 — Py is the probability that a Poisson-Galton-Watson(\) tree is
infinite in size, while the second largest component is of size at most O(logn).

If A = 1, then the sizes of the largest and second largest components are both of
order n2/3.
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Let TI,,(p) be the partition of [n] determined by the components of G(n, p).
Note that as n — oo with p = A/n for A > 1, the limit in distribution of II,, (A/n)
is the partition of N with a single block whose frequency is Py € (0, 1), and
all other components singletons. So this is an instance where an exchangeable
partition with improper frequencies arises naturally as a limit. But in the critical
case, the limit in distribution of IT,(1/n) is the trivial partition into singletons.
To obtain interesting limits in distribution around the critical stage p & 1/n,
another scaling is necessary.

To this end, consider G(n,p,(r)) with p,(r) := 1/n + r/n3 for r € R.
From Lemma 51, we find that after the ith step of the breadth-first walk, as
n — 0o

EWig1 | Wi ... W) = =14 pu(r)(n—i— M;)
—1+ (1/n+r/n*3)(n — i) (290)
S (291)

where the approximation is just to ignore the M; marked vertices, and similarly
Var(VViH | W1 . VVZ) 1.

Now measure time in units of n?/3 and component sizes in units of n'/3, to
obtain, at rescaled time s, a conditional mean drift rate of r—s, and a conditional
variance rate that remains 1. Then we arrive at:

Theorem 54 Aldous [3, Theorem 3] Let (B(t),t > 0) be standard Brownian
motion. Set
B (t) := B(t) +rt —t*/2 fort >0

so B"(0) = 0 and dB"(t) = dB(s) + (r — s)ds. Forr € R let W (i),0 < i <
n, with linear interpolation between integer values i, be the breadth-first walk
associated with G(n, 1/n + r/n*/3). Then

n=UBWI (n231),t > 0) S (B (1),t > 0) (292)
in C0,00).

Sketch of proof. A minor perturbation of the breadth-first walk is presentable
as the sum of a martingale and a bounded variation process; the former rescales
to satisfy standard hypotheses for a martingale to converge in distribution to B,
while the bounded variation term rescales to give the drift. See [3] for details.
O

Given that component sizes of G(n,p,(r)) are coded as the gaps between
successive drops to new lows of the corresponding walk, it is to be expected
that the distribution of the ranked component sizes should approximate the
excursions of the limit process. This is expressed rigorously as follows:
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Theorem 55 Aldous [3, Corollary 2] For each fized r € R, the sequence of
ranked component sizes of G(n, 1/n+1r/n*/3) converges in distribution in lf, the
ls-normed space of non-increasing sequences:

_ ro. d 0o . a0
n (NI > 1) S (X (), > 1) (293)

where the limit X](»Oo)(r),j > 1) has the same distribution as the sequence of
ranked lengths of excursions away from 0 of the reflected process B" — B”, where
B" is the Brownian motion with drift r—t at timet, and B (t) := info<,<¢ B" ().

The multiplicative coalescent This discussion becomes more interesting if
we take the dynamic view of (G(n,p),0 < p < 1) as a process in which edges
are born as the parameter p increases. If the edges are assumed to be born at
independent exponential(1) times, then G(n, p) describes the state of the graph
at time ¢ with p = 1 — e~*. Recall Definition 15 of a Ppn-valued, K-coalescent,
called a multiplicative coalescent for K (z,y) = zy.

Lemma 56 [65] The process (I, (t),t > 0), where I1,,(t) is the partition of [n]
defined by connected components of G(n,1—e™"), is a Ppn)-valued multiplicative
coalescent, with mass defined by counting.

Proof. If a graph has two particular components of sizes a and b, there are ab
possible edges which when added to the graph would connect the two compo-
nents. Combined with standard properties of independent exponential variables,
this yields the conclusion. a

To compare the evolution of component sizes of (II,,(¢),¢ > 0) for different
values of n, consider the process X(”)(t) of ranked component sizes

XUV (1) = (N5 (0),5 > 1) (204)

where Nrtj (t) is the size of the jth largest component of T, (¢) derived from
G(n,1 —e7*). Then by Lemma 56, for each n the process (X(”)(t),t > 0)
is a ranked multiplicative coalescent, with initial state a vector of n entries 1
padded by zeros. The ranked multiplicative coalescent has the following obvious
scaling property: if (X(t),t > 0) is a ranked multiplicative coalescent, then so
is (71X (t/c?),t > 0) for arbitrary ¢ > 0. In particular, the process

(n=23X ™) (/%) > 0) (205)

is a ranked multiplicative coalescent with initial state a vector of n entries
n~2/3 padded by zeros. Theorem 55 suggests that to capture the evolution
of component sizes X (") (¢) around the critical time ¢ ~ n~!, the process (295)
should be considered at timet = n'/34r for r > n='/3. This process is a ranked
multiplicative coalescent, with time parameter set [—n_l/?’, o0), and initial state
at time —n~1/? a vector of n entries n~2/3 padded by zeros. This brings us to
the following refinement of Theorem 55
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Theorem 57 Aldous [3, Corollary 24] Let (X™)(t),t > 0) be the ranked multi-
plicative coalescent defined by the component sizes of the random graph process
G(n,1—e7") fort >0, regarded as a process with values in lf‘ Then as n — oo

(n=3XE)N (1 n 4 r/n¥3), r > —n~3) L (X()(r), r € R) (296)

in the sense of convergence of finite-dimensional distributions, where the limit
1s the lf-valued multiplicative coalescent process such that the distribution of

X(OO)(T) 1s that of the ranked lengths of excursions away from 0 of the reflected
process B" — B”, where B” is the Brownian motion with drift r —t at time t,

Proof. This follows easily from the above discussion, once it i1s checked that
the transition kernel P;(xz,-) of the ranked multiplicative coalescent on Pénite
admits a unique extension lf, such that P(z,-) is weakly continuous in z for
each fixed ¢. But that is much harder to prove than might be expected: see [3,
§4.2]. O

The process (X (%) (r), r € R) defined by (296) is the standard multiplicative
coalescent. A process with time-parameter set IR may be called eternal. The-
orem 57 raises the question of whether there exist other eternal multiplicative
coalescents besides shifts of the standard one. From the standard multiplicative
coalescent one can construct other multiplicative coalescents, the simplest of
which is obtained by lumping together suitably-chosen components to form a
distinguished component of the new multiplicative coalescent. It turns out [21],
but is technically hard to prove, that the most general extreme multiplicative
coalescent can be obtained by such lumping procedures and a weak convergence
construction.

Exercises

1. [57] Prove Lemma52. Deduce that if A < 1, then as n — oo the distribution
of T1(n, A/n) converges to that of a Poisson-Galton-Watson (A) tree. Show also
that if A > 1, and o(n) is some arbitrary sequence tending to infinity with
o(n)/n — 0, then the conditional distribution of 77 (n, A/n), given that it has at
most o(n) vertices, converges to that of a Poisson-Galton-Watson (5\) tree, for
some A < 1, called the conjugate of A, whose value should be determined.

2. (A tree-growth process) For each fixed n, regard Ti(n,A/n) as a tree-
valued process indexed by A > 0, with the convention that this process jumps
to some terminal state { as soon as its number of vertices exceeds o(n), for some
o(n) = oo with o(n)/n — 0. Show that this process has a limit in distribution
(T(A), A > 0) as n — oo, which is an inhomogeneous tree-valued Markov chain
studied in [12, 23]. Describe the transition mechanism of the limiting tree-
growth process as explicitly as possible. In particular, find the distribution of
the ascension time A := inf{A : T(A) = t}. Intuitively, this is the asymptotic
distribution of the time it takes for a single vertex in G(n,p) to be a giant
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component whose size is O(n). Show also that 7 (A—) is a.s. finite, and find its
distribution. See [23] for further analysis, and generalizations.

3. [3, §5.1] As an immediate corollary of Theorem 55 the excursion lengths of
B"™ — B” are square summable. Derive this directly, by analysis of Brownian
paths.

4. [3,81.5)Fixz € lf. Let €; ; be independent exponential(1) variables indexed
by i,j € N with ¢ < j. Let G(z,t) be the graph on N with an edge (4, j) iff
gi; < tzjz;, and let X(z,t) be the vector of ranked z-masses of connected
components of G(z,t). Then (X(z,t),t > 0) is a realization of the lf—valued
ranked multiplicative coalescent with initial state x.

5. (Problem) Theorems 55 and 57 strongly suggest that there exists a C[0, co)-
valued process (B",r € R) such that B, is a Brownian motion with drift » —¢ at
time ¢, and if X (°°) (r) is the sequence of ranked lengths of excursions of B"— B” |
then (X(w)(r), r € R) is the standard multiplicative coalescent. However, the
results of Aldous [3] do not even establish existence of a joint distribution of
B" and B?® for r # s, let alone the finite-dimensional distributions or path-
properties of such a process. Does 1t exist, and if so what can be said about
it?

Notes and comments

I learned everything in this section from David Aldous. The recent book [182]
surveys the theory of random graphs. See also [181] and [3] for more detailed in-
formation about the birth of the giant component around time ¢ &~ 1/n. There
are striking parallels between the theory of the multiplicative coalescent de-
scribed here, and that of the additive coalescent discussed in Lecture 9. Both
processes arise naturally from random graphs, their combinatorial structure is
related to random trees, and they admit eternal versions whose entrance laws
are related to the lengths of excursions of Brownian motion. Another important
similarity, which is the key to many deeper results, 1s that there is an essentially
combinatorial construction of the coalescent process with an infinite number
of initial masses subject to appropriate conditions (Exercise 4 and Corollary
106). See [22] for a more technical comparison of the similarities and differences
between these two processes.

5.4 The Harris walk

Recall that Fpl(me is the set of all plane forests of k trees with a total of n vertices.
Fork =1,2,...and 0 < p < 1 let G , be a Galton-Watson forest of k trees with

the geometrlc( ) offspring distribution p; := p(1—p)*. Since for each F € Fpl(me
the total number of children of all vertices of F'is )" (v Fy=n-— k the
general product formula (277) gives

UEV

PGrp=F)= [[ p-p)"" =p*(1—p"™" Y FeF'T (297)
veV(F)
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Hence, as observed by Harris [162], the conditional distribution of Gy , given
(#Gk p = n) is uniform on leine If S, p is the sum of n independent geometric(p)
random variables, then by the general formula (278) for the distribution of the
size of a Galton-Watson forest of k trees, and the negative binomial formula

[127, VL8] for the distribution of S, ,,

PG = 1) = 2By =n -0 == (Ut (oo

n

Compare (297) and (298) to see that the number of plane forests of k trees with

n vertices 1s
k(2n—Fk—1
#Fpl(rzlne < n ) (299)

n n—=k

In particular, for £ = 1, the number of plane trees with n vertices is this is the
(n—1)th Catalan number [64, 166]. This is also the number of lattice ezcursions
of length 2n, that is sequences (s;,0 < j < 2n) where s; = s9, = 0, and s; > 0
and sj41 —s; € {—1,4+1} for all 0 < j < 2n — 1. As observed by Harris [162],
there is a natural bijection between Fpl‘me and the set of lattice excursions of
length 2n. Given a plane tree with n Vertlces starting from the root and traverse
the plane tree as follows. At each step move away from the root along the first
edge that has not been walked on yet. If this is not possible then step back
along the edge leading towards the root. A walk with steps of +1 is obtained
by plotting the height at each step. Appending a +1 step at the beginning and
a —1 step at the end gives a lattice excursion of 2n steps. See Figure 7. This
bijection extends to one between Fpl(me and the set of non-negative lattice walk
paths from (0, 0) to (0,2n) with 1ncrements of &1 and exactly k returns to 0.

7

Figure 7: Harris walk for a finite tree

Let 7 denote a Galton-Watson tree with some offspring distribution (p;),
and let 7, denote the random tree with n vertices defined by conditioning 7
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to have n vertices. To abbreviate, call 7, a GW(n) tree with offspring distri-
bution (p;). Such random trees are also called simply generated trees [255]. Tt
follows immediately from (277) that the distribution of a GW(n) tree is the
same for offspring distribution (p;) as for (p;0'/g(f)) for arbitrary § > 0 such
that g() := >, pif’ < oco. Consequently, in consideration of GW(n) trees
there is no loss of generality in supposing that the offspring distribution has
mean 1. According to the previous discussion, the Harris walk associated with
a GW(n) tree with is geometric offspring distribution is the unsigned excur-
sion of a simple symmetric random walk conditioned to have length 2n. By
the conditioned form of Donsker’s theorem (9), a suitable normalization of this
uniform lattice excursion converges in distribution to a standard Brownian ex-
cursion B®*. For GW(n) trees with other offspring distributions, the Harris
walk is no longer the excursion of a Markovian random walk. Rather it is some
non-uniformly distributed lattice excursion with increments of +1 and a rather
complicated dependence structure. Nonetheless, according to the following the-
orem, with suitable scaling the asymptotic behaviour of Harris walks of large
Galton-Watson trees is the same, no matter what the offspring distribution with
finite variance.

Theorem 58 Aldous [13, 14] Let T, be a GW(n) tree, with offspring distri-
bution with mean 1 and variance 0% € (0,00). Let H,(k),0 < k < 2n be the
Harris walk associated with T,,. Then as n — oo through possible sizes of the
unconditioned Galton-Watson tree,

(Ho(2nu)/v/n,0<u<1} S (207'B 1 0< u< 1) (300)

. . . d .
where B is the standard Brownian excursion and — is the usual weak con-
vergence of processes in C[0, 1].

Since numerous features of 7, are encoded as continuous functionals of the
associated Harris walk, the asymptotic distributions of these features of trees
can be read from the distribution of the corresponding functional of Brownian
excursion. For instance, if H(7) denotes the maximum height above the root
of any vertex of a tree T, so H(T,) = maxo<y<1 Hn(2nu), then we read from
(300) that

F(ﬂ)/\/ﬁ 4, 951 Jmax .B¥. (301)

See [48] for a review of properties of the distribution of maxg<,<1 B*, whose

Mellin transform is related to the Riemann zeta function.
Marckert and Mokkadem [246] derive Theorem 58, under further moment
conditions, by showing that for large n the normalized Harris path on the left

side of (300) is with high probability close in C10, 1] to
(207 2(Spu —nu)//n,0 <u < 1|T_y = n) (302)
where (S — k,1 < k < T_4) is the depth-first walk of 7,, as in (281). The

process in (302) converges in distribution to 26~ B®* by the conditioned form of
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Donsker’s theorem (9). The appearance of the factor 2/0? in approximating the
Harris walk by the normalized depth-first walk is nicely explained by Bennies-
Kersting [30]. Besides the geometric case discussed above, where the offspring
distribution has standard deviation ¢ = 1/2, and Theorem 58 reduces to the
conditioned form of Donsker’s theorem (9), two other important examples are
is follows:

Poisson branching p; = e¢7!'/i!, 0 = 1. As indicated by Kolchin and Aldous,
a Poisson-GW (n) tree 7, may be constructed as follows, from U,, with uniform
distribution on the set of n"~! rooted trees labeled by [n]. First give the children
of each vertex of U,, the order they acquire from the usual order on [n], (or,
equivalently, independent random orders), then ignore the labels to obtain a
plane tree. See [302, §7] for further discussion. This transformation allows
numerous asymptotic results for the uniform labeled tree U, to be deduced
from corresponding results for the non-uniform Poisson-GW(n) tree 7,, which
can be read from Theorem 58. For instance, the maximum height H(U,) is
by construction identical to H(7,), whose asymptotic distribution is given by

(301) with o = 1.

Binary branching [154] pg = p2 = %, o = 1. Now 7, is a uniform ordered
binary rooted tree on n vertices. Note that n must be odd. Similarly, for any
m = 2,3,...one can realize a uniform ordered m-ary rooted tree on n vertices
as a conditioned Galton-Watson tree.

Concatenated Harris walks A result similar in spirit to Theorem 58 can be
obtained by considering a sequence of independent and identically distributed
critical Galton Watson trees. By concatenating the individual Harris walks (resp
depth-first walks) one gets an infinite walk which upon scaling converges to the
reflected Brownian motion.

Theorem 59 Le Gall [229] Let (H(t),t > 0) be the continuous path obtained
by concatenation of the Harris walks of an infinite independent and identically
distributed sequence of critical GW trees with finite non-zero offspring variance

2. Then as n — 00

(a2 0 S (21502 0) (303)

in the sense of weak convergence in C[0,00), where B is a standard Brownian
motion.

The proof of this theorem again proceeds by using standard results for depth-
first walk and then relating the Harris walk to the depth-first walk. It is conve-
nient to use another walk associated with trees called the height process as an
intermediary in this comparision.
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Height Process For a rooted tree labelled by [n] in depth-first order, the
associated height process is defined by

H; = height of vertex i+ 1 for¢:=0,1...,n—1

7
5 6
Hi
4
2 3 a8
1 0 1 2 3 4 5 6 7

Figure 8: The height process for a rooted labeled tree of 8 vertices

For a sequence of GW trees 7(1), 7(2) | denote the associated(concatenated)
Harris walk, depth-first walk and height process by H,,Y, and H,,, n > 0 (as
usual define for all ¢ by linear interpolation). The following fact is well known:
Fact: Let 1,7, ... be the ascending weak ladder points of the depth-first walk
Y. That is, ip = 0 and 7; = inf{n > 1,_1 : Y, = M,,} where M,, = supgcg<, Y-
Then Y;,,, — Y;,,i = 0,1,... are independent and identically distributed, and

Ti41
p(YTl = k) = Zz?ik+1 bi; E(Yﬁ) = %
Observing that M, = Ef(:”l (Y, = Y;,_,) where

I(n:#{kE{l,...,n}ZYk :Mk}

and using the above fact we get from the law of large numbers that

V)

M, as a
EY; )= — 304
Yo 2t my,,) = (301)

as n — oo. Now for any fixed n the time reversed walk {Y, — Y,,_;}, has
the same distribution as {Y;}?_,. From Exercise 2 below it follows that the
corresponding M, and K, for the reversed walk are precisely Y, —info<r<n Yk

and Hp41. By Donsker’s theorem, for any ¢4, ...,
L (v inf Y, 4 (B inf B
— — in : — in
o/n o] 0<i<intel /) cper " ogusn " 1<k<r

d
= (Bulicrer
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Hence by using (304) for the reversed walk, we get

o d
m(%[ntl], .. '7%[ntr]) — (lBh |, Cey |Btr|)

This shows convergence of finite dimensional distributions of the height pro-
cess to the reflected Brownian motion. One can further show tightness as in
[229], whence it follows that the rescaled height process coverges to the reflected
Brownian motion. To prove Theorem 59 one shows that the height process and

Harris walk (the latter run at twice the speed) are close to each other. Details
are in [229].

Exercises

1.* Give bijective proofs of the identities

ig(znn—_]fk— 1) _ n;“ <2nn) (305)

k=1

where the sum is the nth Catalan number, and

zn: g <2”n_ _k N 1) 9 = <2n”) . (306)

k=1

2. (depth-first and height processes)[231][30]

(a) Show that the depth-first walk of a tree is given by Y,,_; = > R,, where
R, is the number of younger siblings of v and the sum is over all ancestors of
n(including itself).

(b) Show that the height process H of a sequence of finite trees is related to the
depth-first walk Y by

7{”:#{kE{O,l,...,n—l}:Yk:ksnjﬁéan}

(Hint: Show that Yy = infy<;<, Y; iff k is an ancestor of n 4 1)

3. (Harris’s embedding in Brownian motion of inhomogeneous ran-
dom walks and associated geometric branching processes) [162] Show
how a random walk on the non-negative integers started at £ > 0, with transi-
tion probabilities p; for ¢ =741, and 1 —p; for z = i—1, ¢ > 0, and absorption
at 0, can be embedded in the path of a Brownian motion started at a suitable
zg > 0 and stopped when it first reaches 0. As Harris observed, the path of such
a walk, started at 1 and stopped when 1t first reaches 0, is bijectively equivalent
to the family tree of a branching process, starting with 1 individual in gener-
ation 0, in which each individual in the (k — 1)th generation has probability
prqr of having exactly » children, » = 0,1,2,.... Each birth in the (k — 1)th
generation of the branching process corresponds to a transition of the walk from
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k to k+ 1, which corresponds to an upcrossing of the Brownian path from zj to
zik+1 before the path first reaches 0. Thus the random plane tree generated by
such a branching process, with geometric offspring distribution with parameter
qi in the kth generation, is embedded in the Brownian path in a natural way.
This idea was further exploited by Knight [210] to derive the Ray-Knight theo-
rems, whereby portions of the local time process (L%.(B),z € R) are described
in terms of various continuous-state branching processes, commonly represented
as squares of Bessel processes, as discussed in Lecture 7.

Some refinements of the convergence of Harris walks Consider critical
GW trees with offspring variance ¢ € (0, 00).

4. TIn the setting of Theorem 59, let N(¢) be the number of zeros of H(:) in
(0,%], which is the number of complete trees encoded by the concatenated walk
up to time ¢. Then (303) holds jointly with

(N(2nt)/v/n,t >0) S (oLt > 0) (307)
where (L, > 0) is the usual local time process of B at 0, normalized so that
L2 | B¢| for each ¢ > 0.

5. [5] Let F, r be a forest of k critical GW trees conditioned to have total
size n. Let Hp g(t),0 < ¢t < 2n be the Harris path associated with F, x, by

concatenation of the Harris paths of the k& trees. It is to be anticipated from
(303) and (307) that as n — oo and k varies with n

k

g4/

where BpT is Brownian bridge B conditioned on LI(BPT) = A, as defined in
Lemma 46. Show this is true for Poisson offspring distribution, with ¢ = 1.

(Hpn 5 (2nu)/v/n,0 <u <1} 5 (207 B (u)] 1 0 < u < 1) if

— ¢ (308)

6. (Problem) Does (308) hold for any critical aperiodic offspring distribution
with o2 € (0,00)?

7. (Problem) In the same vein, let (H(¢),t > 0) be the continuous path ob-
tained by concatenation of the Harris walks of an infinite independent and iden-
tically distributed sequence of critical GW trees. Then it is to be anticipated
that as n — oo

2

(H(2nu)/+v/n,0 < u < 1) given H(2n) =0 % <;|Bbr(u)|, 0<u< 1) , (309)

where the event H(2n) = 0 is the event that after n steps the depth-first search
of the forest completes the search of some tree. This was argued in [5], jointly
with the obvious variant of (307), in the Poisson case. Is it true for any critical

aperiodic offspring distribution with o2 € (0, 00)?

Notes and comments

See Duquesne [102] for some further developments.
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6 The Brownian forest

The Harris correspondence between random walks and random trees suggests
that a continuous path be regarded as encoding some kind of infinite tree, with
each upward excursion of the path corresponding to a subtree. This idea has
been developed and applied in various ways by Neveu-Pitman [271, 270], Aldous
[13, 14, 15] and Le Gall [225, 226, 227, 229].

6.1 Plane trees with edge-lengths

Let us start by describing in combinatorial and geometric terms the kinds of
random trees which are naturally embedded in Brownian paths.

Definition 60 A finite plane tree with edge-lengths is a pair
T = (sHAPE(T),LENGTHS(T))

where SHAPE(T), the combinatorial shape of T is a plane tree with a finite
number of vertices, as in the previous lecture, and if SHAPE(7') has m edges then
LENGTHS(7) is a sequence of m strictly positive numbers, to be interpreted as
the lengths of edges of SHAPE(T) in order of depth-first search.

From now on, the term plane tree will be used for a finite plane tree 7 with
edge-lengths. A combinatorial plane tree such as SHAPE(T) is treated as a plane
tree, all of whose edge-lengths equal 1. A plane tree T is naturally represented
as a subset of the plane R?, formed by a union of line segments, as below, called
a graphical representation of T.

Figure 9: Graphical representation of a finite rooted plane tree with 5 leaves

When 7 is so represented as a subset of R?, the set of vertices of SHAPE(T)
is identified with a corresponding subset of 7, the set of vertices of T, in such
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a way that each edge of SHAPE(T) with length £ corresponds to a line segment
of length ¢ joining corresponding vertices of 7. These line segments, regarded
as subsets of 7 C R?, are the edges of 7. Two edges of 7 may intersect only
at a vertex of 7, and 7 is the union of its finite collection of edges.

Of course, each plane tree has many graphical representations. But it is
easily verified that various definitions made below in terms of a graphical rep-
resentation do not depend on the choice of representation. So the same symbol
T may be used for a plane tree with edge lengths, or one of its graphical repre-
sentations, as convenient.

The correspondence between a combinatorial plane tree and its Harris path
has a natural extension to plane trees with edge-lengths. Let LENGTH(T) be the
total length of all edges of 7. Assuming that 7 is graphically represented as a
subset of the plane, there is a unique continuous map o7 : [0, 2LENGTH(T )] = T,
the depth-first search of T, which runs along the edges of 7 at unit speed,
starting at the root, in order of depth-first search, in such a way that each edge
of T is traversed twice, first moving away from the root, then later moving back
toward the root. Define the Harris path of T to be the continuous function
Hr(s),0 < s < 2LENGTH(T) which gives the distance from the root at time s
of the depth-first search of 7 at unit speed, with distance measured along edges
of 7. More formally, the graphical representation of 7 is regarded as a metric
space with metric d7, where d7(z,y) for z,y € T is the distance from z to y
measured along edges of 7. Then

Hr(s) =dr(o7(0),07(s)) (0 <s<2LENGTH(T)). (310)
where o7 (0) is the root vertex of 7. The following basic facts are easily verified:

e a function H(u),0 < u < t is the Harris path of some n-leaf plane tree
T iff H is non-negative and continuous, with H(0) = H(t) = 0, and the
graph of H is a union of 2n line segments of slopes +1; then H has n local
maxima, at the times s; at which the depth-first search of 7 first visits
the leaves v; of 7,1 <7 <mn.

e Corresponding to each such Harris path H, there is a unique n-leaf plane
tree 7 which is reduced, meaning that 7 has no non-root vertices of degree

2.

e Such a Harris path H, with n local maxima, is uniquely specified by the
sequence (w;, 1 < i< 2n—1), where w; > 0 is the level at which the slope
of H changes sign for the ith time.

e The set of n-leaf reduced plane trees is thereby identified with the set of
2n-step alternating excursions

{(wi1<i<om—1) €RIT: (=1)" 7 ws —wie) > 01 (311)

where wy = ws, = 0.
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Call wop_1 — wom_o the mth rise and way,_1 — way, the mth fall of the 2n-step
alternating excursion (w;,0 < i < 2n) associated with the Harris path H or
the reduced plane tree 7. In particular, the last fall of a 2n-step alternating
excursion 18 ws,—1 > 0. So a 2n-step alternating excursion has n rises and n
falls, each strictly positive. The total length of a plane tree 7 is half the total
variation of its Harris path H7, which equals both the sum of the rises and the
sum of the falls of its alternating excursion:

n n

LENGTH(T) = Y (Wom—1 — Wam—2) = »_ (Wam_1 — Wam). (312)

m=1 m=1
Exercises

1. (Another coding of plane trees) An n-leaf reduced plane tree 7T is de-
termined by the sequence of 2n — 1 distances

(dr(0,4;),1 <i<n)and (d7 (€, liy1), 1 <i<n-—1) (313)

where 0 is the root of 7, and ¢; is the ¢th leaf of 7 in order of depth-first-search.
These 2n — 1 distances (313) are a linear transformation of the alternating
excursion associated with 7, and subject to constraints implied by (311).

6.2 Binary Galton-Watson trees

Call T a planted binary plane tree if the root of T has degree 1, and every other
vertex of 7 is either a leaf or an internal verter of degree 3. Every planted
binary plane tree with n leaves has n — 1 internal vertices and 2n — 1 edges.
It will be evident from the following discussion that the number of different
possible shapes of such a tree is the (n — 1)th Catalan number C,_; as in 299
for £ = 1. The following definition introduces a standard model for random
binary trees, with a non-standard parameterization to be explained later.

BRIV

Co=1 Ci=1 Co =2 Cs = 5 (3 not shown)

Figure 10: The shapes of some planted binary plane trees
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Definition 61 For 0 < A < p, a binary(A, ) tree, denoted G ,, is a random
planted binary plane tree such that SHAPE(G) ,) is a Galton-Watson tree with
offspring distribution

HA+A pw—A

dpy=——
o and ps o

Po =

conditioned on the root having one child, and given SHAPE(G) ,) is some planted
binary tree with n leaves, the 2n — 1 edge-lengths of G, , are independent
exponential (24) variables.

The mean of the offspring distribution is (g — A)/p, so binary(A, u) trees are
critical or sub-critical according to whether 0 = A < g or 0 < A < p. The next
Lemma presents an alternative construction of a binary(A, ) tree G , in terms
of exponential variables with rates § = g+ A and § = p — A, which can be
interpreted as birth rates and death rates in another well known construction
of Gy, recalled in Exercise 1. The non-standard parameterization of these trees
by (A, pt) instead of (8,6) = (1 + A, u — A) is made to simplify later discussion
of associated random forests.

Lemma 62 For 0 < A < pu, a random reduced plane tree is a binary(\, p)
tree iff the succession of rises and falls of its Harris path, excluding the last
fall, is distributed like a sequence of independent exponential variables, with
exponential(p+ A) rises and exponential(pn— X) falls, stopped one step before the
sum of successive rises and falls first becomes negative.

Proof. In the critical case 0 = A < p, this was pointed out in [225] and [271,
p. 246]. See [225] for a proof in this case. The case 0 < A < p can be handled
by a change of measure relative to the critical case. ad

For each fixed ¢t > 0 and n = 1,2,... there is a natural uniform distri-
bution on the set of n-leaf reduced plane trees whose total length is ¢, which
concentrates on planted binary trees. A random tree B™! with this uniform
distribution can be described in three equivalent ways as follows:

Lemma 63 Let B™! be a random reduced plane tree with n leaves and total

length t. Then the following conditions are equivalent.

(i) B™! 4 tB™!, where the distribution of B™ with total length 1 is defined

by
d Tono1
(G u |Gy has n leaves ) = TB ’ (314)
for any fired 0 < X < u, where I'ap_1 is a Gamma-distributed r.v. independent
of B,
(i) sHAPE(B™') has uniform distribution on the set of all Cy_1 planted
binary plane trees with n leaves, and independently of SHAPE(T,) the sequence
of edge-lengths of B™' has distribution proportional to (2n — 2)-dimensional
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Lebesgue measure on sequences of (2n — 1) non-negative numbers with sum t.
In particular, the sequence of edge-lengths of B! with sum 1 has the Dirichlet
distribution with 2n — 1 parameters equal to 1.

(iii) the 2n-step alternating excursion, derived from the Harris path of B™t,
has distribution proportional to (2n — 2)-dimensional Lebesgue measure on the
set of all 2n-step alternating excursions whose total rising length is t.

Proof. Take (i) as the definition of B™*. Then (ii) follows from Definition 61,
and (iii) from Lemma 62. That (ii) and (iii) characterize the distribution of B™*
is evident from the bijective equivalence of the various codings of reduced plane
trees. O

The classification of 2n-step alternating excursions according to the shape
of their associated plane tree corresponds to a decomposition of the polytope of
possible 2n-step alternating excursions into Cj,_; chambers of equal (2n — 2)-
dimensional volume. Various shapes of non-binary trees then correspond to
various facets of the chambers. See [310] for more about polytopal subdivisions
related to plane trees.

Exercises

1. (Lifeline representation of binary Galton-Watson trees) A popula-
tion starts with 1 individual at time 0. Each individual has an exponential (J)
lifetime, and throughout its lifetime gives birth to new individuals according to
a Poisson process with rate 3, assumed independent of its lifetime. These off-
spring continue to reproduce independently of each other in the same manner,
and so on. Assuming 3 < d, let 7 be the random family tree generated by this
process, regarded as a random plane tree, drawn so that

e cach vertex of 7 corresponds to the moment of a birth or death in the
population;

e the lifespan of each individual 1s represented by a path in T, its lifeline,
from the vertex on its parent’s lifeline representing its birth moment to a
leaf representing its death moment;

e the lifeline of each individual in 7 branches to the right of the lifeline of
its parent;

e cach edge or segment of T represents the portion of the lifeline of some in-
dividual between some birth moment and the next birth or death moment
along the lifeline of that individual;

e cach segment-length represents the length of the corresponding time in-
terval.
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The segments of 7 are connected according to the binary Galton-Watson process
in which each segment either terminates with probability §/(5 + ) or branches
into two segments with probability 8/(5 + d), and segments have independent
exponential (3 4 ¢) lifetimes. So T is a binary(A, p) tree with A = (§ — §)/2
and g = (0 + 8)/2. The collection of lifelines of individuals in 7 can also be
regarded in an obvious way as a Galton-Watson process with geometric(8/9)
offspring distribution, whose total progeny equals the number of leaves of the
binary branching tree 7.

2. (The linear birth and death process) [127, p. 456] For T a binary (A, )
tree with A = (§ — 3)/2 and p = (6 + F)/2 as above, let Z; be the number
of branches of 7 at distance ¢ from the root. Then (Z;,¢ > 0) is a Markovian
birth and death process on the non-negative integers with transition rates i3 for
i— i+ 1 and id for i — i— 1. In particular, in the critical case A = 0,8 = = p,

ut

_ . SR 177 i .
e P(Zi=n)= ———— (n>1). (315)

]P(Zt = 0) (1+/Lt)”+1

Notes and comments

There are numerous natural generalizations of the binary branching trees con-
sidered in this section. See for instance [140], [139], [142], [141], [143],

6.3 Trees in continuous paths

Fix some graphical representation of a plane tree 7 with depth-first search path
o : I = T and Harris path H : I — Ryg, where I := [0,2LENGTH(7)]. Then
for u,v € I the height in 7 of the branch point at which the path from a(0) to
o(u) diverges from the path from o(0) to o(v) is evidently

Hlu,v] := inf H(). (316)
teu,v]
Let
dp(u,v) := (H(u) — H[u,v]) + (H(v) — H[u,v]) (u,v e ). (317)

so the distance from o(u) to o(v) in T is
dr(o(u),0(v)) = dn (u,v), (318)

as illustrated by the following figure.

For any subinterval I of R, and any locally bounded function H : I — Rxg it
is obvious that formula (317) defines a pseudo-metric on I. Identify t and ', and
write ¢t ~g t' if d(t,4') = 0. Then the previous discussion can be summarized
as follows:

Proposition 64 Let H = Hy be the Harris path of some graphically repre-
sented plane tree T, and let T := [0,2LENGTH(T)] be the domain of H. Then
the depth-first search of T at unit speed defines an isometry between (I/~pr, drr)
and (T ,d7).
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H(v)
o(u)
o(v)

H(u

H.v)

Figure 11: Depth-first search and Harris paths for a finite plane tree with edge-
lengths

A metric space (S,d) is called a tree if for each choice of u,v € S there is
a unique continuous path ¢ : [0,d(u,v)] = S which travels from u to v at unit
speed, meaning d(u,o(t)) = ¢ for 0 <t < d(u,v) and o(d(u,v)) = v.

Definition 65 [226, 15] If H € C[I], the space of continuous functions from
I to R, then (I/ ~p,dg) is a tree, to be denoted TREE(H). If I = [G, D] or
I =[G, 00) the root of TREE(H) is taken to be {t € T : t ~p G}.

In view of Proposition 64, this notion of TREE(H) for H € C[I] generalizes
the correspondence between a reduced plane tree with edge lengths 7 and its
Harris path H. Refer to Figure 6.3 at end of notes for an example.

For a subset S of I, and H € C[I], the subtree of TREE(H) spanned by S,
denoted SUBTREE(H ; S) is the union over s,t € S of the range of the path from s
to ¢ in TREE(H), equipped with the tree pseudo-metric dgr. Let H € C[I] where
I has left end 0. Assume for simplicity that 0 = H(0) < H(t) for all t € I.
Let 71 > 0. Then SUBTREE(H; {0,71}) is isometric to a line segment of length
H(Ty). For 0 < Ty < Ta, let Sy be a time at which H attains its minumum
on [T1,T3], and suppose to avoid degenerate cases that H(Sy) is strictly less
than both H(Ty) and H(T3). Then sUBTREE(H;{0,T1,T:}) is isometric to a
Y -shaped tree with 3 edges of lengths H(S1), H(T1)—H (S1), and H(Tz)—H(S1)
respectively, whose leaves may be identified, in clockwise order from the bottom,
as 0, 71 and T, respectively, while the junction point is identified with S.
Continuing in this way, it is clear that for any finite sequence of sample times
Ty, ..., T,. the order and metric structure of SUBTREE(H; {0,7T1,...,Ty}) will
be encoded by some plane tree. This can be made precise as follows, with some
simplifying assumptions to avoid annoying cases:
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Lemma 66 Let X € C[0,7T] and suppose X(t) > X(0) = 0 for all t € [0,T].
Let 0< Ty < - <Tp <T, and for 1 <m < nlet S; be a time in [T;_1,T;] at
which X attains attains its minimum on [T;_1,T;], so

X(S;) = X[Ti-1, T3],

and suppose that X (S;) < X(Ti—1) A X(T;). Then suBTREE(X;{0,71,...,T,})
1s isometric to the unique reduced plane tree T whose 2n-step alternating excur-
sion 1s

(0, X(T1), X (S2), X(T3), ..., X(Sn), X(T3), 0). (319)

Proof. It is easily seen that the assumptions on X and the 7; and S; imply
that SUBTREE(X;{0,71,...,T,}) has n leaves, that

0<Thi <S5y << T,
and that the lines joining consecutive points in the list
(0, X(0)), (T1,X(T1)), (S2,X(S2), (T2, X(T2)),... (Tn, X(T4)). (320)

have slopes which are non-zero and alternate in sign. Let Y € C[0,7,] be
the function whose graph is the broken-line joining the points (320). Then
SUBTREE(X;{0,71,...,7,}) is evidently isometric to TREE(Y'), hence also to
TREE(H) where H is the unique continuous time-change of ¥ whose graph has
slopes of £1. But this is the Harris path whose 2n-step alternating excursion is
(319), and the conclusion follows by Proposition 64. a

Now consider the construction of TREE(X) for a random function X € C[/],
such as a Brownian path restricted to 7. Intuitively, TREE(X) should be re-
garded as a random metric space. Technically however, for purposes of measure
theory, let us simply identify TREE(X) with the random element dx of C[I x I].

So for instance TREE(X) 2 TREE(Y) means dx 4 dy which is the same as

(dx (u,v),u,v €1I) 2 (dy (u,v),u,v € )

in the sense of equality of finite dimensional distributions. Now give the space
of reduced plane trees the measurable structure 1t acquires when identified as a
subset of C[0, 00) by using the Harris correspondence T ¢ Hy. Here C[0,1] is
regarded as a subset of C[0, c0), by stopping paths at time ¢. Then it is clear
that SUBTREE(X;{0,71,...,T,}) may be regarded as a random reduced plane
tree for arbitrary /-valued random variables T; defined on the same probability
space as a continuous path process X = (X(¢),t € I).

6.4 Brownian trees and excursions

Let B = (B(t),t > 0) be a standard Brownian motion. An obvious geometric
feature of TREE(B) is that this tree has a unique infinite branch, namely the
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descending ladder set {t : B(t) = B[0,]}. Except on an event with probability
zero, this branch of TREE(B), regarded as a subset of R»o/ ~p, is traversed at
unit speed by the map £ — {T;_,T;} where

T, :=inf{t : B(t) < —{}.

Let I; := [Ty—,T;]. Then TREE(B) is the union over £ > 0 of SUBTREE(B; I),
which is I, equipped with a tree structure isometric by a shift to TREE(B[I])
on [0, 00), where

BIL)(t) = B(Te— +t) ATy)  (t > 0).

Call the descending ladder set of B the floor line, to be identified with Rq
by traversal at unit speed in TREE(B), as above. Then TREE(B) is identified by
a forest of subtrees attached to the floor line, with a copy of TREE(B[I;]) attached
to the point on the floor at distance £ from the root. Thus to describe structure
of TREE(B) it is enough to describe the forest of subtrees (TREE(B[;]), £ > 0).

Proposition 67 Let pg := Ty — Ty_, which is the length of I;. Then the forest
of Brownian subtrees (TREE(B[I;]),£ > 0) is such that

{(£, pe, TREE(B[I])) : £ > 0, e > 0}, (321)

is the set of points of a Poisson point process on R>qx Rxqx C([0, 00)?) whose
intensity measure is

dt
dl ———P B™Y) ed 22
NorIE (TREE( ) € dr), (322)

where TREE(B®®!), the tree generated by a Brownian excursion of length t, is
identified by its distance function as a random element of C([0, 00)?).

Proof. According to the preceding discussion, TREE(B[I;]) is a trivial tree
with only one vertex unless 7, < Ty, in which case TREE(B[I;]) is the tree
generated by the excursion of B — B over the interval I;. So the statement of
the proposition is just a push-forward of the Lévy-Ito description of excursions
of B above B, recalled in (20). O

If B®* is the standard excursion of length 1 derived from B®*! by Brownian
scaling, then the distance from u to v in TREE(B®*") is just \/t times the distance
from u/t to v/t in B¥*. To complete a description of the structure of TREE(B),
regarded as an infinite forest of subtrees attached to the forest floor defined by
the descending ladder set, it remains to describe TREE(B®*). This is done by
the following theorem. For ease of comparison with the work of Aldous [15],
the theorem describes TREE(2B®*) = 2 TREE(B®), that is TREE(B®*) with all
distances doubled.
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Theorem 68 Aldous [15]. Let Uy, Us, ... be a sequence of independent uniform
[0, 1] variables, independent of B®®. Let

Tn = SUBTREE(2B*;{0,U1,...,U,}), (323)
regarded as a plane tree with edge lengths, and let
©, := LENGTH(T,). (324)

0, = /250, = (325)

for a sequence of independent exponential(1) variables ¢;, and
T = 0,8" (326)

where (©,,n > 1) and (B™1,n > 1) are independent, and B™' has uniform
distribution on the set of planted binary plane trees whose total edge-length s 1,
as defined by Lemma 63.

(i1) (Poisson line-breaking construction) The distribution of the se-
quence of trees (Tp,n > 1) is determined by the prescription (325) of their
lengths, and the following: for each n > 1, conditionally given (T;,1 < j < n),
the new segment of length ©,41 — Oy, which 1s added to T, to form Tp41, is
attached at a pownt of T, picked independently of the new segment length ac-
cording to the uniform distribution on edges of T,,, with equal probability to the
left or the right, independently of the point of attachment and the new segment
length.

Then (i)

To rephrase the Poisson line-breaking construction: Let 0 < ©1 < O, < ...
be the points of an inhomogenous Poisson process on R of rate ¢ d¢. Break
the line [0, 00) at points ©,,. Grow trees 7, by letting 7; be a segment of length
©1, then for n > 2 attaching the segment (0,_1,0,] as a “twig” attached to
a random point of the tree 7,_; formed from the first n — 1 segments. Aldous
[15, §4.3] discovered this result via weak convergence of combinatorially defined
random trees, as indicated in Exercises 8 and 9. This combinatorial approach
explains nicely why the Poisson line breaking construction of (7,) implies (326),
which is otherwise not very obvious. But Aldous’s argument identifying the law
of these trees with those embedded in B®* by (323) involved an invariance
principle implied by Theorem 58, Galton-Watson trees with Poisson offspring
distribution or with geometric offspring distribution converge in distribution to
the same limit “continuum tree”; this limit was identified with TREE(2B®*) in
the geometric case via the Harris bijection (Exercise 15) while Poisson line-
breaking arose in consideration of the Poisson offspring case (Exercise 9). Le
Gall [227] gave another proof of (326)-(325) based on calculations with Tto’s o-
finite excursion law. See also [229, Chapter 2]. A more elementary proof can be
given as follows, by relating 7, derived from B** and Uy, ..., U, to the critical
binary (0, %) Galton-Watson tree with exponential edge-lengths conditioned to
have n leaves. Recall that I', denotes a gamma variable with parameter r > 0.
Refer to Figure 13 at end of notes.
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Lemma 69 Let T} < Ts < ... be the times of points of a Poisson process with
rate % on R>o, assumed independent of B. Let [Gr,, Dr,] be the excursion
winterval of B — B straddling T, and let

G := SUBTREE(2B; {Gr,,T1,...,Tn}) where N := > (T} < Dr,)  (327)
i=1
is the number of T; which happen to fall in [Gr,, Dr,]. Then
(1) [343, 168] The tree G is a critical binary Galton-Watson tree, starting with
one wnitial segment, in which each segment branches into either 0 or 2 segments
with equal probability, and the segment lengths are independent exponential(1)
variables.
(i1) [303]
(GIN =n) £ Tgp1 8™ (328)

where s, _1 is independent of B™1, which has uniform distribution on planted
binary trees with n leaves and total edge-length 1.
(iii) [303]
d

(GIN =n)
where [o_y1is independent of T, := SUBTREE(2B®*;{0,Uy,...,Uy,}).

or, 1 7T, (329)

Proof. Part (i) is obtained by application of Lemmas 62 and 66, using the
strong Markov property of B at the times 7;, and the consequence of Williams
path decomposition of B at the time S; € [0,71] when B(S1) = BJ[0,T1], that
—B(Sy) and B(T1) — B(S1) are independent exponential(1) variables. Part (ii)
is then read from (314). As for (iii), it is clear by Brownian scaling that

(G| D1, —Gr, =t,N =n) = V4 T,.

From (322), the rate of excursions with length in d¢ which contain exactly n
Poisson points is

1 .
—= 17324t e 2 (t)2)" fnl = ept" T e 2 dL.

V2r

This implies that (Dp, — G, | N = n) < 2T, _1 and the conclusion follows. O

Proof of Theorem 68 This is a translation in terms of trees of an argument
given in [303] in terms of alternating walks. By consideration of moments and
the gamma duplication formula,

Tan 1 £ /20, _1/5/2T7, (330)

where T',,_;/5 is assumed independent of I'}, with the same distribution as T',.

Now (329) and (328) give

o, 1T £\ /20, 1 /2T, B
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It is easily argued that the common factor of | /ZFH_% can be cancelled [303,

Lemma 8] to yield (326) with £ instead of =. To check that the &; de-
fined implicitly by (326) are independent standard exponential, independent
of (B™',n > 1), takes a bit more work. But this is essentially elementary,
because the conditional law of (7;,1 < j < n) given 7, is determined by a sim-
ple process of random deletion of vertices and their incident edges. The same
elementary considerations yield (ii). m|

Exercises

1. (Identification of paths in trees derived from continuous functions)
Fix X € C[I]. Lett := {u € I : u ~x t}. Note that if ¢ is the minimal
element of ¢, then ¥ = {u : X(u) = X[t,u] = X(t)}. For s,u € I the unique
path from § to @ at unit speed is determined by its range in I/ ~x. This
subset of I/ ~x is identified in the obvious way with a a subset of [s,u], call
it the segment of TREE(X) between s and u. This segment is the union of a
falling segment {v € [s,u] : X(v) = X[s,v]}, of length X(s) — X[s,u], and a
rising segment {v € [s,u] : X(v) = X[v,u]} of length X (u) — X[s, u], these
segments intersecting at the set of points {v € [s,u] : X(v) = X[s,u] where
X attains its minimum on [s, u]. Each of these segments may also be regarded
as a subset of I/ ~x which is isometrically parameterized by an interval. The
falling segment is naturally parameterized by [X[s, u], X (s)], the rising segment
by [X[s,u], X ()], and the whole segment by [0, dx (s, u)].

2. Let { be the equivalence class of t € R > equipped with the Brownian tree
metric dg. Deduce from the strong Markov property of B that

P(|tj=1or2or3forallt>0)=1.

Check that {t : = 3} is a.s. equal to the countable set of all local minima of B
besides those in the descending ladder set. See [271] for further analysis of local
minima of B. Check that {¢ : = 2} is an uncountable set of Lebesgue measure
0. This is essentially the skeleton of TREE(B), as discussed in Lecture 9. Both
sets are a.s. dense in R>g, both in the usual topology and in the topology of
TREE(DB). -

3. (Different processes with the same tree)
TREE(B) = TREE(B — 2B) £ TREE(R3) (331)

where the first equality holds for every path B € C[0, o), and second equality
in distribution, read from (18), assumes B is a standard Brownian motion and
Rj3 is the 3-dimensional Bessel process. Hence for each fixed s,

(dp(s,5+1),t > 0) £ (Ra(t), ¢ > 0)

but it seems there is no simple description of the joint law of dp(u,v) as both
u and v are allowed to vary. Note the implication of (331) that there is loss
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of information in passing from X to TREE(X). Except if X (¢) > X (0) for all
t > 0, or if it is assumed that X has some particular distribution, the path of
X typically cannot be recovered from TREE(X). Neither is the distribution of
X determined by that of TREE(X).

4. (The filtration generated by the tree) Let (B:,7 > 0) be the Brownian
filtration By := o(B;,0 < s < t) and let R; be the o-field generated by the
restriction of TREE(B) to [0,¢]. Check that R; = o(R;,0 < s < ) where
R: = dp(0,t) as in Exercise 3, and hence that B; is generated by R; and B(?)
where the conditional law of B(t) given R; is uniform on [—R(t), 0], as recalled

in (31).

5. (Processes generating Brownian trees) Show that for each probability
distribution F' of a random variable M with values in [—oo, 0] there is a unique

distribution on C[0,00) of a process X such that TREE(X) L TREE(B) and
X[0,00) 2 M. Tn particular, if M = —oco then X 4 B, and if M = 0 then
x < Rj3. Describe the law of X by an explicit path decomposition in the case

M = m for some fixed m € (—00,0), and hence give a construction of X
corresponding to an arbitrary distribution of M.

6. (Trees derived from paths falling below their initial value) See Figure
12. Generalize Lemma 66 to the case when X may fall below its initial value,
when the 2n-step alternating walk is not an excursion, by considering excursions
of the alternating walk above its past minimum process. In general, the subtree
of TREE(X) spanned by 0,71, ...,7, is determined by the 2n-step alternating
walk derived from the X (7;) and intermediate X (S;), but not conversely.

7. (Trees generated by bridges and meanders) Describe as explicitly as
possible the laws of the trees generated by each of the following processes indexed
by [0, 1]: Brownian motion, Brownian bridge from 0 to z, Brownian meander,
Brownian meander from 0 to z. (Nasty descriptions in terms of alternating walks
were given in [303]: there are much nicer descriptions, either in the style of the
Poisson line-breaking construction, or in terms of forests of trees associated with
excursions).

8. (Aldous’s proof of Theorem 68) Let Uy have uniform distribution on
the set of NV=! rooted trees labeled by [N]. For 1 < n < N let U, y be the
subtree of U, n spanned by the root and [n], let 7, x be U, n regarded as an
ordered plane tree (e.g. by imposing a random order), and let R, x be the
reduced plane tree derived from 7, y by first giving each edge of 7, x length
1/v/N, then deleting all degree 2 vertices. Let By, n be the indicator of the
event that R, n is a planted binary tree with n leaves, and let L, n(7) be the
length of the 7th branch of R, n, in order of depth first search. Check by direct
enumeration that for each fixed n, as N — oo,

(La,n(7),1 <i<2n—1)1(BnN) 4, (X;,1<i<2n—1)

where the right side is the sequence of lengths of branches of 7,, in Theorem 68.
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Now deduce Theorem 68 from Theorem 58. This method has proved effective in
characterizing other kinds of continuum random trees besides TREE(B®¥). See

[7, 6].

9. (Combinatorial view of the line-breaking construction) (Aldous [13,

14, 15]) Take (E}N),i > 1) independent uniform on [N]. Make a tree on [N]
by declaring 1 to be the root and, for ¢ = 2,3,..., N, put an edge from ¢ to
min(i — l,é’Z(N)). Apply a uniform random permutation to the vertex-labels
[N]. The resulting tree Uy is uniform on all N¥~! rooted labeled trees, as in
Exercise 8. (This fact is not obvious; it can be deduced from the Markov chain
tree theorem [245] applied to the Markov chain (E(N)); see also Definition 105

and papers cited there). Let RSN),RéN)

which ¢ < i — 1. Show that

,... be the successive values of 7 for

NYRM n>1) 3% (0,,n>1)

n -

where the right side is defined by (325). Deduce that for fixed n, if we give length
N2 to the edges of Uy, then the subtrees comprised of the first R;N) vertices
converge in distribution to 7, defined in the Poisson line-breaking construction

(Theorem 68 (ii)).

10.* (The Poisson line-breaking construction of B®*.) Let (7,)n=1,2, .. be
the sequence of random trees defined by the Poisson line-breaking construction,
as in Theorem 68(ii), with ©, = LENGTH(()7,). Then there exists on the
same probability space an a.s. unique Brownian excursion B®* and a.s. unique
independent uniform U; such that 7, is the subtree of TREE(2B®*) spanned by
{0,U1,...,Un}. To be explicit, if H,, is the Harris path of 7y, then

H,(20,u) —» 2B°"(u) (0<u<1) (332)

uniformly almost surely, and U, is the limiting fraction of times that new edges
added to the tree are added to left of the nth edge that was added. If (W, x,0 <

k < 2n) is the alternating excursion associated with 7,, then for 1 <m <n
Wn,Qm—l = QBex(Un’m) (1 S m S n) (333)
where Uy, », is the mth smallest among Uy, ..., Uy, and for 1 <m <n -1

Wn,?m = QB_eX[Un,ma Un,m+1]~ (334)

11. (An urn-scheme construction of B®*.) Let (S,)n=12,.. be the se-
quence of shapes of the random trees (7,)n=12, . defined by the the Poisson
line-breaking construction, as in Theorem 68 (ii). So S, € BINARY,,, the set of
n-leaf combinatorial planted binary plane trees. Let S, be S, with its n leaves
labeled by [n], according to their order of addition in the growth process. So
S[n] € BINARY[,], the set of n-leaf binary plane trees with leaves labeled by [n],
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with [BINARY [n]| = n!|BINARY,|. Show that both (Sn)n=12,.. and (Sp)n=1,2,...
are Markov chains, and describe their transition probabilities. Check in par-
ticular that given Sp,), the next tree Sp,41] is equally likely to be any of the
2(2n — 1) trees which can be grown from Sp,) by replacing one of the 2n — 1
edges of S, say the edge a — b, by two edges and a new internal vertex c to
form a — ¢ — b, then attaching the leaf labeled (n+ 1) by an edge (n+1) = ¢,
on one side or the other of ¢ — ¢ — b. Note the byproduct of this argument
that forn=1,2,...

2
|BINARY[41]] = 2" (1 X 3 X 5 x -+ x (2n — 1)) = <nn>n!, (335)
and hence where
|BINARY [, 1] 1 2n o
|[BINARY 41| = (1) =i iln (336)

which is the nth Catalan number C, [351, Exercise 6.19]. Thus a sequence
of trees distributed like (S[n])nzlygw can be grown by a simple urn scheme
construction, similar to the Chinese Restaurant Process, and S, is derived from
Spn) by ignoring the labelling by [n]. Deduce from (332) and ©, ~ /2n a.s.
that if Hg,_ is the Harris path of S,, then

Hs, (2(2n — 1)u)

V2n
uniformly almost surely, where B** the same Brownian excursion as that derived
similarly from (7,)n=1,2,.. by (332). As a check on the normalization, the weaker

—=2B%(u) (0<u<l) (337)

form of (337) with 2 instead of almost sure convergence is the instance of
Aldous’s Theorem 58 for binary branching, due to Gutjahr-Pflug [155]. See also
[215, 322, 362, 363, 203] for various other models for random growth of binary
trees.

12. (Independent self-similar growth of subtrees) The combinatorial tree
growth process (Sp)n=1,2,.. embedded in B®* as in the previous exercise has the
following remarkable property. Suppose that e is one of the 2m — 1 edges of S,,,
for some fixed m. Then for each n > m there is an obvious way to identify a
subtree of §,, formed by e and all its offshoots, which will be a combinatorial
planted binary plane tree. If this sequence of offshoots grows by addition of
leaves at random times m < Nj(e) < Na(e) < ... say, then Ni(e) increases to
oo almost surely, and the sequence of offshoots of e, watched only at the times
m, Ni(e), Na(e), ..., and re-indexed by 1,2,... defines a tree growth process,
call it the sub-process generated by e, which process has the same distribution
as the original growth process. Moreover, as e varies over the 2m — 1 edges of
Tm, these 2m — 1 sub-processes are independent.

13. (Dirichlet distribution of proportions of subtrees). Continuing the
previous exercise, for each fixed m, as n varies over n > m, the process of
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allocation of new leaves to the offshoots of edges e of S, is equivalent to Polya’s
urn scheme with 2m — 1 initial balls of different colors, governed by sampling
with double replacement. Hence, by Exercise 2.2.2, as n — oo, the proportions
of edges in the 2m + 1 subtrees converge almost surely to a random vector with
the symmetric Dirichlet distribution with 2m + 1 parameters equal to % Note
that the same is true of proportions of leaves, since a planted plane binary tree
with 2n—1 edges has n leaves. Both processes may be regarded as developments
of the Blackwell-MacQueen urn scheme [55, 298].

14. (An urn-scheme construction of B"".) Recall that Spn) 1s 8y with the
leaves labeled by their order of appearance in the urn-scheme construction. Let
o(t),0 <t < 2(2n — 1) be the usual depth-first search of S,, and define the
trunk of S, to be the path from its root to the vertex labeled 1 in S[n]. For
0 <u < 1let R,(u) be the distance from ¢(2(2n—1)u) to the trunk as measured
along edges of S,,, and let S, (u) be R, (u) with a sign +1 according to whether
o(2(2n — 1)u) is to the left or the right of the trunk. Then, as companions
to (337), there is almost sure convergence of S,/\/2n to 2B and R, /\2n
to 2|BP"|, where BPT can be derived as a measurable function of B®* and the
independent uniform variable U; which is the limiting fraction of leaves of S[n]
which are to the left of leaf 1 at the top of the trunk. This is a variant of
transformations between B®* and BP" discussed in [42]. Note how the uniform
location of 1 among the leaves implies Lévy’s theorem that fol 1(BE* > 0)du has
uniform [0, 1] distribution. See Kallenberg [191] for a generalization of this fact
to bridges with exchangeable increments, and related results.

15. (Weak convergence of conditioned Galton-Watson trees.) Consider
a critical Galton-Watson branching process with offspring variance o2. Write
T for this tree conditioned to have exactly N vertices, with each edge given
length N~'/2. Aldous [15] gave a sense, implied by Theorem 58, in which Tx
converges in distribution to TREE(20~1 B®*). Check the scaling constant 2/¢ is
consistent with what is known by other methods in the following three special
cases.

e (a) For Poisson(1) offspring distribution. Here SHAPE(7x) is obtained by
randomly ordering the branches of the uniform tree Uy of Exercise 8.

e (b) For geometric(1/2) distribution. Here SHAPE(7x) is uniform on all
combinatorial plane trees, which by the Harris correspondence are bijective
with simple walk-excursions of length 2N.

e (¢) For binary offspring distribution, i.e. uniform on 0 and 2. Now
SHAPE(7y), for N = 2M — 1, is uniform on binary plane trees with M
leaves, as in Exercise 11.

Notes and comments

Neveu [267, 268] introduced a notion of marked trees, used also by Le Gall,
which 1s essentially equivalent to the notion of plane trees considered here.



6.5 Plane forests with edge-lengths 127

The structure of SUBTREE(B; {Ty,T1,...,Tn}) for suitable random Ty, ..., Ty,
was first considered in [271, 270], where it was shown that some 7; defined in
terms of successive upcrossings and downcrossings by B induce a critical binary
Galton-Watson tree. Aldous ([15] and subsequent papers) calls TREE(2B®*) the
Brownian continuum random tree (CRT). See also [16] regarding recursive self-
similarity properties of TREE(2B%), and random triangulations. Kersting [202]
discusses symmetry properties of binary branching trees implicit in Aldous’s
description of TREE(2B).

6.5 Plane forests with edge-lengths

The 1dea of this section is to consider the tree
F := sUBTREE(B; {0,71,T5,...})

for B a Brownian motion, and suitable increasing sequences of random times 7},
called sampling times. To avoid uninteresting complications, it will be assumed
throughout that

0=To<Th<Ta<--<Thto (338)

almost surely. The assumption that 7, 1 co implies inf,, B(7},) = —oo, which
means that F will contain the entire infinite floor line of TREE(B) corresponding
to the descending ladder set of B. Thus F may be regarded as a random locally
finite finite plane forest, that is an infinite sequence of plane trees, each with a
finite number of edges of finite length, with the roots of these trees located at
some strictly increasing sequence of points

0< i <La< < Lptoo

where Ly is the common value of —B(t) for ¢ in the kth excursion interval of
B — B that contains at least one T;. Moreover, it is clear that with probability
one, each of the tree components of F will be a planted binary plane tree, and
that F can be identified graphically when convenient as a subset of R2 The
definition of Harris paths is extended to such forests (including also subforests
with only a finite number of trees) as follows. If Fy is the trivial forest with no
trees, then Hyz, is the trivial path, starting at 0, with constant slope —1. For
a non-trivial locally finite plane forest F, let Hz(-) be defined by inserting the
Harris paths of the component subtrees of F into the trivial path, in such a way
that if 7; is the tree component of F whose root is located at 4;, and

T, =4 + ZQLENGTH(’Tj) =inf{t: Hr(t) = —4;}
J<i
then
Hy(T;+t) = Hr,(t) (0 <t < 2LENGTH(T;))
and Hz(-) is continuous with slope —1 on each of the intervals

(-1 + Z 2LENGTH(T;), 4; + E 2LENGTH(T;))

J<i j<i
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where £y = 0 and £ = oo if F has fewer than k trees. Refer to Figure 14 at end
of notes.
Intuitively, for reasonable families of sampling times (7", i > 1) whose inter-

vals become small as m — 0o, we expect the forests 7 = sUBTREE(B; {0, 77", T3, ..

to converge to TREE(B). It will now be shown that there are two particular
choices of sampling sequences for which the forest-valued processes (F™) have
interesting autonomous descriptions, given in Definitions 75 and 80. To get
started, note that various results presented in terms of trees in the previous
section now have analogs in terms of forests. For instance, here are the forest
analogs of Proposition 64, Lemma 62, Definition 61, and Lemma 66.

Proposition 70 Let H = Hx be the Harris path of some locally finite graphi-
cally represented plane forest F. Then the depth-first search of F at unit speed
induces a bijection from [0,00)/ ~m to F whereby the metric space [0,00)/ ~g
is isometric to (F,dr).

Lemma 71 Form =1,2,...let Sy, be a time in [T,—1, T,n] at which B attains
attains its minimum on [Ty,—1, Tr] so

B(Sm) = E[Tm—la Tm]

Then sUBTREE(B;{0,T1,Ts,...}) is isometric to the the unique locally finite
forest defined by a sequence of reduced plane trees attached to points along a
floor line, whose Harris path Hx(+) is a time-change with alternating slopes +1
of the broken line joining the sequence of points

(0,0), (S1,B(S1)), (T, B(T1), (S2, B(S2)), (T», B(T3)), ...

The notation F(B;{0,T1,Ts,...}) may now be used either for the locally
finite reduced plane forest defined by the Lemma, or for the isometric infinite
subtree of TREE(B) spanned by the {0,737,75,...}.

Definition 72 A binary(A, u) forest is a planted binary plane forest F with
edge-lengths whose trees are a sequence of independent and identically dis-
tributed binary (A, ) trees, which are rooted at the set of points of an indepen-
dent Poisson process on [0, 0c0) with rate p — A.

Lemma 73 A locally finite forest F of reduced plane trees is a binary(\, p)
forest if and only if the succession of falls and rises of its Harris path Hx is a
sequence of independent exponential variables, with exponential(+ \) rises and
exponential(p — A) falls.

Proof. This follows from Lemma 62 and the fact that the exponential rate
i — X of the spacings between trees in a binary (A, ) forest is by definition the
same as the rate of the exponential falls of the alternating random walk used
to construct the binary(A, p) tree. This means that the absolute value of the
overshoot of the alternating exponential walk used to make the ith tree of the

3y
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forest has exactly the correct exponential(pu—A) distribution to make the spacing
on the forest floor between the ith and (i + 1)th trees. O

Note how the description of the binary(A, ) forest is simpler than the cor-
responding description of the binary (A, y) tree by stopping the associated alter-
nating random walk when it first steps negative.

6.6 Sampling at downcrossing times

Throughout this section, let B denote a standard Brownian motion, with By =
0. Following [271], consider for each 6 > 0 the sequence of downcrossing times
{D? } defined inductively as follows. Let D§ = 0. Given that D? has been
defined, let

Ul o =inf{t: B, — B[D} ] =671},

DY, c=inf{t : B[U} ;8] — B, =07'}. (339)

In words, Uﬁm+1 is the first time after D? that B completes an upcrossing of
some interval of length =1, and Dfn+1 is the next time after U7€1+1 that B
completes a down-crossing of some interval of length 6§~!. By construction,
the DY are stopping times relative to the filtration of B, and B[D? Dfn_l_l) =
B(U7?1+1) —6#~1. The level 8! is chosen so that @ is the rate, per unit increment
of —B, of the Poisson process of excursions of B — B which reach level §71.

Theorem 74 [271] For each fized § > 0,
Fb o =F(B;{0,D¢,D5 ..}

is a binary(0,0) forest of critical binary trees, in which segments are attached
to the floor by a Poisson process with rate 8, each segment has either 0 or
2 children with equal probability, and the lengths of segments are independent
exponential(20) variables.

Proof. This can be read from the Poisson character of Brownian excursions,
as shown in [271]. O

Two alternative viewpoints are useful. Firstly, the forest F% may be re-
garded as an infinite subtree of TREE(B). From this perspective, the process
(fg).%o is a forest growth process, meaning that }"g can be identified as a
subforest of fg whenever A < pu. Secondly, to regard (fg).%o as a forest-
valued process, the space of locally-finite plane forests is identified as a subset
of C[0, 00) via the Harris correspondence, and C[0, c0) is given the topology of
uniform convergence on compacts. The forest growth process (}"%)Do has the
special property that for each fixed A > 0 the entire path (}"jg)o<g_<>\ can be
recovered as a measurable function of fg. Indeed, as h increases, the process

(Té/h)h>0 is the deterministic process of continuous erasure of tips, described
already by Neveu [268]. The law of the whole forest growth process (fg)gzo is
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determined by this observation and the distribution of Tg for fixed 6 given by
Theorem 74. The following definition is suggested by the these considerations
and the work of Abraham [1, p. 382]:

Definition 75 A tip-growth processis a time inhomogeneous forest-valued Markov
process with continuous paths, (]7‘9)920, which starts at the empty forest at time
# = 0, and develops as follows:

e at each time #, along each side of each edge of F? new tips of length 0
are born according to a Poisson process with unit rate per unit length of
side per unit time;

e cach tip that is alive at time # i1s growing away from the root of its tree at
speed 2.

In the description of these Poisson rates, each of the subintervals of [0, o)
between the roots of trees of F?, including the interval before the first root, is
regarded as an edge of F? with only one (upward) side from which new tips
can sprout and then grow into larger trees by addition of further tips. All other
edges of F? are regarded as having two sides.

Now there is the following refinement of Theorem 74:

Corollary 76 The forest-valued process (F&)g>o is a tip-growth process such
that F% is a binary(0, ) forest of critical binary trees. Conversely, if (F¥) g0 is
such a forest growth process, there exists on the same probability space a unique
Brownian motion B such that (}"9)920 = (fg)gzo almost surely. Explicitly,
B(t) = lim HY(6t) (0<t< o0) (340)
8—o00

where HY is the Harris path associated with F?, and the convergence holds in
C[0, 00) almost surely.

Proof. The first sentence can be read from the previous discussion, and Ito’s
excursion theory. See Abraham [1, p. 382], where the tip-growth evolution is
described just for a single tree born at time # which is then destined to have
ultimate maximum height #='. The proof of the converse is similar to the proof
of the converse in Exercise 6.7.1. See also Abraham [1, V], where a variant of
(340) is given for recovery of a single excursion of B from a growing family of
subtrees. a

To amplify the Brownian interpretation of the tip-growth process, a tip born
at time 6 will have grown into a branch of total length #~' —¢~! at a subsequent
time ¢, by which time other tips may have started growing from this branch
according to the Poisson process of birth of new tips. Thus each tip born at
time @ anticipates a local maximum of B at a level exactly = higher than the
level where the tip is born. See also Abraham [1] for further discussion.
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6.7 Sampling at Poisson times

Let N be a homogeneous Poisson point process on (0,00)?, with unit rate per
unit area, assumed independent of the Brownian motion B. Consider the forest-
valued process

‘7:]6\7,3 = f(B’OaTlgaTga)
generated by sampling B at the times

T€

= inf{t : N([0,#] x [0, 36°]) = m}. (341)
To match the parameterizations of the two forest growth processes described

by Theorems 76 and 77, the level %92 is chosen in (341) so that # is the rate of

excursions of B away from 0 during which contain at least one point of N below
that level. It follows that sample times 7, and D? have the same mean 2/62,
but their distributions are not the same. From Definition 339, the distribution
of DY is that of the sum of two independent copies of the first hitting time of
6=! by |B|, which is not the same as the exponential (%92) distribution of 7.

Theorem 77 [343, §6.2],[168] For each fired § > 0, the infinite sub tree }"J(’{,’B
of the Brownian tree, obtained by sampling at Poisson times with rate %52, s a
binary(0,0) forest of critical binary trees, hence identical in law to Tg obtained
by sampling at downcrossings of size 671,

Proof. In view of Lemma 62, and the coding of forests by alternating walks,
part (i) follows from the strong Markov property of B at the times T}, and
Williams’ decomposition of B at the time Tl(e) of its minimum before the
exponential(%@z) time TQ(H), whereby the random variables B(S?) := B(TY})
and B(TY) — B(S?) are independent exponential(f) variables. See also [343,
§6.2], [303], [168] for variations of this argument. O

The parallel between Theorems 74 and 77 invites an analysis of the forest
growth process (F§ g)o>0 analogous to Corollary 76. An analog for the Poisson-
sampled Brownian forest of Neveu’s process of erasure of tips is provided by the
following lemma, which follows immediately from standard properties of Poisson
processes:

Lemma 78 For F? = Tjg\f,BJ the forest growth process is such that for each
0 < X < p, conditionally given F*, the forest F* is derived from F* by taking
the subforest of F# spanned by a random set of leaves of F* picked by a process
of independent Bernoulli trials so for each i the ith leaf of F* in order of depth-
first search is put in the spanning set with probability A /u?.

This lemma and Theorem 77 determine the joint distribution of F* and F*
for arbitrary 0 < A < g. This in turn determines the distribution of the whole
forest-growth process (f9)9>0, because it turns out to be Markovian. This
Markov property is not obvious, but a consequence of the following lemma.
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To formulate the lemma, consider more generally a forest growth process
(}"6)9>0. Then for each choice of A and g with 0 < A < p, there exists a joint
graphi_cal representation of F* and F*, as unions of line segments in the plane,
such that F? is contained in F#. The set-theoretic difference F# — F* is then
a disjoint union of subtrees of F# each attached to some point on the sides of
F*. For each of these subtrees, if it is attached to point z on the side of F?,
let the subtree be detached from x and then rerooted on an empty forest floor
[0,00) at distance t(z) from 0, where #(z) is the time at which z is visited in
the depth-first search of F* at unit speed.

The result is a new forest FA7# the forest of innovations or increments in
the forest growth process between times A and p. Now F? can be understood
as derived from the earlier forest F# and the forest of innovations F*~# by
an operation of composition of F* and F*7# whereby the forest FA7# is
wrapped around the the sides of F* according to the depth-first search of F*
at unit speed. Refer to figure 15 at end of notes.

In terms of Harris paths, this means that the Harris path of F* is obtained
by inserting excursions defined by the Harris path of F*7# into the Harris path
of F* at appropriate times. Two precedents for construction of processes by
this kind of insertion of excursions are the approximation of continuous time
countable state space Markov chains with instantaneous states [135], and the
construction of downwards skip free processes driven by a subordinator [2]. Say
that a forest growth process (F?)s>0 has independent growth increments if for
each choice of times 0 = 6y < 6; < ... < #, the increments F?i-1=% for
1 <7< n are independent. Obviously, such a process is Markovian.

Theorem 79 The Poisson-sampled Brownian forest (F%)g>o 1= (F% p)o>o has
independent growth increments, such that for each 0 < A< p the forest of
increments FA*7# is a binary(\, p) forest as in Definition 72. Moreover, (F%)g>o
1s a twig-growth process, in the sense of the following definition. -

Proof. This is deferred to the next section. O

Definition 80 cf. [13, p. 2, Process 2] A twig-growth process is a forest-valued
process (}"6)920 such that, with the conventions discussed in Definition 75

. (fa)gzo is a time inhomogeneous forest-valued Markov process with cadlag
paths, which starts as the empty forest at time # = 0, and develops as
follows:

e at each time #, along each side of each edge of F?, twigs are attached to
that side according to a Poisson process with rate 1 per unit length of side
per unit time;

e given that a twig is attached to a point x on some side of F? at time 6,
the length of that twig has exponential(26) distribution.
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Note that the rule for generation of points of attachment of new twigs in
the twig-growth process is identical to the rule for generation of new tips in the
tip-growth process, according to Definition 75. But a tip that appears in the
tip-growth process at time 6 grows continuously to an ultimate length of 6=,
whereas a twig appearing at time 6 in the twig-growth process grows instanta-
neously and hence discontinuously to its final length, which is exponential with
mean %9_1.

The twig growth process is most easily motivated as the “local” (that is, near
the root) variant of a process implicit in the Poisson line-breaking construction.
To outline this connection, recall the description below Theorem 68 in terms of
the inhomogenous Poisson process (0;), with intensity ¢dt. Fix an edge segment
I of some initially fixed length € near the root in some 7, and consider how twigs
are subsequently attached to points within that edge segment. The ith such twig
to be attached will be an interval of [0, c0) of the form [él, O; + n(él)), where
by Poisson thinning the ((:)Z) are the points of a Poisson process with constant
rate €, and n(f) is approximately exponential(f) for large §. Now imagine
traversing [0, co) at speed 2/¢, so that at time 6 we are at position 20/e, Then
the times of attachments of twigs to segment I will be approximately Poisson,
rate 2, and a segment attached at time # will have length with approximately
exponential(26/¢) distribution. Now magnify all lengths by a factor 1/¢; in
particular the initial edge of 73 now has length of order 1/e. The above definition
of the twig growth process is identical to the ¢ — 0 limit of this process, except
for the following subtle difference: Part of our convention about forests is that
the floor has only one side, while the edges of trees have two sides. But in the
above limiting argument, the floor arises as a limit of a tree edge, so needs to be
given two sides. Exercise 6 develops this variation of the twig growth process,
as originally defined by Aldous [13, p. 2, Process 2].

Exercises

1. Explain why a twig-growth process has independent growth increments.
2. Show that the first sentence of Theorem 79 implies the second one.

3. (Problem) Theorem 79 implies that if (waig)gzo is a twig-growth process,
then

waig is a binary(0, ) forest of critical binary trees. (342)
It must be possible to check this by showing that this family of laws satis-
fies a system of Kolmogorov forwards equations generated by the jump-hold
description of suitable restrictions of the twig-growth process. Formulate the
appropriate equations, and show they are uniquely solved by this family of laws.
That done, it should be possible to complete a proof of Theorem 79 by a rep-
etition of the argument to show that the forest of increments between times A

and p is a binary (A, p) forest.

4.* (Recovery of B and N from a twig growth process) This corollary
of Theorem 79 sharpens the results of Aldous [13], who used the twig-growth
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process to construct a random metric space isometrically equivalent to the self-
similar Brownian tree, without reference to Brownian motion. Given a twig
growth process (F?)p>0, there exists on the same probability space a unique
Poisson process N and a unique Brownian motion B such that (.7-"9)9>0 =
(}-16\'(,3)920 almost surely. Moreover, both N and B are almost surely unique,
and they are independent. In particular, B(-) is recovered from (F%)gsq just as
in (340), and for each fixed m and A > 0 the time T}, of the mth point of N in
(0,00) x [0, 2)%] is recovered as the almost sure limit

™ = Jim S0 /g (343)

where S,(,i"e) is the a.s. unique time s at which the Harris path of % has a local
maximum at the height above the forest floor of the mth leaf of F?.

5.* (Almost sure identity of the two infinite forests) For each fixed A > 0
and each fixed £ > 0, there exists an almost surely finite random time ©(A, ¢)
such that

F3[0,4] C Fi p and Fy [0,4] C Fp for all > O(), ¢) (344)

where F[0, £], the restriction of F to [0, £], is obtained by clear-cutting all trees
of F whose roots fall in (¢, c0).

6. (The self-similar CRT) Write B* for two copies (B*(t),t > 0) and
(B~ (t),t > 0) of standard Brownian motion, or equivalently the two sided
motion (B =+ (t), —00,t < oo). Interpret TREE(BT) as the two-sided forest, in
which BT defines trees “upwards” from the floor [0, cc) while B~ defines trees
“downwards” from the floor [0, 00). This is the limit tree suggested by the dis-
cussion above Definition 80. The scaled tree TREE(ZBi)7 or equivalently the
scaled tree TREE(?R?{:) for two-sided Bessel(3) R?ﬂf (cf. Exercise 3 of last section)
is what Aldous [20] called the self-similar CRT. (a) Extend B®* to all real ¢ by
interpreting B**(t) = B**(¢ mod 1). Observe that as ¢ | 0

(/2B (et), —o0 < t < 00) 5 (R (1), =00 < t < o0).

In this sense, two-sided Bessel(3) is the “local limit” of Brownian excursion
near 0. (b) Combine the discussion above Definition 80 with Exercise 9 of the
last section to argue informally the following. Let #/y be uniform on all NV—1
rooted labeled trees. Let k(N) — 0, k(N)/N~="? = co. Give length k(N) to
each edge of Un. Then Uy converges in distribution to the self-similar CRT
[20].

Notes and comments

Special thanks to David Aldous for help in writing this section, which bridges
the gap between descriptions of the Brownian forest given by Neveu-Pitman
[271, 270] and Aldous’s construction of a self-similar CRT by the twig growth
process.
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6.8 Path decompositions

Definition 81 Given a path B and sampling times T, 75, .. ., the alternating

lower envelope of B deriwved from Ty, T3, ... 1s the process with locally bounded
variation A; 1= A;(B,T1,Ta,...) defined as follows:

B[Tm, 1] ift € [T, Smt1]

Ar =19 5 . 345

: { Bt Toys] i1 € [Smpr, Touga] (345)

where Ty = 0 and Sy,41 is the time in [T}, T;n41] at which B attains its mini-
mum on that interval. Call the reflected process RY := B; — A? > 0 the height of
B above its alternating lower envelope derived from T1,Ts, ... Define a random
sign process oy, with ¢ = —1 if ¢ is in one of the intervals [T}, Spm+1] when A
is decreasing, and oy = +1 if ¢ is in one of the intervals [Sp41, Tint1] when A is

increasing, so the process
¢
L;:= / osdA,
0

is a continuous increasing process, call it the increasing process deriwed from B
and Tl,TQ, .

Lemma 82 For an arbitrary continuous path B with inf; By = —oo, let F be the
forest derived from B by sampling at some finite or infinite increasing sequence
of times Ty,, and let F" be the forest derived from B by sampling at some
sequence of times T, where {T)\} = {T),} U {T4,,} for some finite or infinite
increasing sequence of times T,,. Let Ay = Ay(B,T1,Ts,...) be the alternating
lower envelope of B induced by the {T,,}, let Ly = L(B,T1, T3, ...) be increasing
process derived from B and the {Ts,}, Then the forest of innovations grown
onto F to form F' is identical to the forest derived from B — L by sampling at
the times {T4,.}.

Proof. This is left as an exercise. O

Theorem 79 now follows easily from the construction of the forest growth
process (.7-"9)920 by Poisson sampling of B, the previous Lemma, and the fol-
lowing lemma.

Lemma 83 For § € R let P_5 govern (By,t > 0) as a Brownian motion with
drift —8, meaning that the P_; distribution of (B, t > 0) is the Py distribution
of (By — 6t,t > 0). Let P_; also govern T for m = 1,2, ... as the points of a

Poisson process with rate %62 which is independent of B. For m = 1,2,... let
F,fl = B(Tgl_l) — B(an) be the mth fall and an = B(Tgl) — B(Sﬁl) the mth

rise of the alternating walk defined by the values B(T?) and the intermediate
minima B(S%,). Then under P_; for each —§ < 0:
(i) the random variables F? and HY, are independent, with

E? 4 exponential(v/ 6% + 62 — §) (346)
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HY, 2 exponential (v/ 6% + 62 + J). (347)

(ii) Let L% be the increasing process derived from B and the sample times {T? }.
Then the process B — L% is a Brownian motion with drift —/62 + §2. Equiv-
alently, if A% is the alternating lower envelope derived from B and the sample
times {T2,}, then B— A? is a Brownian motion with drift —/02 + 62 on (0, o)
and simple reflection at 0.

(iii) The Brownian motion B — L% with drift —/0% + 62 is independent of the
biwariate sequence of falls and rises (F,?ngl)m:Lz..., hence also independent
of the Poisson-sampled Brownian crossing forest T&B which they encode.

Proof. The independence assertions in (i), and the exponential form of the
distributions of the falls and rises follow from Williams’ path decomposition of B
at the time 7} of its minimum on the interval [0, T4], and repeated application
of the strong Markov property of B at the times 7. See [379, 152]. Using
independence of F¥ and HY, the parameters of the exponential distributions
are easily derived from the the first two moments of B(7T¥).  Or see [60].
Also according to Williams [379], conditionally given Fl(e) = f and Hgg) = h,
the the fragments of the path of B on the intervals [0, SEG)] and [559),7}(6)] are
independent, the first fragment distributed like a Brownian motion with drift
—/02% + 62, started at 0 and run until it first hits —f, while the second fragment
reversed is like a Brownian motion with the same negative drift started at h— f
and run until it first hits —f. It follows that with the same conditioning, the
two reflected path fragments (A? 0 <t < T¥) and (AQT{; +u,0<u<Td T}

are independent, the first fragment a reflected BM with drift —/62 + §2, run
until its local time at 0 reaches f, and the second fragment reversed a reflected
BM with drift —/#2% + 62, run until its local time at 0 reaches h. But from
this description, and the well-known reversibility of a one-dimensional diffusion
stopped at an inverse local time, still conditioning on Fl(g) = f and H{g) = h,
the process (A% 0 <t < TY) is identified as a reflected BM with drift —/02 + 62
run until its local time at 0 first reaches f 4+ h. Now by repeated use of this
argument, the entire process (A? ¢+ > 0) conditional on all the rises and falls
is a reflected BM with drift —+/62 + §2 run forever, independent of the given
values of the rises and falls, provided they sum to co which they obviously do
almost surely. Since B — L? is by construction the Brownian motion driving
this reflected process, the conclusions (ii) and (iii) are evident. a

Exercises

1. (Proof of Lemma 82)

2.* For 0 < A < p let FA# be the forest derived from a BM with drift —\ by
Poisson (£6?) sampling with 67 = y? —A?. Then F** is a binary(A, u) forest.
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6.9 Further developments

Aldous [13, 14, 15] developed a general theory of continuum random trees, spe-
cial cases of which are the trees TREE(B) and TREE(B®*) discussed here. Aldous,
Camarri and Pitman [7, 6, 68] studied a large family of such trees, called inho-
mogeneous continuum random trees which arise as weak limits from a family of
combinatorial trees naturally associated with Cayley’s multinomial expansion,
as discussed in Lecture 9.

Another interesting family of continuum random trees arises from the work
of Le Gall, Le Jan and Duquesne [231], [103] on continuous state branching
processes. These authors have obtained results on the convergence of trees as-
sociated with a sequence of Galton-Watson processes with offspring distribution
tn under the assumption that these processes, when suitably rescaled, converge
in distribution towards a continuous-state branching process with branching
mechanism 1. The corresponding Harris processes also converge in distribution
towards a limiting process called the i-height process. Informally, this means
that whenever a sequence of rescaled Galton-Watson processes converges in dis-
tribution, their genealogies also converge to a continuous branching structure
coded by the height process. The t-height process is constructed in [231, 103] as
a local time functional of the Lévy process with Laplace exponent . It can be
used to investigate various asymptotic properties of Galton-Watson trees, such
as the structure of reduced trees corresponding to ancestors of individuals alive
at a fixed (large) time [103]. In the quadratic case 1)(u) = u? (corresponding
to the case where p, = pu is critical with finite variance), the height process is
reflected Brownian motion.

Specializing to the case where p, = g is in the domain of attraction of a
stable law, Duquesne [102] has shown that the contour process of the u-Galton-
Watson tree conditioned to have exactly n vertices converges after rescaling
towards the normalized excursion of the (stable) height process, which should
be interpreted as coding a stable CRT. Finite-dimensional distributions of the
stable CRT are computed in [103]. The lecture notes [229] provide a survey of
these results and some applications to particle systems and models of statistical
mechanics. Another reference on spatial branching processes, random snakes
and partial differential equations is [228].

Le Gall’s Brownian snake construction of Markovian superprocesses [228]
is a natural development of the branching structure of Brownian trees which
has found many applications in the derivation of sample properties of super-
Brownian motion and its connections with partial differential equations. Anal-
ogously to the Brownian snake approach of quadratic superprocesses, the -
height process can be used to construct superprocesses with a general branch-
ing mechanism and to study their properties [103, 230]. For some other recent
developments, see [79, 247].
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7 Brownian local times

7.1 Basic properties

The basic properties of Brownian local times, as presented in [331], will be taken
for granted here. All local times will be assumed to be normalized as occupation
densities relative to Lebesgue measure.

7.2 Stopping at an inverse local time

Throughout this section let R denote a reflecting Brownian motion on [0, c0),
which may be constructed from a standard Brownian motion either as R = | B|,
or as R = B — B, as a matter of convenience. Note that if R = |B| then for
v>0
Li(R) = L{(B) + L;*(B) (348)

and in particular LY(R) = 2LY(B). For £> 0 let

7 =inf{t: LY(R) > ¢} = inf{t : LY(B) > £/2}. (349)
For 0 <wv < wlet

D(v, w,t) := number of downcrossings of [v, w] by R before ¢

From the structure of the Brownian forest, we obtain:

Corollary 84 [270] The process
(D(v,v+e,1),v>0)

is a time-homogeneous Markovian birth and death process on {0,1,2...}, with
state 0 absorbing, transition rates

n—1 <— ni>n+1

forn=1,2,..., and initial state D(0, e, 1) which has Poisson({/(2¢)) distribu-
tion.

Proof. According to Theorem 74, applied to R := B — B run until B first
reaches —£/2, the number D(v, v 4 &, 7¢) is the number of branches at level v in
a critical binary (0,¢) branching process started with a Poisson Poisson(£/(2¢))
number of initial individuals, so the conclusion is immediate. a

From the Poisson distribution of D(0, &, 7¢), and the law of large numbers,

hﬁ)l eD(0,e, ) = £ almost surely
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and similarly, for each v > 0 and ¢ > 0, by consideration of excursions of R
away from level v

lim2eD(v,v +¢,7,) = L}, (R) almost surely.

l0

According to Corollary 84, this process (2e D(v,v + &, 7;),v > 0), which serves
as an approximation to (L7, (R),v > 0), is a Markov chain whose state space is
multiples of 2¢, with transition rates

x x

52 !2 O
r—2 & o ES 42

for x = 2en > 0. The generator G, of this Markov chain acts on smooth
functions f on (0, c0) according to

(G:f)(@) = 53 (@ = 22) + 55 [l +26) = /(@)

2e2 2e2
1 1 . 1 .
— Az TSE [gf(l‘ —2e) + 5(x + 2¢) — f(m)]
1 d?
— 41 iﬁf as £ — 0
x

Hence, appealing to almost any result on approximation of diffusions by Markov
chains [219, 218], we obtain:

Theorem 85 (Ray [327], Knight [210]) For each fizred £ > 0, and 7, := inf{t :
LY(R) > t}, where R = |B|,

(LY, (R), v > 0) £ (Qf"),v > 0) (350)

where the process on the right hand side is the Feller diffusion on [0, 00) with
generator

1 d .

acting on smooth functions vanishing at 0, and absorbtion at 0.

Exercises

1. (Ray-Knight) Let T; := 790 := inf{t > 0: LEB) = (}. Then the processes
(L%, (B),v > 0) and (Ly,(B),v > 0) are two independent copies of (QEOU), v > 0).

Notes and comments

Many proofs and extensions of the basic Ray-Knight theorems can be found in
the literature. See for instance [194, 331, 296, 369] and papers cited there.
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7.3 Squares of Bessel processes

The Feller diffusion appearing on the right side of (350) is the particular case

d = 0 of a squared Bessel with parameter § started at £ > 0, denoted (Qééu),v >
0). This process can be defined [331, Ch. XI] for each § € R as the unique
non-negative strong solution of the It stochastic differential equation (SDE)

Qo = ¢; dQ, = & dv +2/Q, dB, (352)

where (f,,v > 0) is a BM. Denote the law of (va),v > 0) by BESQE(S), and
denote by BESQ) the Markov process with state space [0, 00) determined by
this collection of laws (BESQE‘S) ,£>0). For an account of the basic properties
of these processes see [331]. The parameter &, which simply represents a constant
drift coefficient, is often called the dimension of the squared Bessel process, due
to the following well known consequence of It6’s formula: that if (B;,,v > 0)
for 2 = 1,2,...1s a sequence of independent standard Brownian motions, then

8
(Qéi?,vzm%(M+Bl,v>2+23%,v20) (0=12,.). (353)
=2

The squared Bessel processes and their bridges, especially for § = 0,2,4, are
involved in the description of the local time processes of numerous Brownian
path fragments [210, 327, 379, 311]. For instance, if Hy(X) = inf{t : X; = 1},
then according to Ray and Knight

(L m)(B),0<v < 1) £ (QF)_,,0<v< 1), (354)

The appearance of BESQ®) processes embedded in the local times of Brown-
1an motion i1s best understood in terms of the construction of these processes
as weak limits of Galton-Watson branching processes with immigration, and
their consequent interpretation as continuous state branching processes with
immigration [194].

For instance, there is the following expression of the the Lévy-Ito represen-
tation of squared Bessel processes, and its interpretation in terms of Brownian
excursions [311], which are recalled in Exercise 4.

Theorem 86 Le Gall-Yor [232] Let
v =R+ L{(R)/3  (t>0).
Then for § > 0 the process of ultimate local times of Y®) is a copy of BESQE;S) :

(L5 (YD), 0> 0) £ (QF), v >0). (355)

0,v?

This has an immediate interpretation in terms of Brownian trees. Recall that
if R is constructed as R = B — B, so LY(R) = —2B(t), then

TREE(B) = TREE(B — 2B) = TREE(Y (?))
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where Y (%) is a copy of the three-dimensional Bessel process Rs. Thus LY (Y(Q))
is the mass density of vertices in either TREE(B) or TREE(Y (%)) at distance v
from the root 0, where mass refers to Lebesgue measure on R>g. That this
process should be regarded as a continuous state branching process with immi-
gration is intuitively obvious from the Poisson structure of the forest of subtrees
of TREE(B) attached to its infinite branch (Proposition 67). Similarly LY, (Y ()
1s the mass density of vertices in TREE(Y@)) at distance v from the root 0. By
construction of Y its tree is derived from TREE(Y(2)) by simply stretching
distances along the infinite branch of TREE(Y (2)) by a factor of 2/, and leaving
the same Poisson forest of subtrees attached to this branch. Thus § is simply a
parameter governing the rate of appearance of of Brownian subtrees of various
sizes along the infinite branch of Y (%) that is to say a rate of immigration, or
rate of generation of new Brownian subtrees, in a continous state branching
process.

Exercises

1. (Knight) Use the well known construction of a copy of R from B, by deletion
of all negative excursions of B, to show that the process (L%I(R)(R)’ 0<wv<1)

has the same distribution as the processes displayed in (354).

2. (Williams) Deduce (354) from (355) for § = 2, and vice-versa, using Williams’
time reversal identity [331] relating the path of B on [0, H1(B)] to that of R
on [0, K1], where K is the last time that Rg hits 1.

3. [331] Deduce from the SDE definition of BESQE(;) the additivity property[345]
that for all non-negative 4,4’,¢ and ¢ the sum of a BESQE(;) process and an

independent BESQZs ) process is a BESQE‘I;? ) process. For positive integer

4,6’ this is obvious from (353). Show that the law of BESQE(D for all § > 0 and
£ > 0 is uniquely determined by the additivity property and the prescription
(353) for 6 = 1.

4. [311] As a consequence of the additivity property, the family of BESQE(;)
processes can be constructed on a common probability space in such a way
that the path-valued process (va), v > 0)5>0,e>0 1s increasing with stationary
independent increments. The C[d, oo)—value_d processes

(Q@’ v > 0)s5>0 and (Qﬁ?ﬁ,v > 0)e>0 (356)

are then two independent increasing processes with stationary independent in-
crements, the jumps of which are two independent Poisson processes of points
in C[0,00) governed by two o-finite Lévy measures M and N, which may be
described as follows: M is the distribution of the ultimate local time process
(Loow(X),v > 0) for the co-ordinate process X on C[0,c0) subject to Itd’s
o-finite law v of Brownian excursions, and N = fooo M, du where M, is the
measure on C[0, c0) under which X[0,u] = 0 and Xu, c0) has distribution M.
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Under M the co-ordinate process X is Markovian with the BESQ(®) semigroup,
with almost every path starting at 0.

5. [232](Proof of Theorem 86) Deduce (355) for general J from its special
case § = 2, using the additivity property of BESQéé).

Notes and comments

Section 6.9 gave references to the application of these ideas to the construction
and analysis of Markovian super-processes. See [311, 296, 331] for descriptions
of the infinitely divisible distribution of fooo Qfgu(dv), for suitable measures p,
in terms of the solutions of Sturm-Liouville equations associated with g, and
treatment of the same problem for squared Bessel bridges. Carmona-Petit-Yor
[71] found a construction of BESQE;S) for § < 0 which is similar to (355) See
also [287, 290].

7.4 Stopping at fixed times

Features of the distribution of the Brownian local time process (L{(B),z €
R), for a fixed time ¢, are of interest in a number of contexts. In principle,
the family of distributions of these local time processes is determined by the
Ray-Knight description of the joint law of (L% (B),z € R) and By for 7" an
exponential time independent of B, as considered in [51]. In practice, it is
hard work to invert the implicit Laplace transform to gain anything explicit
from this description, though this can certainly be done, as shown by Leuridan
[236]. A simpler way to access the structure of the process (LY (B),z € R) for
fixed t is to exploit the branching process approximation to do computations
in a combinatorial setting without technical complication, then appeal to some
general approximation technique to justify passage to the Brownian limit.

The effectiveness of this approach is well illustrated by the following prob-
lem, which arises naturally from the asymptotics of random forests and random
mappings. Recall from (244) that Bf™ denotes a standard Brownian bridge B"*
conditioned on LY(B**) = ¢. The problem is to describe the law of the pro-
cess (Lll’(|B§/r2|), v > 0) as explicitly as possible. Note that the conditioning on
LY(BPT) = ¢/2 makes the process (L{(|BE/FZ|),U > 0) start at L?(|BE}2|) =,
and recall from Section 4.5 that the structure of excursions of |BE/FQ| away from
0 can be described as follows: the excursion intervals of |BE/r2| define an ex-
changeable interval partition of [0, 1], whose law is defined by conditioning the
(%, %) partition generated by BP' to have %—diversity equal to £//2.

By the switching identity (261) and the Ray-Knight description (350), for
each £ >0

gD 020 2 (20| [T@la=1)
0

Note that for £ = 0 the left side of (357) has direct meaning as the local time
process of B*, but the right hand side does not because 0 is an absorbing state
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for BESQ(®). We will return to this point after statement of the following
theorem.

Theorem 87 [306] For eacht > 0 and £ > 0, a process Q = (Qet,v,v > 0)
with continuous paths such that

(LY(1BE)), v > 0) £ (Qe1,0,v > 0), (358)
can be defined as the unique strong solution of the Ité6 SDE
Qo =10 dQy =6,(Q)dv +2\/QudpB, (359)

where ( is a Brownian motion and

- (360)

0, (Q) =4 — Qg (t — fov Qudu)
with the convention that the equation for @ is to be solved only on [0, Vi(Q))
and that Q, = 0 for v > V4(Q) where

Vi(Q) = inf{v : fOU Qudu = t}. (361)

Note that for each £ > 0 and ¢ > 0 the random time V;(Q) is strictly positive
and finite a.s., and the left limit of @ at time V;(Q) exists and equals 0 a.s..
A proof of this theorem will be sketched in Section 7.6, based on a branching
process approximation.

It is easily seen by Brownian scaling how to interpret the process (Qe ¢, v >
0) for all t > 0 and ¢ > 0: if BP™! denotes a Brownian bridge from 0 to 0 of
length ¢, then

(LY(IB*t)), 0 > 0| LO(|B™) = £) £ (Qe0,0,v > 0). (362)

Provided ¢ > 0 this process may also be interpreted as a BESQZ0 process

(QZU,U > 0) conditioned on f QszU = t. Call (362) the local time inter-
pretatzon of @. The SDE (359) deﬁmng Q@ in (362) is a a generalization of the
BESQY SDE (352) in which the drift d, at level v is a path dependent function
of the unknown process @, namely &, := 4 — Q?(t — fov Qudu)~t, which may
be of either sign. It is well known that for fixed § < 0 and any initial value
£ > 0the BESQ®) SDE has a pathwise unique solution on a stochastic interval
[0, Vo) such that the solution approaches 0 at time V. The BESQWY process is
then defined for arbitrary real d with 0 as an absorbing state for § <0 which is
reached from £ > 0 in a.s. finite time for all § < 0. The BESQY process for
§ < 0 is known [311] to arise as a Doob h-process by conditioning a BESQ®*~?

process to hit 0. To get some feeling for the effect of the path dependent drift
8y, keep in mind that the local times process (L?(|B*™!|),v > 0) is subject to

the constraint -
/ LY (|BP™du = t
0
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so the random variable
t— [ nrEa= [ LB
0 v

representing the time spent by |BP™f| above v, is determined as a function of
the local times of |BP™!| at levels below v. According to the theorem, given
the local times at all levels below v, the local time process evolves over the
next infinitesimal level increment like a squared Bessel process of dimension
0y := 4 — B,, where 3, is the square of the local time at level v relative to the
time above v. Note that if the local time at level v 1s close to zero, but the
time above v is not, then @ is close to zero, so the local time process is forced
away from 0 in much the same way as a BESQ(()4) escapes from 0. For £ > 0 it

is known [331] that the BESQ?) process hits zero in finite time only if § < 2.
So the expression §, = 4 — 3, implies that the local time process cannot reach
zero before a level v such that 8, > 2, meaning the square of the local time at
v exceeds twice the time above v. Much sharper results could be given in the
same vein.

As remarked below (357), this formula has no direct meaning for £ = 0, and
t > 0, even though the process (Qo v, v > 0) is a perfectly well defined process
identical in law to the process of local times of B!, a Brownian excursion of
length t. However, formula (357) amounts to the following identity of probability
measures on C[0, co):

BESQY = / BESQY) B(r e dt) (¢£>0) (363)
0
where BESQEO) denotes the law of C[0, c0) of a BESQEO) process (Qg?g, v > 0),
wi= [ QL /278t

and BESQE? is the law of (Qg?v),v > 0) given 7, = t. Here we exploit the
Ray-Knight theorem (350) to suppose for convenience that the entire family
of BESQEO) processes (QE?U),U > 0) is defined on the same probability space
(22, F,P) as a basic Brownian motion B, according to the formula QE?U) =LY (R)
where R = |B| and (7, £ > 0) is the inverse local time process of R at 0, as
in (349). TIf this form (363) of formula (357) is divided by ¢, and the limit
taken as £ | 0, the result is the following formula for the Lévy measure M
of the increasing path valued process with stationary independent increments
(Qe,t,0,v > 0)g>0, as further interpreted in Exercise 7.3.4:

13244

Var

M= / BESQY) (364)
0
where BESQ(()?t) is the law on C[0, c0) of

(Qotw,v>0) £ (LY(B™Y), v > 0).
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Thus M is in many respects like a law of excursions of BESQ(®) away from 0.
But it is not possible to concatentate such excursions to form a process, because
if ¢ denotes the M distribution of Hy, the return time to 0, then p fails to satisfy
the necessary condition fooo(l — e " )u(de) < oo for p to be the Lévy measure
of an inverse local time process.

Notes and comments

This section is based on [306].

7.5 Time-changed local time processes

Keep in mind that the “time” parameter of the local time process (Qz¢,v,v > 0)
is actually a level v, so perhaps we should speak instead of “space-changed”
local time processes, but noone ever does. Consider some reformulations of
Theorem 87 which can be made by stochastic calculus. For a non-negative
process Y := (V;,0 < s < 1) admitting a continuous occupation density process
(LY(Y),v > 0), define a process L(Y) := L*(Y),0 < u < 1 by L*(Y) :=
Li(u)(Y) where v(u) := sup{y > 0: fyoo L¥dx > u}. So L*(Y) is the local time
of Y at a level v(u) above which Y spends time u. This definition is suggested
by the remarkable results of Jeulin [183, p. 264] that

L(B™) £ 2B (365)
and Biane-Yor [49, Th. (5.3)] that

L(|B|) £ 2B™ (366)

where B®* and B™¢ are standard Brownian bridge and meander, respectively.
If we recall that B™¢ conditioned on B™¢(1) = r is a BES(3) bridge from 0 to
r, say R37", then (366) implies

L(|BES,)) £ 2Ry, (367)

Conversely, (366) is recovered from (367) and the fact that L9(BPr) 4 B™e(1).
Moreover, (365) is the special case £ = 0 of (367). Now either of the descriptions
(367) and (358) can be derived from the other, using the fact that R; ¥ is the
time reversal of R} "7, the description of these bridges as solutions of an SDE,
and the computation of Lemma 88 below, which transforms the SDE solved by
(Lll’(|BE/r2|)7 v > 0) into that solved by (ﬁ“(|BE/1"2|)7 0<u<l).

The transformation between the two SDEs is done by the following Lemma.
This corrects [306, Lemma 14], where the process R should obviously be started
at £/2 instead of £.

Lemma 88 For £ > 0,t > 0 let R® be the process derived from (Qg1,4,v > 0)
via the formula

2R§ ‘= Qrtv for the least v : / Qe 1,0du =5, where 0 < s<1 (368)
0
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Then R' < Ré/z—m and (Q¢,1,4,v > 0) can be recovered from R* via the formula

dr

Qe = 2R§ for the least s : /
0

Consequently, if R 4 Ré/zﬁo, then @ defined by (369) has the same distribution

as @ defined by the SDE (359).

Proof. The recipe (369) for inverting the time change (368) is easily checked,
so it suffices to show that if R := (R{,0 < s < 1) solves the SDE (30), for
(z,y) = (¢/2,0) and some Brownian motion v, then @ := (Q¢1,,,v > 0) defined
by (369) solves the SDE (359) for some Brownian motion 8. But from (368)
and (369)

d@, = 2dRs where s = / Q. du
0

A level increment dv for ) corresponds to a time increment ds = @, dv for R,

and R; = Q,/2, so

_ . o Qu/2 . .
dQ, = 2 (QU/Q TR Qudu)) Qudv + 20/Q.dB, (370)

for some other Brownian motion 3, where the factor \/@Q, appears in the diffu-
sion term due to Brownian scaling, and the equation (370) simplifies to (359).
As a technical point, the definition of 8 above the level fot dr/2R59 when @
hits 0 may require enlargement of the probability space. See [330, Ch. V] for a

rigorous discussion of such issues. a
Exercises
1. Show that
sup LY (| B"|) ) sup B 24 sup |BET| (371)
v>0 0<u<1 0<u<1

where B™¢ is a Brownian meander of length 1, the second equality is due to
Kennedy [198], and the distribution of supg<,<; | B27| is given by the well known
Kolmogorov-Smirnov formula. Also T
4 2(B7°, sup By°) (372)

(L3 (1B 1), sup L (|1B*]))
v>0 0<u<1

the joint density of which can be read from known results for the Brownian

meander [176].

2. [306, Corollary 18] Conditionally given LY(BP") = ¢ and fol 1(BE* > 0)du =
a, the processes (LY(BP"),v > 0) and (L7",v > 0

(Qea0,v>0) and (Qr1-q,0,v > 0) respectively.

) are independent copies of
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Notes and comments

This section is based on [306]. Perkins [285] showed that for each fixed ¢t > 0
the process of local times of B at levels v up to time ¢ is a semi-martingale as v
ranges over all real values, and he gave the semi-martingale decomposition of this
process. Jeulin [183] gave a version of Perkins results that allows conditioning on
B:. See [145] and [146] for more information regarding the distribution of local
times of B®* and | BP"|. Knight [212, 213] treats the related problem of describing
the distribution of fol | BPT(u)|du. See also [289]. Norris-Rogers-Williams [273,
Th. 2]showed that the distribution of a local time process derived from another
kind of perturbed Brownian motion, with a drift depending on its local time
process, can be characterized by a variation of the Bessel square SDE like (359),
but with a different form of path dependent drift coefficient ¢, (Q). See also
[381] and papers cited there for various other Ray-Knight type descriptions of
Brownian local time processes, and further references on this topic.

7.6 Branching process approximations

The following result in the theory of branching processes, first indicated by
Feller [126] and further developed by Lamperti [223, 222] and Lindvall [238§],
generalizes the approximation of (QE%, v > 0) by a continuous time branching
process which was made in the previous section. Let Z(h) for h = 0,1,2,...be
the number of individuals in generation h of a Galton-Watson process started
with % individuals in which the offspring distribution has mean 1 and finite
variance ¢ > 0, and let Zg(h) be defined for all h > 0 by linear interpolation
between integers. Then as both m — oo and £ — o

(ﬁZk@mv/J), v > o) L@ v >0)if % ) (373)
where the limit is BESQEO). To check the normalizations in (373), observe
that if the process on the left side has value z at v such that 2muv/c equals an
integer h, then Zx(h) = zom/2. The number Z;(h+1) in the next generation of
the branching process therefore has variance (zom/2)o?. The increment of the
process on the left side over the next v-increment of o/(2m) has this variance
multiplied by (2/em)?. So along the grid of multiples of o/(2m), the variance
of increments of the normalized process on the left side per unit v-increment,
from one grid point to the next, given the normalized process has value z at the

first grid point, is
2
zom\ o[ 2 ( o )—1 ) 9
= - — 4 = (/.
( 2 )0 <0’m) 2m v =(2va)

in accordance with the BESQ(®) SDE. Let (Zk n(h),h > 0) defined by condi-
tioning (Zg(h), h > 0) on the event that its total progeny 3 ,~ , Zx(h) equals n,
so by definition

(Zin(h), h > 0) £ (Zi(h), h > 0|52 Zk(h) = n) (374)
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where it assumed now that the offspring distribution is aperiodic, so the condi-
tioning event has strictly positive probability for all sufficiently large n. Then
it is to be anticipated from (373) and (??) that as n — oo
2 e n(2no)5),0 > 0) B (Qrry,v > 0) provided —— s ¢ (375)
——Zkn nv/c),v vy U rovided —— 5
o\/n k = L1 V25 P o\/n

for some £ > 0 where (Q¢,1,4,v > 0) may be identified by conditioning the limit
BESQEO) process in (373) on its integral being equal to 1, as implied by (357),
and the definition is extended to ¢ = 0 by weak continuity. This intuitively
obvious identification of the limit can be justified by regularity of the solution
of the basic SDE (359) as a function of its parameters, provided it is shown that
the weak convergence (375) holds with the limit defined as the pathwise unique
solution of the SDE (359). So let us now see how to derive the basic SDE (359)
directly from combinatorial considerations. Note that if Z ,(h) is interpreted
as the number of vertices at level A in a forest with n vertices defined by a
collection of k family trees, one for each initial individual in the Galton-Watson

process, then for h = 0,1, ... the random variable
A
Agn(h) =n =" Zk n(h) (376)
i=0

represents the number of vertices in the forest strictly above level h.

Lemma 89 Fiz 1| < k < n. A sequence (Z(h),h = 0,1...) has the same
distribution as a Galton-Watson process with a Poisson offspring distribution
started with k individuals and conditioned on total progeny equal to n, if and

only if the sequence evolves by the following mechanism: Z(0) = k and for each
h=0,1...

(Z(h+1)| Z(i),0 < i < h, Z(h) = z, A(h) = a) £ 1+binomial(a—1, z/(a+z)),

(377)
where A(h) == n — Z?:o 7 (1) and binomial(m, p) is a binomial(m,p) random
variable, with the conventions binomial(—1,p) = —1 and binomial(0, p) = 0.

See the exercises for a proof and variations of this lemma. Granted the lemma,
consider the rescaled process on the left side of (375) in the Poisson case, so
o = 1, in an asymptotic regime with n — oo and 2k/\/n — ¢ for some £ >
0. Let Wi n(h) := (Zgn(h), Ax n(h)). From (377), in the limit as n,z and
a tend to co with 2z/y/n — =z and a/n — p, for integer h the increment
Agn(h) = Zgn(h + 1) = Z (k) is such that the corresponding normalized
increment A} (h) := 2Ag ,(h)/\/n has the following conditional mean and
variance giveny a history (Zx »(?),0 <i < h) with Wy ,(h) = (z,a):

F(A](B) | Wi (h) = (2,) = —= (1 plosde ) ~ (4 - ;) o
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é(a— 1)za ~ 4z 1

n (a+2z)? ! 2\/n

where the relative errors of approximation are negligible as n — oo, uniformly
in h, provided z < 1/¢ and p > ¢ which can be arranged by a localization
argument, stopping the normalized process when either its value exceeds = or
its integral exceeds 1 — p. Since AZ,n(h) is the increment of the normalized
process over a time interval of length 1/(2/n), and the value of p & Ay ,(h)/n
can be recovered from the path of the normalized process with a negligible error
via

Var(Af (k) | Wi n(h) = (2,0)) =

Ak,n(h) B 1 h /h/(Q\/ﬁ) ) .
pr =2 _1—niz_;zk,n(h)N1— : ﬁzk,n(zﬁv) (378)

these calculations show that the normalized process is governed asymptotically
by the SDE (359)-(360) presented in Theorem (87). It can be shown by stan-
dard arguments [331] that the SDE has a unique strong solution. So the pre-
ceding argument, combined with known results regarding the approximation of
a Markov chains by the solution of an SDE [219] [218, Theorem 5.4], shows that
the weak limit of the normalized and conditioned branching process solves the

SDE (359)-(360).
Exercises

1. (Proof of Lemma 89) [306, Lemma 8] Let X1, X2,... be a sequence of
independent random variables with some distribution p on {0,1,2,...}, and
set S; = X1+ --+X;. Fix1 < k < n with P(S, = n—%k) > 0. Let
(Zgn(h),h =0,1,2,...) be a Galton-Watson branching process with offspring
distribution p started with & individuals and conditioned to have total progeny
n, and define Ay ,(h) by (376), and set Wi n(h) := (Zkn(h), Ax n(h)). Show
that Wy ,(h),h =0,1,2,...1s a Markov chain, with initial state (k,n — k), and
the following transition probabilities which do not depend on n and k: given
Wi n(h) = (2, a) the distribution of Zj ,(h+1) is obtained by size-biasing of the
distribution of S; given S;4+4 = @, and Ag n(h+1) = a— Zg ,(h+1). In particu-
lar, for a Poisson distribution the law of S, given S;1, = a is binomial(a, z/(z+
a)). A size-biased binomial(n, p) variable is 1 plus a binomial(n — 1, p) variable,
and Lemma 89 follows.

2. (Combinatorial interpretation of Lemma 89) Fix k and n with 1 <
k<nandfor h=0,1,...let Ly := Lj(Fg n) be the number of vertices at level
h of Fi n, a uniformly distributed random forest of k rooted trees labeled by
[n]. Then Ly = k and the distribution of the sequence Li, Ly, ... is determined
be the following prescription of conditional laws: for each h = 0,1, ...

diSt(Lh+1 | Lg, ..., Lh) = diSt(l + binomial(Ah -1, Lh/(Ah + Lh) (379)

where Ap = n—zl}.bzo L; and binomial(n, u) denotes a binomial random variable
with parameters n and u € (0, 1).
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3. (Further combinatorial interpretation of Lemma 89) The previous
exercise shows that for each (k, n) the bivariate sequence ((Lp, Ap),h =0,1,...)
has the Markov property. The transition probabilities are inhomogeneous, but
they have a recursive property, reflecting the fact that for any given h the
random variable A} represents the number of vertices of the forest strictly above
level h, while A, + Lp is the number of vertices at or above level h. The
simplifying feature of a uniform forest that given the forest at levels up to
and including h leaves room for A, vertices above h, the number Lj 41 of these
vertices at level h+1 are selected as the children of L, roots in a uniform forest of
Ly trees with given roots in a set of size L + Ap. This basic recursive property,
which can be seen by a direct combinatorial argument, can be expressed as
follows. Let L, ; denote the number of vertices at level h of a random forest
which given L, ¢ = k is uniformly distributed on all forests of k trees labeled

by [n], and set A, p :=n — E?:() Ly, ; Then for each A > 0 and j > 0
(Ln,h+j:j Z 0 | Ln,ia 0 S i S h with Ln,h = maAn,h == a)
has the same distribution as

(La+m,jaj Z 0 | La+m,0 = m)

4. [306] What is the Brownian analog of the property of uniform random forests
described in the previous exercise?

5. (Problem) Does (375) require any further conditions on the offspring dis-
tribution of the critical branching process besides finite non-zero variance?

Notes and comments

The properties of the local time process of Brownian excursion and reflecting
Brownian bridge discussed here are closely related to the interval fragmentation
process (Y,,v > 0) derived from one of the processes X = B |B""| or |BbT|
by letting Y, be the collection of ranked lengths of the random open set {¢ :
X: > v}. It is clear from the present discussion that each these processes
(Yy,v > 0) is Markovian, with the same transition mechanism, whereby different
interval lengths are fragmented independently according to a rescaled copies of
the interval fragmentation induced by a single excursion B*. This process is
a basic example of the general class of self-similar fragmentations studied by
Bertoin [40], which illustrates the phenomenon or “erosion” or loss of mass in
the fragmentation process, since the total mass of the process after time v is

/01 1(X; > v)dv = /UOO L¥(X) da.

Thus the local time LY(X), which is a measurable function of the sequence of
ranked lengths Yy, is the rate of erosion of mass at time v in the fragmentation
process, and the SDE (359) may be interpreted as describing the dynamics of
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erosion in the fragmentation process. One can also think of L] (X) as the density
of mass at level v in a forest of Brownian trees of mass fvoo LI (X)dz. As the
level v rises, the fragmentation process describes how trees rooted on a valley
floor disappear beneath a rising tide as the valley is flooded.
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8 Brownian asymptotics for random mappings

8.1 Mapping digraphs

A mapping M, : [n] = [n] can be identified with its digraph {i — Mn(i), i €
[n]}, as in Figure 8.1 at end of notes.

Note how the mapping digraph encodes various features of iterates of the
mapping. The connection between random mappings and Brownian bridge, first
developed in [5], and reviewed in this section, can be summarized as follows.

e A mapping digraph can be decomposed as a collection of rooted trees
together with extra structure (cycles, basins of attraction).

o If each rooted tree is regarded as a plane tree and encoded by its Harris
walk, then given some ordering of tree-components, one can concatenate
these Harris walks to define a mapping-walk which encodes numerous fea-
tures of M,.

e For a uniform random mapping, the induced distribution on tree-components
is such that the tree-walks, suitably normalized, converge to Brownian ex-
cursion as the tree size increases to infinity. So it is to be expected that
the mapping-walks, suitably normalized, should converge to a limit pro-
cess defined by some concatenation of Brownian excursions.

e With an appropriate choice of ordering of tree components, the weak limit
of normalized mapping walks is reflecting Brownian bridge.

The subtle issue is how to order the tree components so that both

a) the mapping-walk encodes structure of cycles and basins of the mapping,
and

b) the limit in distribution of the normalized mapping-walk can be explicitly
identified.

Fix a mapping M,,. It has a set of cyclic points

Cn:={i€[n]: M,If(z) =1 for some k > 1},

where Mff is the kth iterate of M,,. Let 7, . be the set of vertices of the tree
component of the digraph with root ¢ € C,. Note that 7, . might be a trivial tree
with just a single root vertex. The tree components are bundled by the disjoint
cycles C, ; C Cp to form the basins of attraction (connected components) of the
mapping digraph, say

Bnj= |J Tae 2Cn; with UBM:[n] and Uc,w:cn (380)

c€Cn J J

where all three unions are disjoint unions, and the B, ; and C, ; are indexed in
some way by j = 1,...,|C,|. Note that each tree component 7, . is regarded here
just as a subset of [n], which is given the structure of a rooted tree by the action
of M,,. The precise meaning of B, ; and C, ; now depends on the convention
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for ordering the cycles, which turns out to be of some importance. Two possible
conventions are the cycles-first ordering, meaning the C, ; are put in order of
theit least elements, and the basins-first ordering meaning the B, ; are put in
order of their least elements. Rather than introduce two separate notations for
the two orderings, the same notation may be used for either ordering, with an
indication of which is meant. Whichever ordering, the definitions of B, ; and
Cn,; are always linked by B, ; D C, ;, and (380) holds. Following are some basic
facts which follow easily from these definitions, and results of Sections 2.4 and

4.5.

Structure of the basin partition Let I12*" be the random partition of
[n] whose blocks are the basins of attraction of uniform random mapping M,,.
Then Hgasms is a Gibbsp,1(1°*, w,) partition, for w; the number of mappings
of [j] whose digraph is connected, as displayed in (103). As remarked below
Theorem 12, that gives the result of Aldous [11] that

. 1
HITDLasms i> Hggyg) (381)
where the limit is a (0, %) partition of positive integers.

Structure of the tree partition Let IT1'** be the random partition of [n]
whose blocks are the tree components of the uniform random mapping M, .
So TITe®s is a refinement of TI5*"  with each basin split into its tree compo-
nents. Note that the number of components of TI%®* equals the the number
of cyclic points of M,: [[IZ**5| = |C,|. From the structure of a mapping di-
graph, TI'Fees is a Gibbs,1(ve, w,) partition for vy = k!, the number of different
ways that the restriction of M, can act as a permutation of a given set of &
cyclic points, and w; = 47=1 the number of rooted trees labeled by a set of
size j. Let q; := ej771/j! so (¢;,j = 0,1,...) is the distribution of total
size of a critical Galton-Watson tree with Poisson offspring distribution. Since
q; ~ (2m)=1/25=3/2 Theorem 13 gives for each £ > 0, as n — oo

(TTErees given [T = [¢y/n]) % TN (382)
where the limit is the partition of positive integers generated by lengths of
excursions of a standard Brownian bridge B"" conditioned on L} = ¢, where
Lb .= LY(BPT). See Exercise 4.3.2 regarding the factor of v/2 appearing here,
which is at first quite puzzling. Recall that LP" has the Rayleigh density

P(LE" € db) = Lexp(—3£2)de (£ > 0). (383)

It follows from Cayley’s formula kn”~*~! for the number of forests labeled by
[n] with a specified set of k roots, that

P(ICa] = k) = %%_1 (1 - i) (384)
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and hence that

(Cal/v/m 5 LY (385)
jointly with
myrees 4 iy (386)

11

where Hg§’2) is the random partition of positive integers generated by by sam-

pling from the interval partition defined by excursions of the standard Brownian

bridge BT, whose distribution is defined by the (%, %) prediction rule. Recall
11

from Lemma 46 that Llfr 1s encoded H&%”), as the almost sure limit as n — oo

of |, (%, 1)|/+v/2n, where |II,(1,1)| is the number of distinct excursions of BP*

232
discovered by n independent uniform points on [0, 1].

Joint distribution of trees and basins As a check on (381) and (386), and
to understand the joint structure of the tree and basin partitions generated by
a uniform random mapping M, it is instructive to compute the joint law of the
random variables

#T,(1) := size of the tree containing 1 in the digraph of M, (387)
and
#B,(1) := size of the basin containing 1 in the digraph of M,. (388)

Note that #7,(1) and #8,, (1) are size-biased picks from the block-sizes of Tt
and TI?*"s respectively. So their limit distributions as n — co, with normal-
ization by n, are the structural distributions of the weak limits of TIF™*** and
1529175 respectively.

To expose the combinatorial structure underlying the joint law of #7,(1)
and #B, (1), introduce new variables

Nopq1 =#Tn(1) = 1; Npo:=#B,(1) — #Ta(1); Nnps:=n—#8,(1). (389)
Then for each possible vector of integers
(n1,nq,n3) with n; >0 and ny + ny +nzg =n—1, (390)

there 1s the formula

(391)

_1 1n1 Nng, N3
]P(Nn,i:m,izl,?,?)):( . )(”1+ L
nn

ni,N2, N3

See also [?] for similar distributions derived from random mappings, known as
Abel multinomial distributions. The factor of n3*, and the symmetry of formula
(391) in (na, ng), for fixed ny, reflect the following key symmetries of M,,, from
which the formula is obvious.
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Lemma 90 For a uniform random mapping M,
(i) Conditionally given the restriction of My to By, (1) with B, (1) = B, the
restriction of My, to [n]—B is a uniform random mapping from [n]—B to [n]—B.
(i1) Conditionally given that T, (1) is some subset T of [n] with 1 € T, the
restriction of TI'**® to B, (1) and the restriction of TI'**® to [n] — B, (1) are
exchangeable.

Proof. The first statement is obvious. To clarify statement (ii), given 7, (1) =
T, each restriction of TI!***s is regarded as a random partition of a random
subset of [n], with some notion of a trivial partition if the subset is empty.
According to (i), given also B, (1) = B, the restriction of IT:'** to [n] — B is the
tree-partition generated by a uniform random mapping from B to B. On the
other hand, the restriction of I1t**$ to B — T is the tree partition generated by
a uniformly chosen composite structure on B— 7, whereby B —7 is partitioned
into tree components, and the roots of these components are assigned a linear
order. But this is bijectively equivalent to a mapping from B — 7 to B — T,
hence the conclusion. a

By Stirling’s formula, the probability in (391) is asymptotically equivalent
to

11 1
—— as n; > o00,1=1,2,3, 392
n? 27 \/711/71\/712/71\/713/71 (892)
hence as n — o
(Na 1, N2, Nog)/n 2 Dirichlet(3, 1, 1. (393)

Recalling the definitions (389) of the N, ;, this gives

7#%(1) i> ﬂ%,ﬁ LBH(U i ﬂ1,%§ —#Bn(l) 7a(1) i> ﬁ%,u (394)
n n n

where (3, has beta(a,b) distribution. As a check, according to Theorem 25,

ﬂ%@ and [)’17% are the structural distributions of (%, %) and (%,0) partitions

respectively. So (394) agrees with (386) and (382). As indicated by Aldous [11],

Lemma 90 (i) allows recursive application of the second convergence in (394)

to show that the size-biased frequencies of TI2*™s approach the GEM(0, %)

frequencies, hence the convergence (381) of TIE*™ to a (%, 0) partition.
Exercises

1. Develop a variation of the above argument to show that the size-biased

frequencies of TI'**S approach the GEM(l l) frequencies, hence the convergence

2773
(386) of I1ir*** to a (4,0) partition.

Notes and comments

This section is based on [5, 10]. The theory of random mappings has a long
history. See [214, 5, 161] and papers cited there.
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8.2 Mapping walks

The construction in [5] encodes the restriction of the digraph of M, to each
tree component 7, . of size k by the Harris walk of 2k steps associated with
this tree. This tree-walk derived from 7, ., with increments of +1 on the non-
negative integers, makes an excursion which starts at 0 and returns to 0 for the
first time after 2k steps, after reaching a maximum level 1+ hy,(c), where hy(c)
is the maximal height above ¢ of all vertices of the tree 7, . with root ¢, that is

hn(c) = max{h : 3i € [n] with M (i) = ¢ and M (i) ¢ C, for 0 < j < h}.

(395)
Given that ¢ is a cyclic point that the set of vertices 7, . equals K for some
subset K of [n] with ¢ € K and |K| = k, the restriction of the digraph of M, to
K has uniform distribution on the set of k%~ trees labeled by K with root ¢. By
application of Theorem 58, as £ — oo, the distribution of this tree-walk when
scaled to have 2k steps of :l:l/\/% per unit time, converges to the distribution
of 2B%*, for B®* a standard Brownian excursion.

We now define a mapping-walk (to code M,) as a concatenation of its tree-
walks, to make a walk of 2n steps starting and ending at 0 with exactly |Cy|
returns to 0, one for each tree component of the mapping digraph. To concate-
nate the tree-walks, an order of tree-components must be specified. To retain
useful information about M, in the mapping-walk, we want the ordering of
tree-walks to respect the cycle and basin structure of the mapping. Here are
two orderings that do so.

Definition 91 (Cycles-first ordering) Fix a mapping M,, from [n] to [n].
First put the cycles in increasing order of their least elements, say ¢, 1 < ¢ 2 <
... < cpe,- Let Cpn; be the cycle containing ¢, j, and let By, ; be the basin
containing Cy, ;. Within cycles, list the trees around the cycles, as follows. If
the action of M, takes ¢, ; = ¢n j1 — -+ = cn; for each 1 < j <|Cy|, the tree
components 7, . are listed with ¢ in the order

Cn,l Cn,2 Cn,|Cn|

(Cn,l,la-~~acn,1acn,2,1a~~~acn,2a ...... ;Cn,|Cn|,1a~~~aCn,|Cn|)~ (396)

The cycles-first mapping-walk is obtained by concatenating the tree walks de-
rived from M, in this order. The cycles-first search of [n] is the permutation
o : [n] — [n] where o; is the jth vertex of the digraph of M, which is visited in
the corresponding concatenation of tree searches.

Definition 92 (Basins-first ordering)[5] First put the basins 3, ; in increas-
ing order of their least elements, say 1 = by, 1 <bn 2 < ...by o516t cnj € Cn;
be the cyclic point at the root of the tree component containing b, ;. Now list
the trees around the cycles, just as in (396), but for the newly defined ¢, ; and
¢n ji- Call the corresponding mapping-walk and search of [n] the basins-first
mapping-walk and basins-first search.
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Let us briefly observe some similarities between the two mapping-walks. For
each given basin B of M, with say b elements, the restriction of M, to B is
encoded in a segment of each walk which equals at 0 at some time, and returns
again to 0 after 2b more steps. If the basin contains exactly ¢ cyclic points, this
walk segment of 2b steps will be a concatenation of ¢ excursions away from 0.
Exactly where this segment of 2b steps appears in the mapping-walk depends on
the ordering convention, as does the ordering of excursions away from 0 within
the segment of 2b steps. However, many features of the action of M, on the
basin B are encoded in the same way in the two different stretches of length
2b in the two walks, despite the permutation of excursions. One example is the
number of elements in the basin whose height above the cycles is h, which is
encoded in either walk as the number of upcrossings from h to A + 1 in the
stretch of walk of length 2b corresponding to that basin.

8.3 Brownian asymptotics

The idea now is that for either of the mapping walks derived above from a uni-
form mapping M, , a suitable rescaling converges weakly in C[0, 1] as n — oo to
the distribution of the reflecting Brownian bridge defined by the absolute value
of a standard Brownian bridge B®* with BS® = BY" = 0 obtained by condition-
ing a standard Brownian motion B on By = 0. Jointly with this convergence,
Results of [5] imply that for a uniform random mapping, the basin sizes rescaled
by n, jointly with corresponding cycle sizes rescaled by /n, converge in distri-
bution to a limiting bivariate sequence of random variables ()\Ij,Ll};)j:sz
where (I;);=12,... is a random interval partition of [0, 1], with A7, the length
of I; and Ll}]? the increment of local time of BP" at 0 over the interval I;. For
the basins-first walk, the limiting interval partition is (I;) = (I7D), according to
the following definition. Here U, Uy, Us, ... denotes a sequence of independent
uniform (0, 1) variables, independent of B"T.

Definition 93 (The D-partition [5]) Let IjD = [Dv,_,, Dv,] where Vj =
Dy, = 0 and V} is defined inductively along with the Dy, for j > 1 as follows:
given that Dy, and V; have been defined for 0 < i < j, let

Vj = Dv,_, +U;(1 = Dv,_,),
so V; is uniform on [Dy,_,, 1] given B®" and (V;, Dy,) for 0 < i < j, and let
Dy, = inf{t > V; : By" = 0}.

On the other hand, for the cycles-first walk, the limits involve a different
interval partition. This is the partition (7;) = (I]T) defined as follows using the

local time process (LP* 0 < u < 1) of BT at 0:

Definition 94 (The T-partition) Let I7T = [T;_1, T;] where Ty := 0, V; :=0,
and for j > 1 . '
Vi=1-[Ti, (1 = Us), (397)

i=1
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so V; is uniform on [V;_1,1] given B® and (V;, T;) for 0 < i < j, and
Tj = inf{u: LET/L> > V1.

Theorem 95 [10] The scaled mapping-walk (Ml[fl],O < u < 1) derived from a
uniform random mapping M,,, with 2n steps of &1/+/n per unit time, for either
the cycles-first or the basins-first ordering of excursions corresponding to tree
components, converges in distribution to 2|B°T| jointly with (385) and (386),
where (LP",0 < u < 1) is the process of local time at 0 of B®*, and H%’%)
1s the random partition of positive integers generated by by sampling from the
interval partition defined by excursions BPT. Moreover, (i) for the cycles-first
ordering, with the cycles By, ; in order of their least elements, these two limits
win distribution hold jointly with

|Bnjl 1Ca ;Y 4 b .
il ) ALI‘
(Pl £ & a1 99

as j varies, where the limits are the lengths and increments of local time of BPT
at 0 associated with the interval partition (I;) := (I]»T); whereas

(ii) [5] for the basins-first ordering, with the basins By, ; listed in order of their
least elements, the same is true, provided the limiting interval partition is defined

instead by (I;) = (I]-D)‘

The result for basins-first ordering is part of [5, Theorem 8]. The variant
for cycles-first ordering can be established by a variation of the argument in [5],
exploiting the exchangeability of the tree components in the cycles-first ordering.
See also [46] and [4] for alternate approaches to the basic result of [5].

The random set of pairs {(|B, ;|/n,|Cn j|/v/n),1 < j < |Cs|} is the same,
no matter what ordering convention is used. So Theorem 95 implies that the
distribution of the random set of limit points, {(Ar;, Ll}]?),j > 1}, regarded as
a point process on RZ, is the same for ([;) = (I]»D) or (I;) = (I]T) This fact
about Brownian bridge is not at all obvious, but can be verified by application
of Brownian excursion theory. See [10] for further discussion.

To gain useful information about large random mappings from Theorem 95,
it is necessary to understand well the joint law of B"" and one or other of the
limiting interval partitions (I;) whose definition depends on the path of BbT.
To be definite, assume from now on that the ordering convention is basins first.
One feature of natural interest is the maximal height above the cycle of the
tallest tree in the basin. Let this maximal height be H, ; for the jth basin.
Theorem (95) implies

1B il 1Cnjl Hn
n b) \/ﬁ b \/E

where we abbreviate A; := Ay, L; := Ltf;, and Mj := |BPr|(Dy,_,, Dv;) is the

maximal value of |BP"| on I;. It follows easily from Definition 93, the strong

) at (Aj, Ly, 2Mj)j:1,2,... (399)
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Markov property of B®" at the times Dy, and Brownian scaling, that
j-1
No=w; [Ta-w) (400)
i=1

for a sequence of independent random variables W; with beta(1, %) distribution,
and that

(Lj M) = /N (Lj, Mj) (401)
for a sequence of independent and identically distributed random pairs (Ej, Mj),
independent of (A;). The common distribution of (L;, M;) is that of

e L%FU MBFU
(L1, My) = , ——
vVDy /Dy

(402)

where Dy is the time of the first zero of BP* after a uniform[0, 1] random time U
which is independent of BP*| LP* := LI(B*T), and and MP" := maxg<,<; |BE"|
for 0 <t < 1. Tt is known [288] that for ();) as in (400), assumed independent of
By, the Bf)\; are the points (in size-biased random order) of a Poisson process
on Ry with intensity measure %t_le_t/th which is the Lévy measure of the
infinitely divisible gamma(%, %) distribution of B?. Together with standard
properties of Poisson processes, this observation and the previous formulae (400)

to (402) yield the following lemma. See also [10] for related results.

Lemma 96 If By is a standard Gaussian variable independent of the sequence
of triples (Aj, Lj, M) =19, featured in (399), then the random vectors (B?)\;,|B1|L;, | B1|M ;)
are the points of a Poisson point process on R?;O with intensity measure pu defined
by
et dt

pu(dt dé dm) = P(VtLy € d¢,\/tM; € dm) (403)

fort,0,m > 0, where (il,Ml) 1s the pair of random variables derived from a
Brownian bridge by (402).

Recall from Exercise 4.5.2 that the process BPr .= B, [0, 71], where 7y is an
inverse local time at 0 for the unconditioned Brownian motion B, is known as
a Brownian pseudo-bridge, and that there is the following absolute continuity
relation between the laws of B*" and B found in [47]: for each non-negative
measurable function g on C[0, 1],

Elg(B"")] = \/%E[g(Bbr)/L?r]-

It follows from [312, Theorem 1.3] and [5, Proposition 2] that the process
BPr[0, D], obtained by rescaling the path of B on [0, D;] to have length
1 by Brownian scaling, has the same distribution as a rearrangement of the
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path of the pseudo-bridge BPT. Neither the maximum nor the local time at 0
are affected by such a rearrangement, so there is the equality in distribution

(Ly, M) = (157, A1) (404)
where L" := LO(B") MPr .= maxp<u<1 |BP"|. So (404) yields the formula

. . 21
P(VtLy € d6,VtMy < y) = \/;%P(\/Zﬁff € db,VIMTT < ), (405)

fort, £,y > 0. Now the joint law of L}™ and M}P" is characterized by the following
identity: for all £ > 0 and y > 0

oo —t/2

: Zﬁ dt P(VALE™ € df, MY < y) = e~ dl exp (%) (406)
which can be read from [321, Theorem 3, Lemma 4 and (36) ], with the following
interpretation. Let (L, > 0) be the continuous increasing process of local time
of the Brownian motion B at 0, let T" be is an exponential random variable with
mean 2 independent of B, and let G7 be the time of the last 0 of B before time
T. Then (406) provides two expressions for

P (LT S dﬁ, sup |Bu| S y) )
0<u<Gr

on the left side by conditioning on G'r, and on the right side by conditioning on
Ly. See also [331, Exercise (4.24)].

Using (403), (405) and (406), we deduce that in the Poisson point process
of Lemma 96,

E[number of points (| B |L;,|B1|M;) with |B;|L; € d¢ and |B1|M; < y] =
(407)

© e=t2 dt - - —2/
/ € 5 P(\/ZLl S dg, \/ZMl S y) = 6‘1e—£d£exp <T1) . (408)
0 €™ =

A significant check on these calculations can be made as follows. By further
integration, the expected number of points j with |B;|M; greater than y is

n(y) = /OOO Tetde [1 _ exp (%)] . (409)

Now the probability of no point greater than y is e~ so

BBy max 7T, < y) = ¢, (410)

J
But the event (|Bi|max; M; < y) is identical to the event (M < y), where
MP* := maxg<u<i |[BEY|. And e77W) = Wi%—l) = tanh y by application of

the Lévy-Khintchine formula for the exponential distribution, that 1s

T = exp |:—/0 et (1 —emMyde|
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for A = 2/(e® — 1). Thus for B; standard Gaussian independent of BT and
y > 0, there is the remarkable formula

P(|Bi|M* <y) =tanhy  (y>0) (411)
which is a known equivalent of Kolmogorov’s formula
PMPP<a)= Y (-1)"e (> 0) (412)

As observed in [48], formula (411) allows the Mellin transform of MP" to be
expressed in terms of the Riemann zeta function. See also [286, 317, 319] for
closely related Mellin transforms obtained by the technique of multiplication
by a suitable independent random factor to introduce Poisson or Markovian
structure.

Notes and comments

This section is based on [5] and [10].

8.4 The diameter
The diameter of M,, 1s the random variable

Ay = max Ty (i)
1€[n]

where T, (i) is the number of iterations of M,, starting from i until some value
is repeated:

T (i) :=min{j > 1: M (i) = MF (i) for some 0 < k < j}

where M2(i) = i and M} (i) := M,(Mj=1(i)) is the image of i under j-fold
iteration of M, for j > 1. Since by definition A, = max;(|C, ;| + Hn ;), it
follows from (399) that as n — oo

An d AT
N = A= mjax(Lj +2M;). (413)

So we obtain the following corollary of Theorem 95:

Corollary 97 [9] Let By be a standard Gaussian variable independent of A.
Then the distribution of A in (413) is characterized by
P(|B1|A < v) = e~ EBr(®)-1() (v>0) (414)

where

Ei(v) = / u te %du

I(v) = /Ouu_le_“ [1—exp<%)]du.
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Proof. From (413) and Lemma 96, the event |B1|A < v is the event that
there is no j with |By|L; + 2|B1|M; > v. But from (407) - (408), E;(v) is the
expected number of j with |B1|L; > v, while I(v) is the expected number of j
with |B1|L; < v and |B1|L; + 2| B1|M; > v. O

Integration of (414) gives a formula for E(AP) for arbitrary p > 0, which is
easily shown to be the limit as n — oo of E((A, /\/n)?). This formula was first
found for p = 1 by Flajolet-Odlyzko [134, Theorem 7] using singularity analysis
of generating functions. See also [352, 242, 82] for related asymptotic studies of
the diameter of undirected random trees and graphs.

Exercises

1. (Problem: the diameter of a Brownian tree) Szekeres [352] found
an explicit formula for the asymptotic distribution of the diameter of a uniform
random tree labeled by [n], with normalization by \/n. Aldous [14, 3.4] observed
that is the distribution of the diameter of 7(2B*), and raised the following
problem, which is still open: can this distribution be characterized directly in
the Brownian world?

Notes and comments

This section is based on [9].

8.5 The height profile

Continuing to suppose that M, is a uniform random mapping from [n] to [n],
For v € [n] let h(v, M,,) be the least m > 0 such that M*(v) € C,. So h(v, M,)
is the height of v in the forest derived from M, whose set of roots is the random
set C, of cyclic points of M,,. For h = 0,1,2,...let Z, ,(h) be the number of
v € [n] such that h(v, M,) = h. Call this process (Zs ,(h),h > 0) the height
profile of the mapping forest. Let (Zy n(h),h > 0) be the height profile of the
mapping forest conditioned on the event (Z, ,(0) = k) that M, has exactly k
cyclic points. Then (Zg »(h),h > 0) has the same distribution as the height
profile generated by a uniform random forest of k rooted trees labeled by [n],
to which the limit theorem (375) applies, by inspection of (379) and (200). To
review:

Lemma 98 If (Z n(h),h > 0) is either

(1) the height profile of a uniform random forest of k rooted trees labeled by [n],
or

(i1) the height profile of the forest derived from a random mapping from [n] to
[n] conditioned to have k cyclic points,
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then the distribution of the sequence (Zy ,(h), h > 0) is that described by Lemma
89, and in the limit regime as n — oo and 2k/\/n — £> 0
2
<ﬁzk,n(2\/ﬁu), v > 0> L (Qraw,v > 0) (415)
where the law of (Qe1,4,v > 0) is defined by Theorem 87.

The following result is now obtained by mixing the result of the previous
lemma with respect to the distribution of the number Z, ,(0) = |C,| of cyclic

points of M,,. According to (385), |C,|//7 4 LY(BPr), so the result is:

Theorem 99 Drmota-Gittenberger [100] The normalized height profile of the
forest derived from a uniform random mapping M, converges weakly to the
process of local times of a reflecting Brownian bridge of length 1:
2
(S5 7-n (2w o2 0) S (501802 0 (416)
n

Exercises

1. (Problem) Show that the convergence in distribution of height profiles (416)
holds jointly with all the convergences in distribution described in Theorem 95.
This is undoubtedly true, but to prove it might be a pain. Is there an easy
way? Corresponding results of joint convergence in distribution of occupation
time processes and unconditioned walk paths to their Brownian limits, for simple
random walks, can be read from Knight [210]. Presumably corresponding results
are known for simple random walks with bridges or excursions as limits, but 1
do not know a reference.

Notes and comments

This section is based on [306].

8.6 Non-uniform random mappings

Definition 100 Let p be a probability distribution on [n]. Call M, p-mapping
from [n] to [n] if the images My (i) of points i € [n] are independent and iden-
tically distributed according to p.

Combinatorial properties of p-mappings, and some elementary asymptotics are
reviewed in [308]. Further asymptotic features of p-mappings were studied in
[274]. In [8] and [4] it is shown that Brownian bridge asymptotics apply for
models of random mappings more general than the uniform model, in particular
for p-mapping model under suitable conditions, and that proofs can be simplified
by use of Joyal’s bijection between mappings and trees (Exercise 9.1.4). Another
important result on p-mappings is Burtin’s formula (Exercise 9.1.5). But these
results for p-mappings are best considered in connection along with p-trees and
p-forests, which are the subject of the next lecture.
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9 Random forests and the additive coalescent

9.1 Random p-forests and Cayley’s multinomial expansion

It is hard to overemphasize the importance of Cayley’s discovery that in the
expansion of (z1 + -+ + 2,)"~% the multinomial coefficient of [ z]'* is the
number of unrooted trees labeled by [n] in which each vertex i has degree n; — 1.
Many variations of Cayley’s expansion are known. One of the most useful can
be presented as follows. For a finite set S and R C S, let FOR(S, R) be the
set of all forests labeled by S, whose set of roots is R. And for F' € FOR(S, R)
and s € S let Fs denote the set of children of s in F', so |F;| is the number
of children, or in-degree of s in F. Recall that edges of F' are assumed to be
directed towards the roots, and note that for each F' € FOR(S, R) the sets F; as
s ranges over S are disjoint, possibly empty sets, whose union is S — R. Then
there is the forest volume formula

D B (Z ;p) (Z xs)m_ml_l. (417)

FEFOR(5,R) s€S reR ses

For |R| = 1 this amounts to Cayley’s expansion of (3, 2,)1%1=2 and for
zs = 1 it yields Cayley’s formula

[FoR(S, R)| = |R]||S|!SI-1FI=1, (418)

See [309] for various proofs of the forest volume formula (417), and [308] for a
number of probabilistic applications. Taking S = [r] and summing (417) over
all subsets R of [n] with |R| = k gives the cruder identity

n—k

I (“‘ 1) (Ex) (419)

FEFOR[n k] s=1

where FOR[n, k] is the set of all forests of k trees labeled by [n]. This was ob-
tained earlier in (286) as one of several enumerations equivalent to the Lagrange
inversion formula.

Take z; = p; for a probability distribution p := (ps) on [n], or any other set
S with |S| = n, to see that for each 1 < k < n the formula

P(Fpp=F)= (Z - D H ph! (420)

defines the distribution for a random forest F, ; of k trees labeled by S with
|S| = n, call it a p-forest of k trees labeled by S. In particular, call F, 1 a
p-tree. Several natural constructions of p-trees from a sequence of independent
and identically distributed random variables with distribution p are recalled in
the exercises. The following theorem is fundamental to everything that follows.
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Theorem 101 [304, Theorem 11] Let p be a probability distribution on S with
|S| =n, and let (Fnpx,1 < k < n) be a sequence of random forests labeled by S.

The following two descriptions are equivalent, and imply that F, i, is a p-forest
of k trees labeled by S with distribution (420):

1. Fn s a p-tree labeled by S, and gqwen Fy 1, for each 2 < k < n Fpi
s derived from F, 1 by deletion of k — 1 edges e;,1 < j < k—1, where
(ej,1 < j < n—1) is a uniform random permutation of the set of n — 1

edges of Fp 1;

2. Fn,n s the trivial forest with n roots and no edges, and for eachn > k > 2,
qwen Fy ; forn > j > k, the forest F,, 1 s derwed from F), i, by addition
of a single directed edge Xy_1 — Yr_1, where Yy_1 has distribution p, and
given also Yi_1 the vertex Xi_1 is picked uniformly at random from the set
of k—1 roots of the tree components of F, ; other than the one containing
Yi_1-

Proof. Starting from either description of the sequence, the formula (420) for
the distribution of F,, j can be established by induction. Then the time-reversed
description follows by Bayes rule. a

Corollary 102 For a forest-valued process (Fnx,1 < k < n) as in Theorem
101, let 11, i be the partition of S with |S| = n generated by the k tree compo-
nents of Fn i, so Il i is a coalescing sequence of partitions of [n] as k decreases
from n to 1. Then the sequence Il, », 11, n_1,...,1l, 1 develops according to
the following dynamics: given I, o,y n_q, ... I, g with 1L, o = {Aq, ..., Az}
say, the next partition I, ;_1 is obtained from {A1,..., Ay} by merging blocks
A; and A; with probability (p(A;) + p(4;))/(k —1).

Exercises

1. (A probabilistic derivation of Cayley’s expansion) [304] In Theorem
101, starting from Description 2 of a sequence of coalescent random forests, the
proof shows that formula (420) defines a probability distribution on forests of
k trees labeled by S with |S| = n, which is equivalent to the form (419) of
Cayley’s multinomial expansion.

2. (Cayley’s expansion over rooted trees.) According to (419) for k = 1,
in the expansion of (z1 + -+ -4 2,)" "', the multinomial coefficient of [, z}'* is
the number of rooted trees labeled by [r], with edges directed towards the root,
in which vertex i has in-degree n; for all i € [n]. Deduce (419) for general k
from this special case of (419). Harder [309]: deduce the forest volume formula
(417) from this case of (419).

3. (The root of a p-tree). Check that the root of a p-tree has distribution p.
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4. (Joyal’s bijection) [186], [308, §4.1] In the expansion of (21 + -+ )",
the multinomial coefficient of [[, 2'* is obviously the number of mappings from
[n] to [n] in whose digraph vertex ¢ has in-degree n; for all i € [n]. Deduce
Cayley’s expansion over rooted trees from this, by a suitable bijection between
mappings m and marked rooted trees (t, i), where ¢ is a rooted tree labeled by [n]
and 7 € [n]. To construct the bijection, observe that if the range of the directed
path from ¢ to the root of ¢ is a set C' of ¢ elements, the path defines a map from
[c] to C, which is bijectively equivalent to one from C' to C; now rearrange the
digraph of ¢t to make a mapping digraph whose set of cyclic points is C'. Deduce
that if F,, 1 is a p-tree, and X is independent of F,, ; with distribution p, then
the number of vertices of F, ; on the path from X to the root of F, ; has the
same distribution as the number of cyclic points of a p-mapping M,, : [n] — [n]
where the M, () are independent and identically distributed according to p. See
[68, 308] for more in this vein.

5. (Burtin’s formula) [66, 24, 308] Derive the following probabilistic equiva-
lent of the forest volume formula: M, is a p-mapping from [n] to [n], as defined
in the previous exercise, then for each subset R of [n], the probability that
[n] — R contains no cycle of M, is p(R).

6. (Restrictions of p-forests) [308, Theorem 19] Let a random forest F la-
beled by S be a p-forest, meaning that F is a p-forest of k trees given that
F has k trees. For each non-empty subset B of F, the restriction of F to B
is a p(-|B) forest. Find an explicit formula for the distribution of the number
of edges of the restricted forest in terms of |S|,|B|,p(B) and the distribution
of the number of edges of F. In particular, if the number of edges of F has
binomial(]S|— 1, q) distribution, then the number of edges of F contained in B
has binomial(]S| — 1, p(B)q) distribution. Note the special case ¢ = 1, when F
s a p-tree.

7. (A symmetry of uniform random forests) [304] Starting with a forest
of m + 1 trees defined by random deletion of m edges from a uniform random
tree over [n], given that the tree containing vertex 1 has a particular set V
of j vertices, the remaining random forest labelled by [n] — V' has the same
distribution as if m edges were deleted at random from a uniformly distributed

random tree labelled by [n] — V.

Notes and comments

This section is based on [304, 308, 309]. See [31, 308] for further properties of
p-forests, p-mappings, and connections with other polynomial expansions due
to Hurwitz. See [78, 77] for another representation of the additive coalescent
related to parking functions.
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9.2 The additive coalescent

Let D(}RZO,P[‘%J]) be the Skorokhod space for P&)’l]—valued cadlag processes

(with the {; metric on ’P[io 1]) For z € ’P[io 1] let g (z,dz’) be the o-finite measure
on PELO,l] with mass K (z;,2;) at ®07) and write py instead of ug for the
additive kernel K (z,y) = = + y.

Theorem 103 [120] There exists a unique family (P* z € 77[‘%’1]) of distribu-
tions on D(RZO,P[%J]) and a unique transition semigroup (P, t > 0) on 77[‘%71],
such that if P* governs (X7 ,t > 0) as the Markov process with X§ = x € 73[%71]
and semigroup (P;,t > 0), called the ranked additive coalescent, then

1. If z is a finite partition of 1 then the process (XF,t > 0) is the additive
coalescent defined as a jump-hold process with transition rates p4 (z,dz’).

2. X" 1s a binary coalescent, meaning that collisions of more than two clus-
ters at one time do not occur.

3. py(z,dz’) is a jump kernel for X* | in the usual sense of a Lévy system.

4. X% is a cadlag Hunt process and both x — Pi(z,-) and x — P” are weakly
continuous mappings from P[io 1 to the spaces of probability measures on

7)[io,1] and D(RZO,P[’%J]) respectively.

Intuitively, it is to be expected that a result like this should hold for more
general collision kernels than the additive kernel K(z,y) = z + y. But this
does not seem easy to prove. Aldous [17] gave a variant of this result for the
multiplicative kernel K (zy) = zy, working in the larger statespace of ranked
decreasing square-summable sequences. As discussed in [304], both the additive
and multiplicative kernels have natural interpretations in terms of the evolution
of random graphs. This means that the existence and uniqueness of both addi-
tive and multiplicative coalescents, with very general initial conditions, can be
established by direct combinatorial constructions. Such constructions also allow
a much deeper analysis of these coalescents than has yet been provided for any
other stochastic coalescent processes.

The essentially combinatorial nature of the additive coalescent is exposed by
the following continuous time variant of Theorem 101 and Corollary 102:

Theorem 104 [304] Let p be a probability distribution on S with |S| = n. Let
gi,1 <1< n—1 be a sequence of independent standard exponential variables. Let
(Fn(t),t > 0) be the forest-valued process, with state-space the set of all forests
labeled by S, whose jump times are the ¢;, and which may be described in either
of the following equivalent ways, according to whether time s run forwards or
backwards:

o F,(0) is the forest of n trivial trees with n root vertices, and F, (¢;) derived
from and F, (¢;—) for each 1 < i < n—1 by adding an edge R; — X;, where
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X1,Xs,,Xn_1 are independent random variables with distribution p on
[n], independent of €1, €2, ,en_1, and conditionally given F,(t),0 <1t < ¢
the vertex R; s picked uniformly at random from the set of the root vertices
of trees of Fp(e;—) other than the tree that contains X;;

o F,(00) is a p-tree, and F,(e;—) is derived from F,(;) for each i by delet-
ing an edge R; — X;, which conditionally given €; and F,(t),t > &;, is
picked uniformly at random from the edges of F,(e;).

Let TI,(t) be the partition of [n] generated by components of Fyo(t). Then
(TTy (t),t > 0) an additive coalescent with mass distribution p.

Observe that the forest F,(¢) constructed in the above theorem contains
precisely those edges R; — X; of F,(00) whose birth times &; are such that
e; < t. To generalize this construction to yield a ranked additive coalescent
whose initial state is some infinite partition (p;) of 1, the idea is to derive
a similar family of coalescing random forests by cutting up a suitable infinite
random tree whose distribution is determined by p. The key is to find a definition
of p-trees which makes sense for infinitely supported p, and which reduces to
the previous definition for finitely supported p. The definition which works 1s
the following:

Definition 105 [120, 68] Let p = (p;,j € J) be a non-degenerate probability
distribution on a finite or infinite set J. Call a random directed graph 7 with
vertex set J a p-tree if the random set of edges of 7 has the same distribution
as those of the birthday tree

T(YQ,Yl,...) = {Yn%Yn—l ZYn ¢{YQ,...,Yn_1} gJX J}

derived from a sequence of independent and identically distributed random vari-
ables Y, with distribution p on .J, where i = j := (4,j) € J x J.

By construction, the root of the birthday tree is Yy, which has distribution p on
J. The term birthday tree is suggested by the close relation the 7 (Yy, Y1,...)
and the classical birthday problem, concerning the number of repeated values
among the first n values of an independent and identically distributed sequence
Yo,...,Y,_1. For instance, the construction of the birthday tree starts with
a line of n — 1 edges directed from Y,,_; towards the root Yy iff there are no
repeated values in the first n terms Yp,...,Y,_1. Thinking of J as the set
of days of the year, and p; the probability that someone has day j as their
birthday, the first n — 1 edges of the construction of the birthday tree fall in
a line iff there 1s no repeat birthday observed in a sample of n individuals.
The fact that 7 (Yo, Y1,...) is just a p-tree according to the previous definition
(420) when J is finite is not obvious, but it is a consequence of the Markov
chain tree theorem [62, Theorem 1],[245] which identifies the distribution of
T (Yo, Y1,...) for a stationary ergodic Markov chain (Y,,) with finite state space,
up to a normalization constant. For an independent and identically distributed
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sequence, the fact that the normalization constant is 1 is equivalent to Cayley’s
multinomial expansion over trees.

A ranked additive coalescent with arbitrary initial state can now be con-
structed according to the following consequence of Theorem 103 and Definition

105:

Corollary 106 [120, Corollary 20] Let z € P[io,1] have 1 < 1, and let T =
T (Yo, Y1,...) be the p-tree derived from independent random variables Y, with
some distribution p on a countable set, such that the sequence of ranked atoms
of pisx. Let (W; — X;,i=1,2,...) be a list of the directed edges of T, let
(¢i)i>1 be a sequence of independent standard exponential variables independent
of (Y_n)nZO; let F(t) be the random forest

F):={Wi > X; e <t,i=12,.. 1} (421)

and let X (t) be the ranked p-masses of tree components of F(t). Then (X (t),t >
0) is a realization of the ranked additive coalescent with initial state X (0) = =
and cadlag paths.

Exercises

1.* (Semi-group of the additive coalescent) [304, 120] Let (TI(¢),t > 0) be
the Pp,j-valued additive coalescent starting with the partition into singletons,
with masses p1,...,pn. Then the distribution of |TI(¢)] — 1 is binomial with
parameters n — 1 and e~¢:

n—1

P(|T(t)]| = k) = < r 1 ) (1—e t)n=ke= k=1t (1 <k < n) (422)

and for any partition {Aq,..., Ag} of [n],
_ k
P((t) = {Ar,... Ag}) = e FmD8 (1 — =tk TT pli ! (423)
i=1

where pa =) ;4 pi-

9.3 The standard additive coalescent

A process of particular interest is the additive coalescent started with an initial
mass distribution that is uniform over n possible values. If we consider the Pr,-
valued additive coalescent process (ITy, (t),t > 0), with uniform mass distribution
on [n], it is obvious that TI,(t) is an exchangeable random partition of [n].
More precisely, we read from (423) and (422) that TI,,(¢) is a Gibbs (vEn’t), W)
distribution on partitions of [n], with weight sequences w; = 47=1, the number
of ways to assign a rooted tree structure to a set of j elements, and the weight
sequence vi™") is such that the distribution of |TT,, ()| —1 binomial(n—1,1—e~%).
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Tt is easily seen that for fixed ¢, these Gibbs distributions on partitions of [n] are
not consistent as n varies. So these Pp,j-valued additive coalescents processes
cannot be coupled as n varies to make a family of projections of some P[-
valued process, as Kingman did for the coalescent with constant collision kernel
(Exercise 2.2.2).

According to the Gibbs distribution of TI,(¢), given [II,(¢)] = k the sizes
of the k& components of TI,(¢), presented in exchangeable random order, are
distributed like (X7, ..., X) given Zle X; = n where the X; are independent
and identically distributed with the Borel distribution

e—mmm—l

P(X;=m) = -

of the total progeny of a critical Poisson branching process. By Stirling’s formula

1
P(X; =m) ~ as m — 0o0. (424)
27wm3
Hence, according to Theorem 13, if
) k
k — 0o and n = oo with — — A (425)
vn
the ranked sequence derived from
k
(Xi/n,1 <i<k) given in =n
i=1

converges in distribution to the sequence of ranked jumps of (75,0 < s < A)
given Ty = 1, where (Ts,s > 0) is the stable(%) subordinator with F(e=¢7%) =
exp(—sv/2€), so T < s?/B? for By standard Gaussian. To abbreviate, denote
the distribution of this sequence on P[io,l] by PD(%|[A), and recall from Section
4.5 that this is the law of ranked lengths of excursions of BY", where BYT is a
standard Brownian bridge BT conditioned on LY(B**) = . To get a weak limit

for the normalized ranked component sizes as n — oo, the process (T, (¢),¢ > 0)
must be run long enough so that |IT,(¢)| is of order /n. Let

h, := = logn.

L
2

Since |IT,,(¢)| — 1 has binomial(n — 1, e~*) distribution, if we take ¢t = h,, + r for
some r € R we find that E(|IT,, (h, + 7)|) ~ v/ne~" and the variance is of the
same order, so that

M (i + 1)/ 5 e (426)

This brings us to:
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Theorem 107 [120], [22, Proposition 2] Let X, (t) € P[io 1] be the sequence of
masses at time t in a ranked additive coalescent process started with n equal
masses of 1/n at timet = 0. Then as n — oo

(Xn(hn +7),—hn <7) D (Xeo(r), 7 € R)

n the sense of convergence in distribution on the Skorokhod space of cadlag
paths, with P[io 1 given the l; metric, where the limit process is the unique ad-

ditive coalescent parameterized by r € R such that Xo(r) has the PD(%||e™")

distribution of ranked lengths of excursions of B®" given given LY(BPT) = e7".

Proof. The convergence in distribution of X, (h, +7) to X (r) for each fixed r
was just argued. Convergence in the Skorokhod space then follows immediately
from the last regularity property of the ranked additive coalescent process listed
in Theorem 103. a

The process X, defined by Theorem 107 is called the standard additive co-
alescent. Compare with the standard multiplicative coalescent defined by The-
orem 57. Theorem 107 immediately raises the question of whether there exist
any other eternal additive coalescents besides time shifts of the standard one.
The answer, given in [7], is yes, there are rather a lot of them, but the extreme
ones can all be constructed by a natural generalization of the construction of
the standard additive coalescent considered in the next section. See also Bertoin
[38] for another approach to the solution of this problem, based on processes
with exchangeable increments instead of random trees.

9.4 Poisson cutting of the Brownian tree

According to Theorem 101, the additive coalescent started with uniform distri-
bution on n masses can be represented in reversed time by successively cutting
the edges of a random tree with uniform distribution over the n?~! rooted trees
labeled by [n]. According to earlier discussion, it follows from Aldous’s Theorem
58 that the structure of this tree, suitably normalized, converges to 7 (2B%*).
Moreover, the scaling involved in Theorem 107 makes the process of cutting
edges of a uniform random tree converge to a Poisson process of cuts along the
skeleton of the limiting Brownian tree, with intensity A per unit length in the
limit as k//n — A, where k is the number of trees in the forest, corresponding
to the number of steps backward in time from the terminal state of the discrete
coalescent process derived by cutting the uniform tree with n vertices.

This line of reasoning suggests it should be possible to construct the standard
additive coalescent by a process of cutting up the branches of a Brownian tree
by a Poisson point process along the skeleton of the tree, and keeping track
of the ranked masses of tree components so formed. This was shown in [22],
along with various other regularity properties of the standard additive coalescent
which follow from this construction.
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To make this construction, let 7 := 7(2B*) be the random tree structure
put on [0, 1] by a standard Brownian excursion B** | with all edge-lengths mul-
tiplied by 2. As in Theorem 68, let Uy, Us, ... be a sequence of independent
uniform variables, independent of B®*, and for n > 0 let

Tn := SUBTREE(2B; {0, U1, ..., Uyn}), (427)

regarded as a subset of [0, 1] equipped with the pseudo-metric of 7 (2B%*). Ac-
cording to Theorem 68, the tree 7, is isometric to a plane tree which can be
made by the Poisson line-breaking construction. Define the skeleton T1 of T to
be random subset of [0, 1] which is the union over leaves u and v of T of the
open path from u to v in 7, meaning the usual closed path from u to v, with
endpoints excluded. Note that 71 is almost surely dense in [0, 1], both in the
usual topology, and in the tree topology of 7. Moreover, 71 = U,7,] almost
surely, where 7,1 := Tn — {6, Uy, .. ﬁn} where u is the T equivalence class of u.

In fact 0 = {0,1} and U; = {U;} for all i almost surely. The construction of the
sequence of trees 7, induces a natural skeleton search map

ol Ry —{|T1|,|72|,.. } =TT

whereby for each n > 1 the open interval (|7,[, |Tn+1|) is mapped by depth-first
search to the branch in 7,41 which leads from 7, to U,41. Here 7o := {0,1},
|70] = 0, and |7,| for n > 1 is the total length of the plane tree which is isometric
to T, regarded as a subset of 7(2B°*). The length measure on T is Lebesgue
measure on Ry pushed onto 71 by the skeleton search. There are now two
measures on [0, 1], which are almost surely mutually singular, and which it is
essential to distinguish carefully:

e ordinary Lebesgue measure on [0, 1], to be called the mass measure, which
is concentrated on the random set of leaves of 7.

e length measure on the skeleton which 1s an infinite random measure con-
centrated on the random subset 771 of [0, 1], which is disjoint from the
random set of leaves of 7.

Now, independent of the lengths |7,],n > 1 which are the points of a Poisson
process on Ry with intensity ¢ dt, let N be a Poisson point process in Rr‘;o.
For A > 0let 0 < Th x < T3 < --- be the successive points £ such that there
is a point (¢,u) of N with u < A, and let TIT)\,T;)\7 -+ - be the images of these
points via the skeleton search, call them the A-cuts on the skeleton of 7. So by
construction, conditionally given T, the A-cuts are the points of a Poisson point
process with intensity A per unit length on the skeleton of 7, and as A increases
the set of A-cuts increases. Now we can formulate:

Theorem 108 [22, Theorem 3] Let Fy be the random forest whose tree com-
ponents are the Borel subsets of [0,1] defined to be the equivalence classes for
the random equivalence relation u ~y v iff the path from u to v in T does not
contain any A-cut, where the A-cuts fall on the skeleton of T according to a
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Poisson process of rate X per unit length on the skeleton, which intensifies as A
increases. Let Y (A) be the sequence of ranked masses of tree components of Fy.
Then Y (A) € 77[‘%71] for all A > 0 almost surely, and the process (Y (e™"),r > 0)
admits a cadlag modification which s a realization of the ranked additive coa-
lescent.

Some technical points had to be dealt with in [22] to prove this result, but
the intuitive idea should be clear: after passage to the limit from a uniform
random tree on n vertices, call it u,,-tree,

e the length measure on the skeleton of 7 should be regarded as the con-
tinuum limit of length measure on the branches of the u,-tree, with nor-
malization by /n;

e the mass measure on the leaves of 7 should be regarded as the continuum
limit of counting measure on the leaves of the u,-tree, with normalization
by n.

Thus the continuum analog of cutting edges by a process of Bernoulli trials
with some probability p is a Poisson process of cuts along the skeleton at some
constant rate A per unit length. Note from Lemmas 46 and 34 that Y, (), the
mth term of Y (A), which is the mth largest mass, is such that

2 \?
Yim(A) ~ —— almost surely as m — oo for each A >0 (428)
T m?

so the Poisson intensity parameter A is encoded almost surely in the state Y/ ().
In particular, for A # A the laws of Y(A) and Y(X') on 79[‘% )] are mutually

singular, though the laws of the first m components of Y(X) and Y(\) on
[0, 1]™ are mutually absolutely continuous for every m.

Definition 109 Call the 77[‘% 1]-valued process (Y (A), A > 0) the Brownian frag-
mentation process.

Note that the distribution of (Y/(A), A > 0) for each fixed A > 0 is the distribution
of ranked lengths of excursions of a Brownian bridge BP" given L{(B"T) = A.
So a considerable amount of information about this process can be read from
the results of Section 4.5. Following is a selection of such results, with new
interpretations.

Moment Formulae Let Y; be a size-biased pick from Y (A), which may be
understood as the size of the tree component of the forest F, which contains U
picked uniformly at random from [0, 1] independently of B®*. (One could just
as well take the component containing 0, by an obvious symmetry of uniform
trees, and passage to the Brownian limit.) Let f denote the density of Vi,
which can be read from (198), as in [22, (8)]:

Aly) = @m) 2y 21— y) 3 P exp(—=EX%y/(1—y)) (0 <y < 1). (429)
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Then there is the basic identity (126)

t (;gm(m) =F (g(;?)) = /01 v~ 9(u) F(v)dy (430)

which is valid for all A > 0 and all non-negative measurable functions g. For
q € R define

Ho(N) = I (Z Yﬁ“w) =B (W) = | hdy. (43

For n a positive integer, p,(A) can be interpreted as follows. Let Uy, Us,...
be independent uniform (0, 1) variables independent of the Brownian tree 7 :=
T (2B*). Given the sequence Y (A) of masses of tree components of the forest
F> derived by cutting the skeleton of 7 at rate A, the event that 0,Uy,...,U,
all fall in the same component of Fy has probability )", Y *1(X). So the un-
conditional probability of this event is p,(A). On the other hand, this event
occurs if and only if the Poisson cut process has no points up to time A in
Tn = SUBTREE(2B®*; {0, U1, ...,Uy,}), as in Theorem 68. Given the total length
O, := |T.| of this subtree, the event occurs with probability e=*®». But ac-
cording to the Poisson line-breaking construction of Theorem 68, ©,, is the time
of the nth arrival of an inhomogeneous Poisson process on (0, co) with rate ¢ at
time ¢. Thus
fin(A) = E(e=*€n) (n=1,2,..)

where for ¢ > 0

_1,2 (5"t

P(©,€dt) =€ 2

W t dt (432)
n—1)!
It follows that forn =1,2...
21—n [ele} _l 2 21—n
Jn(A) = m/o g1, =gt =At gy m\p%@) (433)

where in terms of a standard Gaussian random variable By with density ¢(z) :=

1
\/12—71_6_5'22, for z real and p > 0

Uy ()g(z) = E[(B1 — )~ '1(B1 > x)] = %E[Bl(Bl —z)"1(B1 > z)] (434)

where the first equality is read from (433) by a change of variable, and the second
equality, obtained by integration by parts, is an instance of Stein’s identity
E[f'(B1)] = E[B1f(B1)] which is valid for all sufficiently smooth f vanishing
at +oo. It is also known [234] that

Up(2) = T(p)h-p(2) (tp > 0) (435)

where h, is the Hermite function defined by a different integral representation
in (249). The agreement of formulae (433) and (249) provides a substantial
check on the entire circle of results related to the Brownian asymptotics of
fragmentation of a uniform random tree by random deletion of edges.
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Self-similarity of Brownian fragmentation Brownian scaling yields the
following lemma:

Lemma 110 For 0 < t < oo let T (t) := T(2B*") where B is a Brownian
excursion of length t. Then cutting the skeleton of T (t) according to a Poisson

process of rate XA per unit length creates a forest whose component masses are
distributed as tY (t'/2)).

Consider a uniform random tree on j(n) vertices. When we assign each vertex
mass 1/j(n) and each edge length 1/4/j(n), then the random tree converges in
distribution to 7 in the sense of [22, Lemma 9] If instead we assign each vertex
mass 1/n and each edge length 1/y/n, where j(n)/n — ¢, then the random
tree converges in distribution to 7 (¢). Now consider the discrete random forest
F™(n—m) obtained by deleting m random edges from the uniform random tree
on n vertices. Conditional on the vertex-sets (V;,j = 1,2,...) of the compo-
nents of the forest, each component is a uniform random tree on vertex-set V;,
independently as j varies. Because Y (A1) arises as a limit of relative sizes of
the components of F*(n — m(n)) as m(n)/n'/? = \;, we deduce:

Lemma 111 Given Y (A1) = (t1,12,...), the tree components T; of Fx, can be
identified modulo isometry as a sequence of independent copies of T (t;), i =
1,2,....

Combining with Lemmas 110 and 111 gives the following statement of a self-
sitmilar Markov branching property of the Brownian fragmentation process.

Proposition 112 For each A1 > 0, the conditional distribution of Y (A1 + A)
given Y (A1) = y is the distribution of the decreasing reordering of

(Y ! A)0,5 > 1)

where (Y@ (.),i > 1) are independent copies of Y (-).

Thus the Brownian fragmentation process is an instance of of the general
kind of self-similar fragmentation process studied by Bertoin [40].

Bertoin’s representation of the Brownian fragmentation process Start-
ing from the standard Brownian excursion B®*, for each A > 0 let BS* € C10, 1]
be the excursion dragged down by drift X, that is

BY(u) := B (u) —ur  (0<u<1)

Let Y**(X) be the sequence of ranked lengths of excursions away from 0 of the
process (BS*(u) — B¥(u),0 < u < 1). Note that these are the ranked masses of

subtrees of 7 (BS*), regarded as a forest of subtrees attached to a forest floor of
length A defined by the branch of 7(B$¥) of length A which joins 0 to 1.

Theorem 113 Bertoin [36]. The process (Y *(A), A > 0) is another realization
of the Brownian fragmentation process.
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It can be argued that each excursion of B3* above its past minimum process
of duration ¢ is simply a Brownian excursion of duration ¢, and that these
excursions are conditionally independent given their lengths. The self-similar
fragmentation property of (Y**(A), A > 0) follows by Brownian scaling. So to

prove Theorem 113, the main thing to check is that Y**(X) < Y (A) for each
fixed A > 0, which is not so obvious. A subtle feature here is the order structure
of the sequence of excursion intervals whose ranked lengths is Y**(X). See [342]
and [76] for further discussion.

Exercises

1. (Evolution of the mass containing 0) [22] Let Y3(A) be the mass of the
tree component of Fy that contains 0. Then Y;(A) is a size-biased pick from the
components of Y (), and

(Y(A),A>0) £ (1/(14T3),A > 0) (436)

where (T, A > 0) is the stable(1) subordinator with T} L A?/B2. This extends
the equality of one-dimensional distributions (247). The same conclusion holds
in Bertoin’s model, for Yy(A) := Ho(B5¥). See [36].

2.* (Deletion of a size-biased pick from Y ()).) Fix A. Let Y; be a size-
biased pick from the components of Y (A), which represents the mass of the tree-
component containing U; in the forest Fy, where U; is independent of Fy. The
conditional distribution of Y () given Y, = y is the unconditional distribution
of the decreasing reordering of {y} U {(1 — y)Y;((1 —y)~/2X),i > 1}.

3.* A check on the moment formula (433). Verify that this formula is
consistent with the self-similar Markov branching property of (Y (A),A > 0)
described in Proposition 112.

4.* (Partition probabilities) Fix n > 2. Let Yj,j(A) = (Y1), ..., Y)(A))
where Y(Z-)()\) is the mass of the tree-component of F) containing U; where
the U; are independent and uniform on (0, 1), independent of Fy. Note that
the Y(Z-)()\) are exchangeable random variables, all distributed like Y{;) = v;
which is a size-biased pick from the components of Y/(A). Write I, (\) for the
partition of [n] generated by the values of Y{;)()),i € [n] and write Y;*(}),j =
1,2, for the sequence of distinct values of Y(;)(A),7 > 1. Observe that given
II,(A) = {B1,..., B} say, where the B; for 1 < j < k are arranged in order
of their least elements, Y{;)(A) = Y;"(A) for all i € B;. The joint distribution of
(Y(1)(A), - - -, Yy (X)) for each fixed A > 0 is determined by the following formula:
For each partition {By, ..., Bg} of [n] such that #B; = n; for 1 < i < k, where
the n; are arbitrary positive integers with sum n, and for y1,..., yx with y; > 0
ando:zzjyj <1,

P(IL,(A) = {Bx1,...,Br} and Y;"(\) € dy;, for all 1 < j < k) (437)
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k

AF nj—3/2 _ Ao .
:W Y; / dy; | (1 - o) 3/2exp<—71_0>, (438)
j=1

For n = 1 this reduces to (429). Deduce from (437)-(438) by integration the
previous formula (257) for the EPPF of a (3]|A) partition.

5. (The splitting time) Consider Y[3j(A) = (Y(1)(}), Y(2)(})), the sizes of tree
components of F, containing independent uniform variables U1 and Us. There
is a splitting time S defined as the smallest A for which these tree components
are distinct. Then the joint density of (S, Y(1)(S), Y(2)(S5)) is

$ _1/2 —1/2 _
f(81y1,y2) =5 1/‘)3/2 1/‘)(3/1 + yz)(l — Y- yz) 3/2 exp <—

2ty
or Y1 '

El—yl—yQ

9.5 Inhomogeneous continuum random trees

These arise naturally from asymptotics of p trees for non-uniform p. References,
with applications to the entrance boundary of the additive coalescent, are [6§],

[7] and [6]. See also [38] and [259] for related work.
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10 Complements

This supplement to earlier chapters draws together and summarizes a number
of 1deas related to infinite random partitions. Some further exercises and open
problems are also presented.

10.1 Representations of infinite partitions

This section reviews some terminology and basic facts related to different rep-
resentations of infinite partitions. Recall that 77% denotes the space of real
partitions of 1, that 1s decreasing non-negative sequences with sum 1. Proba-
bility distributions on 77% can be used to describe the distribution of sizes of
components of many different kinds of partitions of an infinite set, subject to
the constraint that the sum of sizes of components is always equal to 1. Some-
times, especially in the discussion of weak limits, and in the theory of processes
of coagulation and fragmentation, it is convenient to work in the larger space
P[io,l] = Uo<a< 17)}: where 77% is the space of real partitions of . For x > 0 there

is an obvious bijection between P¥ and P} by scaling, and P} := {(0,0,...)}.
To avoid largely trivial complications, the following discussion will be restricted
to probability measures on Pli. With a little care everything can be adapted to
probability measures on P[io’l] or even sz(ﬂ?}:. Much more care is required to
handle probability distributions over decreasing sequences (x;) with )", x; = oo,
for which many of the following constructions don’t make sense. See [3, 21] re-
garding things that can be done in that case.

Let P be a probability distribution on 77%. Associated with P are the dis-
tributions of various stochastic processes determined by P, each constructed
from some random element (P;) of 77% with distribution P and some further
randomization, as indicated in the following definitions. See [293, 298, 305] for
background and further discussion of the relations between these various pro-
cesses. Note well the slightly unusual but efficient convention of notation, that P
is not the random sequence (P;), rather the distribution on PiL of this sequence.
Each of the following processes encodes the distribution P in a more manage-
able way, and facilitates the description of some basic operations on probability
distributions on PiL.

Definition 114 An ezchangeable random discrete distribution on [0,1] gov-
erned by P is a random measure 7p on [0, 1] which puts mass P; at U; € [0, 1],
for some sequence of independent and identically distributed uniform (0, 1) vari-

ables (U;) independent of (F;):
() =Y _ Pil(U; € ) (439)
j=1

Definition 115 A process with exchangeable increments governed by P is the
process (7p(u),0 < u < 1) obtained as the cumulative distribution function of
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an exchangeable random discrete distribution 7p as above, that is
rp(u) = 7p ([0, u]) := Y Pi1(U; < u). (440)
j=1

Evidently, the distribution P of (P;) on 7?%, and that of (7p(u),0 <u < 1)
on D[0, 1], determine each other uniquely. According to Kallenberg’s theory
of processes with exchangeable increments [189, 192], every pure jump process
with exchangeable increments (7(u),0 < u < 1) with increasing paths in D[0, 1]
and 7(0) = 0,7(1) = 1 has the same distribution as 7p derived as above from
(P;) the sequence of ranked jumps of (7(u),0 < u < 1).

For (z1,z3,...) a sequence of non-negative real numbers with sum 2 < oo,
let RANK(z1,23,...) € P} be the decreasing rearrangement of terms of the
sequence.

Definition 116 An interval partition of [0, 1] is a sequence of random disjoint
open intervals (I;) with ), A7, = 1, where Ar is the length of 7. A P-partition
of [0, 1], often denoted (I]P) below, is an interval partition (Z;) of [0, 1] such that

RANK (A1, Ar,, ...
has distribution P.

Note that an interval partition will always be regarded as ordered. So I; =
(Gj, Dj) say is simply identified as a pair of random variables specifying its
endpoints, and ([;) is just a sequence of such pairs. To completely specify
the distribution of a P-partition of [0, 1], it is necessary to specify the order
of intervals in some way. If the order is not mentioned, it can be assumed by
default that the intervals are laid out from left to right in decreasing order of
size. But other orderings, such as the exchangeable ordering discussed later
in Definition 119, are much more useful. One can of course also consider P-
partitions of [0, 1] into Borel sets rather than intervals, or P-partitions derived
from some more general probability space than [0, 1] with Lebesgue measure.
But interval partitions are adequate for present purposes.

Definition 117 A P-partition of N is an exchangeable random partition T,
of N whose ranked frequencies (P;) have distribution P.

The distribution of Tl is determined by its EPPF p as in (119), and p and
P determine each other uniquely, by Kingman’s correspondence (Theorem 10).
The blocks of a P-partition of N can be made by Kingman’s paintbox construc-
tion as the random sets {i : U; € IJP} for any P-partition (IJP) of [0,1], and
(U;) a sequence of independent uniform(0, 1) variables, assumed independent of

(17)-

Definition 118 A size-biased presentation of P, is a size-biased ordering of a
P-distributed sequence.
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Such a sequence is obtained from an exchangeable P-partition of N as the
frequencies of classes in order of their first elements. In terms of Kingman’s
paintbox construction, this is the sequence of lengths of intervals IF in the order
they are discovered by the process of random sampling with the U;. Think of
each I]P being painted a different color, then observing the sequence of colors
found by the U;.

Interval partitions of [0, 1] may be constructed as in Section 4.4 as the col-
lection of excursion intervals of a suitable stochastic process parameterized by
[0,1]. Many such interval partitions have the following property:

Definition 119 Let (I;) be an interval partition of [0,1], with sequence of
ranked lengths
(Ar,, s > 1) == RANK(Ar;,j > 1)

whose non-zero terms are distinct almost surely. Call (I;) exchangeable if for
each n = 2,3, ... such that ]P()\I(n) > 0) > 0, conditionally given A1,y > 0, the
ordering in [0, 1] of the longest n intervals I(;),1 < j < n is equally likely to be
any one of the n! possible orders, independently of the lengths of these n longest
intervals. Call (I;) infinite if P()\I(n) > 0) = 1 for all n.

The extension of this definition to the case with ties is pedantic but obvious. As
shown by Kallenberg [190], for an infinite exchangeable interval partition (),
for each u € [0, 1] the fraction of the longest n intervals that lie to the left of
u has an almost sure limit L, as n — oo. The process (L,,0 < u < 1)is a
continuous increasing process, called the normalized local time process of (I;).

Note that the distribution of an ezchangeable P-partition (I;) of [0,1] is
uniquely determined by P provided the indexing is ranked, meaning I; = I(;
for all j, with strictly decreasing lengths, as will be assumed for simplicity from
now on. An exchangeable P partition of [0, 1] can be constructed as

If = [rp(U;=), 7p (U;)] = [7p([0,U;)), 7P ([0, U;])]

with notation as in (439) and (440), for 7p regarded as a process with exchange-
able increments in the first expression, and as a random measure in the second.
Inversely, assuming that (I;) is an infinite exchangeable P-partition of [0, 1],
the increasing process with exchangeable increments (rp(u),0 < u < 1) is the
right-continuous inverse of the normalized local time process of (I;).

The following lemma is a well known consequence of Ito’s description of
excursions of a Markov process, and the general construction of bridges of a
nice recurrent Markov process, as in [133].

Lemma 120 Let X" be the bridge of length 1 from 0 to 0 derived from any
nice recurrent strong Markov process X with recurrent state 0 which s reqular
for itself. Then the interval partition (I;) defined by excursions of XPT away
from 0 is an infinite exchangeable interval partition of [0, 1], whose normalized
local time process is L, = LP*/LP" 0 < uw < 1 for any of the usual Markovian
definitions of a bridge local time process LPT := LPr(XPr).
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In particular, this lemma applies to a self-similar recurrent Markov process
X = Basin Section 4.4. Then, according to the discussion around Corollaries 44
and 45, the distribution of ranked lengths of excursion intervals (I;) is PD(a, a)
for some a € (0,1), with a = (2 — J)/2 if B is BES(J) for § € (0,2), and a =

2
if B 1s standard Brownian motion.

The two-parameter family To quickly review some of the above represen-
tations in the case of the two-parameter family. The distribution P on 77% is
PD(a, ) iff the corresponding partition of N is an («, ) partition, as described
by the Chinese Restaurant Process in Section 3.2. In particular, the distribution
P is PD(0, #) iff the corresponding process with exchangeable increments 7p is
a Dirichlet process with parameter 8, obtained by normalization and scaling of
a gamma subordinator (I';,0 < s < #). The distribution of P is PD(a, 0) iff the
corresponding process with exchangeable increments 7p is is a normalized stable
subordinator of index a. Further representations of PD(a,0) and PD(e, @) in
terms of interval partitions are reviewed in Proposition 130 below.

10.2 Representation of coagulation kernels

Recall from Definition 19 and following discussion that for each probability
measure () on 77%, two Markov transition kernel () -COAG and () -FRAG can be

defined on 77% as follows. For p € 77%,

e (Q-coAG)(p,-) is the distribution on 77% of
RANK (Zpil(Ui € IjQ),j > 1) (441)
where (I]Q) is a -partition of [0, 1], and the U; are i.i.d. uniform on (0, 1)
independent of (I]Q)
e ((Q-FRAG)(p, ‘) is the distribution of
RANK (piQi j,1,j > 1) (442)

where (Q;;);>1 has distribution @ for each i, and these sequences are
independent as i varies.

For a probability measure P on 77%, let R := P(Q-coaG). That is the
probability measure on 77% defined by

R(:) := /7>l P(dr)@Q-coag(r, ), (443)

which may be called P coagulated by Q. Notice that (443) is equivalent to

R-coAG = (P -COAG)(Q -COAG)
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in the usual sense of composition of Markov kernels. The same remark applies
to fragmentation kernels too.

The space 77% does not have a group structure, but these operations on prob-
ability measures P and @ on 77% to obtain P coagulated by @, or P fragmented
by @, are similar to the more familiar operation of convolution of measures on a
group. For instance there is a representation of both coagulation and fragmen-
tation semigroups analogous, analogous to a Lévy-Khintchine representation,
as has been shown by Schweinsberg and Bertoin. See references in Sections 2.6

and 2.7.

Coagulation and subordination The following Lemma reduces the notion
of composition of coagulation operators to the operation of composition of in-
creasing processes, commonly known as subordination, which was considered by
Kallenberg [192] for increasing processes with exchangeable increments of the
kind involved here. This is seen by associating each probability distribution
P on 77% with its corresponding exchangeable random discrete distribution on
[0, 1], defined as in (439) by putting mass P; at U; € [0, 1], for some sequence
of independent and identically distributed uniform (0, 1) variables (U;) inde-
pendent of (P;) with distribution P. Now R in (443) is the distribution of the
ranked rearrangement of the terms

p(IP) =Y PUU; €1?), =12, (444)

i=1

where (I]Q) is @ partition of (0, 1), assumed independent of (P;) and (U;). The
terms in (444) are the masses assigned by 7p to the intervals IjQ. Think of @

as determining the sizes of bins IQ, and P as determining the sizes of masses
to be sprinkled into the bins by uniform random allocation. Then P coagulated
by @ is the distribution of ranked P-masses collected in the bins. Note that the
locations of the intervals IJ»Q in [0, 1] have no effect in this construction, due to

the assumed independence of (Iﬁ), 7p, and (U;).

For 0 < u < 1 let (rp(u),0 < u < 1) as in (440) be the process with
exchangeable increments whose ranked jumps have distribution P, that is the
cumulative distribution function of the random discrete distribtion 7p. Recall
that the distribution P on P} determines that of (7p(u),0 < u < 1) on D[0, 1],
and vice versa.

Lemma 121 For each pair of probability distributions P and @) on 77%, the

distribution R = P(() -COAG) is the unique probability distribution on PiL such
that

4

(Tr(u),0 <u<1) = (1p(q(u), 0 <u <),

where it is assumed that (tp(u),0 < u < 1) and (tg(u),0 < u < 1) are indepen-
dent.
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Proof. It may be assumed that the interval (I]Q) in (444) is exchangeable.

The random open set defined by the union of the interiors of the intervals 19
is then almost surely identical to the union of open intervals (7o (u—), To(u))
as u ranges over [0, 1]. The process (7p(mq(u)),0 < u < 1) is easily seen to be
increasing with exchangeable increments, and its collection of jumps is almost
surely identical to the collection of strictly positive increments of 7p over the
non-empty intervals (7g (u—), 7g(u)). So the conclusion follows from (444). O

Lemma 121 generalizes the connection pointed out in [43] between the co-
agulation operators of the Bolthausen-Sznitman coalescent [59] and the op-
eration of subordination of stable increasing processes. To see this connec-
tion, let Qo := PD(e,0), so @ is the distribution of of ranked jumps of
(Tw(8)/Tw(S),0 < s < S), for arbitrary fixed S > 0, where (T,(s),s > 0) is a
stable(a) subordinator. For two independent stable subordinators (7, (s), s > 0)
and (Tp(t),t > 0) there is the well known subordination identity

Ta(Tp(s),5 > 0) = (Tap(s), s > 0). (445)

By application of Lemma 121, Q. (Qg -COAG) is the distribution of ranked jumps
of the process

<Ta(Tﬁ;ZE{)Tﬁ(1)), 0<u< 1)

=

Top(u)
(Taﬁ(l),ogugl) (446)

where the identity in distribution is justified by (445) and the scaling property

(Tw(ct),t >0) 4 /T, (t),t > 0). That is to say, Qa(Qp-c0AG) = Qap, which
is equivalent to the identity of coagulation kernels

(Qa-COAG)(Qp-COAG) = Qup-coac (0 < a,f < 1). (44T)
If we set Py := Qexp(—t) ~COAG then (447) reads
PP, =Py (s,1>0). (448)
Thus we deduce result of Bolthausen-Sznitman [59] that
(PD(e™*,0)-coaG,t > 0), is a semigroup of Markov kernels on 77%. (449)

See [59, 305, 41, 43] for further analysis of the corresponding coalescent process,
which may be constructed for all ¢ > 0 with state space Py, or just for ¢ > 0
with state space PiL.

Coagulation by PD(0,1) The PD(0, 1) distribution on ’Pli has some unique
properties implied by the fact that it is the asymptotic distribution of ranked
relative lengths of cycles of a uniform random permutation of [n]. As discussed
in Section 3.1, this gives the uniform stick-breaking representation of the size-
biased presentation of PD(0, 1), which is the simplest possible description of the
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size-biased presentation of any probability measure on 77% which concentrates
on infinite partitions. Moreover, the entire structure of random partitions gen-
erated by uniform permutations of [n], for every n, is embedded in a (0,1)
partition of N whose ranked frequencies have PD(0, 1) distribution. The follow-
ing theorem presents a remarkable consequence of this intimate link between
PD(0, 1) and random permutations. First, a generalization of Definition 93:

Definition 122 [5, 10] Let (I;);j=1,2.. be a random interval partition of [0, 1].
The D-partition derived from (I;) is the interval partition (I]D) defined as fol-
lows. Let Uy, Us, ... denote a sequence of independent uniform (0, 1) variables,
independent of ([;). Let IjD := [Dv,_,, Dv;] where Vo = Dy, = 0 and V} is
defined inductively along with the Dy, for j > 1 as follows: given that Dy, and
Vi have been defined for 0 < i < j, let

Vi =Dy, , +U;(1 - Dv,_,),

so V; is uniform on [Dy,_,,1] given (V;, Dy,) for 0 < i < j, and let Dy, be the

3j—17

right end of the interval I ;) which contains V;.

This definition was first introduced in [5] for (I;) the exchangeable interval
partition defined by excursions of a standard Brownian bridge, when (1) is a
PD(%, 1) partition (Corollary 45). It was shown in [5], in connection with the
asymptotics of partitions of [n] generated by trees and basins in the digraph of
a uniform random mapping of [n], that the D-partition derived from excursion
intervals of Brownian bridge is a PD(0, %) partition, with intervals in length-
biased order. See next section for further discussion of this example. It was
shown in [10] that many of the properties of the D-partition derived from inter-
vals of Brownian bridge are in fact shared by the D-partition derived from any
exchangeable interval partition of [0, 1]. Following is a formulation of one such

property:

Theorem 123 For each probability distribution P on 77%, the sequence of lengths
of the D-partition derived from an exchangeable P-partition of [0,1] is a size-
biased presentation of P coagulated by PD(0,1). In particular, the distribution
of ranked lengths of this D-partition is P(PD(0,1)-C0OAG).

Proof. Let (P;) be distributed according to P. By conditioning, it is enough
to consider one of the following two cases: either

e P; > 0 for all 7 almost surely, or
e P,>0for1<i<nand 2?21 P; = 1 almost surely.

But in the first case, the conclusion can be read from [10, Theorem 25], and in
the second case, the conclusion can be read from [10, Lemma 26]. o

Corollary 124 In the setting of Theorem 123 with (I;) an infinite exchangeable
interval partition of [0,1], for each k = 1,2,... the interval (Gv,, Dy, ) that
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contains Vi is a length-biased pick from the restriction of (I;) to [Dy,_,, Dv,].
In particular, (Gv,, Dv,) is a length-biased pick from the restriction of (I;) to
[0, Dv,].

Exercises

1. (Proof of Theorem 123)
2. (Proof of Corollary 124)

3. (Problem) Is there a generalization of Theorem 123 to some other law @
instead of PD(0, 1), for instance PD(0,#) or PD(a, 6)?

10.3 Coagulation/fragmentation duality

Let us start with some general considerations. For two random variables X and
Y, with values in arbitrary measurable spaces (Qx,Fx) and (Qy,Fy), and a
Markov transition kernel @ : (Qx, Fx) — (Qv, Fy), either of the displays

Q
X —Y or Y «— X (450)

Q

means that P(Y € -|X) = Q(X,-). Assuming that, and that (Qx,Fx) is a
nice measurable space, the general theory of regular conditional distributions
[104] provides an essentially unique Markov transition kernel Q : (Qy, Fy) =
(2x, Fx), such that

X —vY (451)
Q

The dual pair of relations (450) and (451) can then be indicated by a single
diagram

X Y (452)

which should be read clockwise starting from X. Some things to keep in mind
here:

e the notation is simplistic: ) depends on both () and the law of X.

o If P(X € dz) = fx(x)u(dz) and Q(z,dy) = q(z,y)v(dy) for some ref-
erence measures p and v, then P(Y € dy) = fy(y)v(dy) with fy(y) =
fx q(z, y)p(dz), and there is Bayes rule Q(y,dz) = fx (z)q(z, y)/fv (y).
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e Without densities with respect to some reference measures, the abstract
theory gives you existence of (). But when it comes to approximating or
computing it, or identifying it with some other kernel you might have seen
before, you are on your own.

So when X and Y have values in some infinite dimensional space like 73%, where
there is no natural reference measure, given some law of X and the some Markov
kernel @ for the law of Y given X, the problem of identifying the law of Y and
the inverse kernel Q is usually a non-trivial one. A useful general method for
handling such situations is the following:

Method of finessing Bayes rule

e Find some manageable class of jointly measurable functions f such that
a joint law of (X,Y’) of the kind under consideration is determined by

Ef(X,Y) for all f in the class.

e Compute Ef(X,Y) for all f in the class, using the law of X and P(Y €
1 X) =Q(-1X).

e Now anticipate or guess some parametric form for what the law of ¥ and
( might be. Recompute Ef(X,Y), using your guess for the law of Y, and
P(Xe-|Y)=Q(]Y).

e If you can find values of the parameters which get you the same value of
Ef(X,Y) as you got the other way, for all f in your class, problem solved.

This method is well illustrated by the following example. Suppose X has
PD(ag, bg) distribution on 77%, and @ is the (a,f)-coagulation kernel. Tt is
not at all obvious how to describe the distribution of Y on 77% in any direct
way, let alone find the family of conditional laws Q of X given Y. The kernel
() must obviously be some kind of fragmentation kernel, meaning that Q(y, )
should concentrate on real partitions obtained by shattering each part of y into
fragments in some way, then re-ranking all the fragments. But the exact form
of this kernel is unknown except in the special case, discovered using the above
method, and discussed in more detail below, when the distribution of Y 1is
PD(as, 61), and the inverse kernel is PD(a, é)—fragmentation for some (aq,6;)
and (&, é) determined by (aq,fg) and («, 6).

Example: partitions generated by random mappings The first indi-
cation of such a duality relation i1s provided by the combinatorial structure
associated with random mappings. Recall from Example 8 that the digraph
of a uniform random mapping from [n] to [n] partitions [n] coarsely into con-
nected components called basins, each of which is further partitioned into tree
components. The partition of [n] by tree components is thus obtained by a com-
binatorial fragmentation operation on the partition of [n] by basins. Moreover,
given the tree components, they are tied together into cycles by the action of
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a uniform permutation of their root vertices, which provides a combinatorial
coagulation of trees. In the large n limit, the various partitions involved have
weak limits in the sense of Section 2.4, all of which can be identified as members
of the two-parameter family, as indicated below, by application of one or other
of Theorems 12 and 13 (See Section 8.1 for details). As n — oo,

e the weak limit of the partition of [n] by tree components is a (%, %) par-
tition.

e the weak limit of the partition of tree roots, by cycles of the random
permutation of what is most likely a large number of cyclic points, 1s a
(0, 1) partition;

e the weak limit of the partition of [n] by basins is a (0, %) partition;

e the weak limit of the partition of a large basin by its tree components is
a (%, 0) partition.

Moreover, the combinatorial fragmentation and coagulation operators, which
relate the two random partitions generated by the mapping digraph, converge
weakly to their asymptotic counterparts, which are the (0, 1)-coagulation and
(%, 0)-fragmentation operators on 77%. To summarize: the joint weak limit of the
tree and basin partitions generated by a random mapping is a (%, %)—partition
which is a refinement of (0, %)—partition7 according to the following prescription,

where the symbol (a, f/) may represent
e ceither the law of an (a, ) partition of N,

e or the corresponding law PD(«a, 6) on PiL:

(0,1)-coaa
— -
(3.3) (0,3) (453)
(1,0)-FRAG

To read around the diagram, and review its interpretation in terms of laws
on 77%. Starting on the left side, PD(%, %) is the limit distribution of ranked
relative sizes of tree components of the mapping. The PD(0, 1) -coAG opera-
tion describes how the trees are bundled into basins, according to the PD(0, 1)
asymptotic distribution of relative sizes of cycles of the random permutation of
the roots. The result is the asymptotic basin partition, which is P.D(0, %) Fi-
nally, the asymptotic mechanism by which the basins are partitioned into trees
is a PD(%, 0)-fragmentation. The reader will find it instructive to read around
the diagram, interpreting each step instead in terms of the joint law of a nested
pair of random partitions of [n], where the joint laws are consistent in an obvious
sense as n varies. It should then become clear that the problem of discovering
or proving a duality relation like (453) is essentially combinatorial in nature, as
it reduces entirely to computations involving partitions of [n].
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Brownian bridge interpretation Of course, the interesting thing about a
duality relation like (453) is that while it can be proved combinatorially, it has
meaning in the continuum limit as a fact about kernels on real partitions of
1. Recall from Section 4.4 that PD(%, %) and PD(%,O) are the laws of the
partitions of 1 generated by the lengths of excursions away from 0 of BP" and
B[0, 1] respectively, where B is standard Brownian motion and B"" is B[0, 1]
conditioned on B(1) = 0. Consequently, the diagram (453) can be interpreted
in terms of first coagulating and then fragmenting an ensemble of Brownian ex-
cursions, using the representation of PD(0, 1)-coagulation provided by Theorem

123. See Section 8.2 and [10] for details.

Generalization The coagulation/fragmentation duality (453) generalizes as
follows:

Theorem 125 [305] For0< a < 1,0< < 1,-3< 0/«

(8,8/a)-coaa
%
%

(a, —af)) -FRAG

(ap,0) (454)

Sketch of proof. As indicated in the discussion below the special case (453),
the key is that for any probability law @ on PiL, the kernels @ -coac and
(@ -FRAG, regarded as Markov kernels on Py rather than PiL, act locally on the
partitions of [n] obtained by restriction of a partition of N, in the sense discussed
below Definitions 19 and 23. Moreover their action can be described in terms of
EPPFs by explicit combinatorial formulae [305, §4]. Consequently, an identity
such as (454), once guessed, can be proved by a computation with EPPFs,
according to the general method of finessing Bayes rule, discussed above. See

[305, i§4] for details. O

Some special cases of (454) are worthy of note.

e (f=0,0<a=0<1)

(0,1)-coaa

%
%
(a,0) -FRAG

(0, @). (455)

(o, @)

This has an interpretation, developed in [10], in terms of excursions of the bridge
of a self-similar Markov process whose zero set is the range of a stable(«) sub-
ordinator. An interpretation can also be given in terms of a discrete renewal
process whose inter-arrival times have the discrete distribution (183) with pa-
rameter «, along lines indicated in [299] and [382].
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e (8=0,0<a< 1,0 >0). This generalization of the previous case can be
represented in an obviously equivalent way as follows:

(a,0) -FRAG

%.

5 (
(0,0/a)-coac

0,6) a, ). (456)

This presentation emphasises the construction of PD(«,f) as PD(0,6) frag-
mented by PD(a, 0), which can be interpreted in various ways. One interpreta-
tion in terms of subordination was given in [317]. A more elementary interpre-
tation is given in the next section in terms of a branching process construction
of an (a, #) partition

e (0<a<1,0<p<1,6=0.) Now (454) reads

(8,0)-coaa

%

%
(a, —af) -coAG

(@,0) (3,0 (457)

Thus we recover the basic identity (447) underlying the semigroup of the Bolthausen-
Sznitman coalescent. But this time we get as well a recipe for construction of
the time-reversed process, which has numerous applications. For instance:

Corollary 126 [305, Corollary 16] Let (X(t),t > 0) be the cadlag Pf-valued
Bolthausen-Sznitman coalescent such that X (t) has PD(e™*t,0) distribution, with
X (t) represented as the frequencies of TI(t), where (TI(¢),t > 0) is an exchange-
able Py-valued coalescent process such that TI(t) is a (e™*,0) partition N. Let
X, (t) be frequency of the component of TI(t) containing 1, so X; (t) is for each
t a size-biased pick from the parts of X(t). Then

(X1(8),t>0) £ (T1_exp(—ty/T1,t > 0)

where T' s a gamma subordinator. Equiwvalently, if p is the sequence of ranked
Jumps of (X1(t),t > 0), and T; is when p; occurs, then p has PD(0,1) distribu-
tion and the T; are i.i.d. exponential(1) independent of p.

See [305] for the proof of this and other properties of the Bolthausen-Sznitman
coalescent which follow from the duality relation (457).

10.4 A Continuous Time Branching Model

This section offers an interpretation of the (a, ) urn scheme for 0 < a < 1,6 >
—a 1n terms of a branching process in continuous time. This generalizes the
model of Tavaré [358] in case # = 0. As indicated in [129], the model considered
here can be derived from the still more general model of Karlin and McGregor
for the number of mutant forms maintained in a population. See also [187, 130]
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for related work. This presentation of the (a, ) urn scheme brings out some
interesting features of the («, ) partition structures which are quite well hidden
from other points of view.

Case (0 < a < 1, § = 0) Consider a population of individuals of two types,
novel and clone. Each individual is assigned a color, and has infinite lifetime.
Starting from a single novel individual at time ¢ = 0 of some first color, each
individual produces offspring throughout its infinite lifetime as follows:

e Novel individuals produce novel offspring according to a Poisson process
with rate «, and independently produce clone offspring according to a
Poisson process with rate 1 — a.

e Clones produce clone offspring according to a Poisson process with rate 1.

Each novel individual to appear is assigned a new color, distinct from the colors
of all individuals in the current population. Each clone has the same color as
its parent. Let

N; = number of all individuals at time ¢

N} = number of novel individuals at time .

Thus Ng = Nj =1, and 1 < N; < N, for all t > 0. The process (N¢,t > 0) is
a Yule process with rate 1, while (N;*,¢ > 0) is a Yule process with rate a (i.e.
a pure birth process with transition rate ia from state i to state ¢ + 1). Think
of the individuals as colored balls occupying boxes labelled by N = {1,2,.. }.
So the nth individual to be born into the population is placed in box n. The
colors of individuals then induce a random partition of N. Each novel individual
appears in the first of an infinite subset of boxes containing individuals of the
same color.

Proposition 127 The random partition of Moo = (I1,,) of N, generated by the
colors of successive individuals born into the population described above, is an
(a,0) partition such that |T1,| is the value of N} at every time t such that
Ny = n, and for each t > 0, the conditional distribution of N} given Ny = n 1s
identical to the unconditional distribution of |Il,,| for the («,0) partition.

Proof. Let IT,, be the partition of N, induced by II. It is immediate from the
description of the various birth rates that (TI,,n = 1,2,...) is a Markov chain
with transition probabilities described by the (a, #) urn scheme, independent of
the process (N, 1 > 0). O

According to a standard result for the Yule process
6_tNt a.—‘;. W
6—oth* d~_5>~ W*
t )

where W and W* are both exponentially distributed with mean 1. Combined
with Proposition 127 this implies
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Corollary 128 W* = S,W* where S, := lim,_ K, /n® is independent of
w.

A formula for the moments of S, follows immediately, confirming the result
of Section 3.3 that S, has Mittag-Leffler distribution with parameter a.

Case (0<a<1,0>—a)

Define a population process with two types of individuals, exactly as in the

case # = 0 treated as above, but with the following modification of the rules
for the offspring process of the first novel individual only. This first individual
produces novel offspring at rate a+6 (instead of « as before) and clone offspring
at rate 1 — a (exactly as before). Both clone and novel offspring of the first
individual reproduce just as before. And the rules for coloring are just as before.
It is easily checked that the transition rules when the partition is extended from
n individuals to n + 1 individuals are exactly those of the (a, ) urn scheme. So
TT induced by this population process is an («, ) partition.
Case (0 < a < 1, # > 0) This can be described more simply by a slight
modification of the rules for the above scheme. The modified scheme is then
a generalization of the process described by Tavaré[358] in case a = 0, § > 0.
Instead of letting the first individual produce novel offspring at rate a4+, let the
first individual produce novel offspring at rate «, and let an independent Poisson
migration process at rate # bring further novel individuals into the population.
Otherwise the process runs as before. Now the first novel individual follows the
same rules as all other novel individuals.

If the distinction between novel and clone individuals is ignored, we just
have a Yule process with immigration, where all individuals produce offspring
at rate 1, and there is immigration at rate 6. If we keep track of the type
of individuals, since each immigrant is novel by definition, it is clear that the
partition generated by all the colors is a refinement of the partition whose classes
are the progeny of the first individual, the progeny of the first immigrant, the
progeny of the second immigrant, and so on. Each of these classes is created by
a Yule process with rate 1, whose individuals are partitioned by coloring exactly
as before 1n case § = 0.

Thus the identity

((0,0) -FRAG)((e, 0) -FRAG) = (a, ) -FRAG, (458)

which is read from (456), can be understood essentially without calculation in
this context. See also [314] and [317] for quite different approaches to (458).
Due to the local nature of the action of fragmention operators on Py, (458) can
be restated as follows:

Proposition 129 Let 0 < a < 1,60 > 0. Let {A;} be a (0,0) partition of [n].
Given {A;}, with say k components, let {A;;}, j =1, ...,k be independent (c,0)
partitions of A;. Then {A;;} is an (a, 8) partition of [n].
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Exercises

1. (Proof of Proposition 129) Show by direct calculation that this result
reduces to the following variant of basic identity for the generating function of
the number of cycles in a random permutation:

Yoo S 1 (1G] =)l =00 +a) .. (0 + (k- 1)a)

i=1 {C;,1<i<j}

where the second sum is over all partitions {C;,1 < i < j} of the [£] into j
blocks.

2. In the model with § = 0 and 0 < a < 1, let Nt(k) = be the number of
individuals of the kth color to appear that are present in the population at time
t. Deduce from the previous analysis that as ¢t — oo

N(l) N(z) N(S) s _ o
(e_tNt, ]i]t y ]ift y ]z/vt ,) - (W, Xl, X1X2, X1X2X3,...)

where W, X1, Xa,... are independent, W has exp(1) distribution, and X; (de-
noted W; in Theorem 25) has beta(l — «, ia) distribution. Equivalently,

et (N, N NP ) S (W WXy WXL X, ).

In particular, the limit law of e_t(Nt(l), Ny — N} is that of WX, and WXy,
which are independent gamma(l — ) and gamma(a) respectively. But the
subsequent terms have more complicated joint distributions.

10.5 Characterization of an exchangeable (o, «) interval
partition

First recall some facts from Sections 4.4 and 8.3.

Proposition 130 [288] Let B be a self-similar Markov process whose inverse
local time process at 0 is a stable(a) subordinator (74, ¢ > 0) for some a € (0, 1).
(i) The partition of [0, 1] generated by excursion intervals of B[0,1] is an (a,0)-
partition.

(i1) The partition of [0, 1] generated by excursion intervals of the B-pseudo-bridge
B.[0, 7] is an exchangeable («,0)-partition.

(iii) The partition of [0, 1] generated by excursion intervals of the standard B-
bridge BP" is an exchangeable (a, a)-partition.

(iv) The partition of [0,1] generated by excursion intervals of BPT[0, Dv], the
standardized fragment of BP™ up to its first zero after an independent uniform
(0,1) time V, is an («,0)-partition.

Parts (i)-(iii) are read from [288], as discussed in Section 4.4.Part (iv) follows

from (i) and discussion in Section 7.3.
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As shown in [10], the interval lengths of the D-partition derived from an
exchangeable (a, a)-partition have the GEM(0, ) distribution of a size-biased
presentation of PD(0, ). Together with Theorem 123, this implies that for each
a € (0,1)

PD(a, a) coagulated by PD(0,1) equals PD(0, a), (459)
in agreement with (455). The dual relation, read from (455), is
PD(0, ) fragmented by PD(a,0) equals PD(o, ). (460)

This can be interpreted as follows [10]. The standardized fragments of B** asso-
ciated with the D-partition are independent and identically distributed copies
of B*[0, Dy] for U uniform(0, 1) and independent of B°*. Hence, the PD(a, a)
distribution of ranked lengths of excursions of B®" is P fragmented by @, for

e P the PD(0, a) distribution of ranked lengths of the D-partition derived
from excursions of BPT, and

e () the PD(a, 0) distribution of ranked lengths of excursions of BP*[0, Dy/].

For statement of the following results, call a random interval J a length-
biased pick from an interval partition (I;) of I iff for each k =1,2,...

P(J = Iy | Mgy d = 1,2,..) = Ay, /A1 (461)

where ((;)) is the ranked rearrangement of (/;). Note that the conditioning in
(461) is only on the lengths A1, and not on the actual intervals 7(;): this is
is essential for correct interpretation of the following statements. According to
[312], in the setting of Proposition 130,

[G1(B), 1] is a length-biased pick from the excursion intervals of B[0, 1].

(462)
See also [299] for another proof of this result, and [314] for a weaker result in a
non-Markovian self-similar framework. As argued in [10], the zero set of B[0, 1]
has the same distribution as the zero set of BP*[0, Dy] for V uniform (0,1)
and independent of B. So (462) implies that [Gy (B**), Dy (B*")] is a length-
biased pick from the excursion intervals of BP*[0, Dy (B**)], in agreement with
Corollary 124.

For an interval partition (;) of [0, 1], and a subinterval K of [0, 1], let (I; K)
denote the restriction to ([;) to K, with the intervals kept in length-ranked
order, and let ([;+K) denote the interval partition of [0,1] obtained as the
image of ([;K) by the increasing affine map from K to [0,1]. Suppose that
V' is uniform on (0, 1) independent of ([;). It is easily seen that if (I;) is an
exchangeable interval partition of [0, 1], then so are (Z;4[0, Gv]) and (;+[Dv, 1]).
Moreover

(Gv, (1;x[0,Gv])) and (1 — Dy, (I;«[Dv, 1])) are identically distributed
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where the first component of each pair is the length of an interval, and the second
component is the standardized restriction of (I;) to that interval. Indeed, these
two pairs are exchangeable.

In particular, if (I;) is the exchangeable (a, a)-partition of [0, 1] generated by
excursions of BPT as before, then (;.[0, Gv]) and (I;«[Dv, 1]) can be constructed
as the excursion interval partitions generated by BPT[0,Gyv] and BP*[Dy, 1]
respectively. Hence, for each a € (0, 1), as consequences of results of [10], an
exchangeable (a, a)-partition (I;) of [0, 1], has the following list of qualitative
properties, each of which may be regarded as a symmetry or self-similarity
property of the interval partition:

(Z;x[0, Gv]) and (I;«[Dv,1]) have the same distribution as (), (463)

(Z;x[0,Gv]) and (I;«[Dv,1]) are independent, 464

(Z;x[0,Gv]) and (I;+[Dv,1]) are independent of (Gv, Dy ). 465

Gv /Dy and Dy are independent,

(
(
(
(467

)

)

466)
Gv/(Gv + 1= Dy) and Gy 4+ 1 — Dy are independent . )

Note that (466) and (467) are immediate consequences of the more quantitative
fact [299, Prop. 15] that

(Gv,Dy — Gy, 1— Dy) £ Dirichlet(a, 1 — a, a). (468)

It would be interesting to know which sets of these properties are adequate
to characterize the collection of distibutions of exchangeable (a, «)-partitions,
and whether any other exchangeable interval partitions share any of these nice
properties. As one result in this vein, here is a corollary of Theorem 123.

Corollary 131 Let (I;) be an exchangeable interval partition of [0, 1]. If (463),
(464) and (465) hold, then Dy has beta(l, ) distribution for some a € (0, 1),
and the sequence of D-lengths has GEM (0, «) distribution. If also (466) holds,
then (I;) is an (a, «)-partition.

Proof. By repeated application of (463), (464) and (465), for each k£ > 1,

(I;«[Dvy, 1]) is distributed like (7;), and independent of Dy,,1 <1 < k.

(469)
This implies that the sequence of D-lengths can be represented in the form
)\IjD = W; Hz;ll(l — W;) for a sequence of independent and identically dis-
tributed variables W;. But by Theorem 123, the sequence (A;p) is in length-
biased random order. According to a result of McCloskey [253],](see also [297]),
these two properties imply that the common distribution of the W; is beta(1, @)
for some a > 0, hence that the distribution of ()\ij) is GEM(0,«). The

constraint & < 1 is evident because the representation of A;p = Dy makes
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E(Dv) = 1/(1 4+ ), while Dy > V almost surely, so 1/(1 4+ a) = E(Dy) >
E(V)=1/(1+1). Now by exchangeability of (I;)

Gy
1_DV§GV:D‘

Dy.

v

The beta(1, @) distribution and the independence assumption (466) now im-
ply that the joint distribution of (Gv, Dy) must be as decribed for an (o, a)-
partition, and the argument is completed by the following lemma. a

Lemma 132 Let (I;) be an interval partition of [0, 1] such that (463), (464),
(465) and (468) hold. Then (I;) is an exchangeable (o, a)-partition.

Proof. By appealing to (463)-(465), it is clear that a random partition with
the same distribution as (I;) could be generated by repeated use of the joint
distribution of (Gv, Dy') determined by (468) to recursively generate intervals of
the partition by a variation of the middle thirds construction of the complement
of the Cantor set, as in [151, Example 6.1], where such a construction was used
to generate the excursion intervals of Brownian bridge. So the joint distribution
of (Gv, Dy ) uniquely determines that of (I;), and the conclusion follows. O

Suppose given some arbitrary joint law of (G, D) with 0 < G < D < 1.
Then we can recursively create a random interval partition ([;) of [0, 1] by a
recursive middle thirds construction, repeated independently by scaling, as in
[151]. Then by construction, this interval partition satisfies (463)—(465) with
(G, D) instead of (Gv, Dy).

Problem 133 For what joint laws of (G, D) is the resulting (I;) exchangeable?

And if it is, when does (G, D) 4 (Gv, Dv) derived from (I;) and an independent
uniform V ?

Notice that even if ([;) is exchangeable, the law of (G, D) is not uniquely
determined by that of (I;). For instance, the distribution of an exchangeable
(o, a)-partition is recovered in various ways by starting from exchangable (o, o)-
partition (I;), and then setting (G, D) := (Gv, Dy) for V independent of (I;)
with arbitrary distribution on (0, 1).

Despite the characterization of the two-parameter PD family given by The-
orem 27 (ii), it does not seem easy to substitute condition (467) instead of (466)
in the previous result. But I expect that in fact neither of these conditions is
needed:

Conjecture 134 Conditions (463)~(465) and exchangeability imply that (I;) is
a («, a)-partition for some o € (0, 1).

Possibly the same conclusion can be drawn without all of (463)-(465). If Q
denotes the distribution of ranked lengths of an exchangeable (I;) subject to
(463)-(465), then it follows easily from Corollaries 123 and 131 that

@ coagulated by PD(0, 1) is PD(0, a). (470)
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for some a € (0, 1). So Conjecture 134 would be implied by:
Conjecture 135 Condition (470) implies ) = PD(a, ).

In connection with these characterization problems, for instance starting
from just (464) and (465), the following problems arise.

Problem 136 Describe the set of all probability distributions ) on 77% with
the following property: if Wy is a size-biased pick from (X;) with distribution @),
then P(W; < 1) =1 and W; is independent of the sequence (V;) € PiL derived
from (X;) by deleting the term W; and renormalizing the remaining terms by
their sum 1 — Wj.

Equivalently, the condition is that the size-biased presentation of (X;) can be
represented as W; Hf:—ll(l -Wi),j=1,2,...with P(W; < 1) and W indepen-
dent of (Ws, W3, ...). As remarked earlier, the two-parameter Poisson-Dirichlet
family is characterized by the stronger condition that Wj is independent of
(Wk41, Wi42,...) for every k. Variants of Problem 136 are obtained by consid-
eration of this condition for one or more values of k.

Exercises

1. How much can be obtained just from (466) and exchangeability? Letting
Y = G/D, a more elementary problem is to describe the set of all distributions
of D on [0, 1] so that

1-D2vyD

for some Y independent of D. This works for D 4 B1,a with Y 4 Bai—a for
0 < a < 1. There is also the degenerate example D = 1/(1+ a) and Y = a.

2. [288, 299] Let (;) be an infinite exchangeable partition of [0, 1]. Let Uq,
Uy be independent and identically distributed uniform variables, independent
of (I;). Let K, be the number of intervals (I;) discovered by Uy, ..., Uy, that

1S
[ee]

K, = Z 1(U; € I; for some 1 < i < n),
i=1
and conditionally given K, = k let I;(5 1), . .-, Ij(n k) be these intervals arranged
according to their order as subsets of [0, 1], and let Hen 1y, - Hn ky1) be the
closures of the interval components of the complement of Iy, 1)U ... U (s )
relative to [0, 1]. If the I; are interpreted as excursion intervals of a Markovian
bridge BT, then given K, = k the alternating sequence of intervals

Hen1y, Litn 1y, Hin2)s Lign 2y - - - Hin k) Lign k) Hin k1)

defines an interval partition of [0, 1] into 2k + 1 successive intervals which de-
compose the path of B into an alternating succession of bridges and excursions,
starting and ending with a bridge. In particular, if (/;) is an exchangeable
(a, a)-partition for some a € (0, 1), then
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e for each composition (n1,...,ng) of n, find a formula for the probability
of the event that K, = k and the number of U; to fall in I, x) is n; for
each 1 < j <m;

e conditionally given this event the the random vector of 2k 4+ 1 lengths

()\Il(n,l)’ R )\IJ(n,k)’)\H(n,l)’ - ')\H(n,k+1) (471)
has Dirichlet(n; — a,...,ng — a, a, ..., a) distribution;

e given K, = k, the sequence of k + 1 standardized interval partitions
(ixHen 1), - (s Hen k1)) (472)

is a sequence of k + 1 independent copies of (I;), and this sequence of
interval partitions of [0, 1] is independent of the vector of lengths (471).

10.6 Further exercises

These are related to various sections, as indicated.

Exercises

1. (Section 2.1) The EPPF of an exchangeable random partition II,, of [n] is
p(n1,...,ng) := P(II, = 1) for each particular partition IT = {Ay,..., Ag} of
[n] with |A;| = n; for all 1 < i < n. Let ¢(ny,...,n;) be the common value of
P(II,, > M) for each such II, where TI, > II means that II,, is coarser than II,
i.e. each block of II,, is some union of blocks of II. Each of the functions p and
q determines the other via the formula

k
q(nl,...,nk)zz Z p(np,,...,nB;) (473)
j=1 {Ba,...,Bj}
where the second sum is over partitions { By, ..., B;} of [k],and np := ) ;g n:.

2. (Section 3.2) Let Ty := (T1,) be an exchangeable random partition of N,
with ranked frequencies (P;), and let the functions p and ¢ be defined as in the
previous exercise, with domain all finite sequences of positive integers. So p is
the EPPF of Tl and ¢ is derived from p by (473).

e There 1s the formula

k ¢S]

g(na,...,ne) =E [T | Do P (474)

i=1 \j=1

without further qualification if Zj P; =1 a.s., and with the qualification
if P(32; Pj <1) > 0 that n; > 2 for all 4.
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e For each fixed a > 0, the distribution of (II,) on Py, and that of (P;) on

77%, is uniquely determined by the values of p(ni,...,ng) for n; > a for
all a. Similarly for ¢ instead of p.

e (II,) is an (o, #) partition, or equivalently (P;) has PD(«, 6) distribution,
iff p satisfies the recursion

n, —«

n+6 b

p(ny+1,...,n) = (n1,...,ng). (475)

Note that pis subject also to the constraints of an EPPF, that is symmetry,
the addition rule, and P(1) = 1. These constraints and (475) imply p =
P(a,9) as in (155).

e (II,) is an («, #) partition, or equivalently (P;) has PD(«, 6) distribution,
iff ¢ satisfies the recursion

qini+1,...,ng) = nnl_:;q(nl,...,nk) —}—;q(nl +ns,...,n) (476)
where the number of arguments of ¢(n; + 1,...,ng) and ¢(n1,...,ng) is
k, and the number of arguments of q(n1 +ns, ..., ng) is k— 1, with n, the

missing argument. Note that ¢ is subject also to the a priori constraints
of symmetry, and ¢(1,...,1) = 1. These constraints and (476) imply that
4 = q(a,p) is given by formula (473) for p = p(4 ) as in (155). There does
not appear to be any simpler formula for g, 4).

In the case § = 0, the recursion (476) for ¢ = ¢(,,0) Was derived by Talagrand
[356, Proposition 1.2.2], using relations of Ghirlanda-Guerra [144] in the context
of Derrida’s random energy model [90] in the theory of spin glasses. The ap-
pearance of PD(«, 0) in that setting is explained by the following exercise. Once
the parallel between (475) and (476) has been observed for # = 0, the result for
general 6 is easily guessed, and can be verified algebraically using (473). The
identitites (473) and (475) have a transparent probabilistic meaning, the latter
in terms of the Chinese Restaurant Process. Can (476) too be understood with-
out calculation in some setting? Does (476) or PD(a, ) have an interpretation
in terms of spin glass theory for § # 07

3. (Low temperature asymptotics for Derrida’s random energy model)
(Section 4.2) This exercise is taken almost verbatim from Neveu [269]. See also
Talagrand [356, §1.2] for a similar treatment. Let X, X1, X5, ... be independent
standard Gaussian variables. For n = 1,2,... define a,, by P(X > a,) = 1/n.
Let £, := +/2logn so that a,/¢, — 1 as n — oco. By the theory of extreme
values [233],

lim P X <ay ly) = —e 7 R). 47

Jim P(max X; < an +2/b) = exp(=¢™) (2 €R) (477)
More precisely, if the sequence (Yo 5, 1 <k <n)withY,1 >Y,2> - >V, ,
is the ranked rearrangement of (£,(X; — a,),1 < i < n), then as n — oo there
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is the convergence of finite dimensional distributions
(Yo, 1 <k <n) S (—log(m), k > 1) (478)

where 7, := Zle ¢; for independent standard exponential variables ¢;. So the
right side of (478) is the sequence of points of a Poisson process on R with
intensity e~ “dz, in descending order. Consider next the sums of Boltzman

exponentials
n

Z,(LO‘) = Zexp(a_lﬁnXi) (479)

i=1

where a > 0 is a temperature parameter; and note that E(Z,(La)) =n'*e’ In
the low temperature case a < 1 the leading terms in (479) are those correspond-
ing to the greatest X;, and
o
Z) exp(—a™ Y ap) 4 Tlc_l/o‘ 4
k=1

T (480)

for (Ts(a), s > 0) the stable(a) subordinator with E[exp(—)\fl}(a))] = exp(—sA%).
Hence for oo € (0,1) the asymptotic distribution of the ranked Gibbs weights
exp(a‘lﬁnXi)/Z,(La), 1< i< nis PD(e,0).

See [317, p. 861] for other references to the appearance of PD(a,0) by
random normalization of arrays of independent random variables whose sum is
asymptotically stable with index a. See [269, 356] regarding the asymptotics of
the Gibbs weights in the high temperature case a > 1, which is quite different.
See [269, 59, 41, 43, 305] for further developments of the low temperature case,
related to continuous state branching processes, Ruelle’s probability cascades,
and the Bolthausen-Sznitman coalescent. See [356] for a recent review of the
rigorous mathematical theory of spin glasses. The paper of Derrida [91] draws
parallels between the spin-glass theory and the Poisson-Dirichlet asymptotics
for random permutations and random mappings discussed in this course.

4. (Section 3.3) Let Gy denote the o-field on Py generated by the frequencies
Py, ..., Py of the first k classes of II € Py, where the P; are defined by some
arbitrary convention if the frequencies do not exist. Let R :=1— Ele P;, and
let P(, 4y denote the law on Py of an (a, §) partition.

o Use Theorem 25 to show that P, g) is absolutely continuous with respect
to P(4,0) on the o-field G, with density proportional to Ry to a power
depending on (a, ).

e Repeat for this martingale the steps in the proof of Theorem 31, and
appeal to Theorem 24, to give an alternate proof of Corollary 32, with S,
now derived from (Ry) according to (181) with Z=* = T'(1 — a)S,.

e Deduce by comparison with (178)that the two different definitions of S,
must agree P, o) almost surely, and hence that (181) holds for an («, 6)
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partition (IT,,) with Z~=% = ['(1 — &)S, for Sy the a-diversity defined as
the a.s. limit of |TI,,|/n®.

5. (Section 3.3) Deduce from (180) and (181) an inequality satisfied by T'(1—a)
for a € (0, 1). Check the inequality analytically.

6. (Section 5.3) Let TI(n,p) be the partition generated by components of
G(n,p) and let ¢(n, p) := P(TI(N, p) = {[n]}), that is the probability that G(n, p)

1s 1s connected.

e Give an explicit formula for the EPPF of II(n,p) in terms of ¢(j,p) for
1<j<n

Deduce that TI(n, p) is not a Gibbs partition.

Are the partitions TI(n, p) consistent in distribution as n varies?

e Describe the weak limit of TI(n, p) as n — oo for fixed p.

Describe the weak limit of TI(n, A/n) as n — oo for fixed A.

7. (The forest generated by Brownian motion with drift.) (Section 6.8)
For § € R let B%(t) := B(t)+dt,t > 0. This exercise is a reformulation in terms
of trees of David Williams’ path decompositions for B, and their explanation in
terms of the transformation from B to B —2B°%. See [379, 224] for background.

e the distribution of 7(B?) depends only on |d].

e for § > 0 the process 7 (B?) is independent of —B?(c0), which has expo-
nential (24) distribution.

e for £ > 0 let 7, denote the subtree of 7(B°) which is attached to its
infinite branch at distance £ from 0, let ,u‘z be the mass of 7,7, meaning
the length of the corresponding excursion interval of B?, and identify 72‘5
with the isometric tree structure on [0, u3]. Then

[ 5 [
{6 pg, T7) g > 0}
is the set of points of a Poisson process with intensity

12 dt

3 ex,t
dle 7mt3/2p(7-(3 ) €dr).
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(c) (d)

Figure 12: Construction of tree from a tame function, with a finite number of
local extrema. The whole tree is evidently 1sometric to a finite plane tree with
edge-lengths, as in the bottom right panel. Note from Definition 65 that the
root of this tree is its left-most extremity, not the node corresponding to the
minimal point. The angle between the two branches meeting at this node could
be straightened out, and this node disregarded as a vertex, to make an isometric

representation by a reduced plane tree.
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Figure 13: sUBTREE(2B; {Gr,,T1,...,Tn}), as in Lemma 69
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Figure 14: A forest SUBTREE(B;{0,t1,%2,...,16}) and its Harris path. Note
s; = arg mintl_1§sstlB(s). Vertices of the forest are labeled in alternating
order, so vertex 2n corresponds to time ¢, and vertex 2n — 1 to time s,.
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Figure 15: Forest growth by wrapping one forest around another
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Figure 16: Digraph of a mapping Msq : [50] — [50]



