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COALESCENTS WITH MULTIPLE COLLISIONS1

By Jim Pitman

University of California, Berkeley

For each finite measure � on �0�1�, a coalescent Markov process, with
state space the compact set of all partitions of the set � of positive inte-
gers, is constructed so the restriction of the partition to each finite subset
of � is a Markov chain with the following transition rates: when the par-
tition has b blocks, each k-tuple of blocks is merging to form a single block
at rate

∫ 1
0 x
k−2�1 − x�b−k��dx�. Call this process a �-coalescent. Discrete

measure-valued processes derived from the �-coalescent model a system of
masses undergoing coalescent collisions. Kingman’s coalescent, which has
numerous applications in population genetics, is the δ0-coalescent for δ0 a
unit mass at 0. The coalescent recently derived by Bolthausen and Sznit-
man from Ruelle’s probability cascades, in the context of the Sherrington–
Kirkpatrick spin glass model in mathematical physics, is the U-coalescent
for U uniform on �0�1�. For � = U, and whenever an infinite number of
masses are present, each collision in a �-coalescent involves an infinite
number of masses almost surely, and the proportion of masses involved
exists as a limit almost surely and is distributed proportionally to �. The
two-parameter Poisson–Dirichlet family of random discrete distributions
derived from a stable subordinator, and corresponding exchangeable ran-
dom partitions of � governed by a generalization of the Ewens sampling
formula, are applied to describe transition mechanisms for processes of
coalescence and fragmentation, including the U-coalescent and its time
reversal.

1. Introduction. Markovian coalescent models for the evolution of a sys-
tem of masses by a random process of binary collisions were introduced by
Marcus [29] and Lushnikov [28]. See [3] for a recent survey of the scientific lit-
erature of these models and their relation to Smoluchowski’s mean-field theory
of coagulation phenomena. Evans and Pitman [15] gave a general framework
for the rigorous construction of partition-valued and discrete measure-valued
coalescent Markov processes allowing infinitely many massses and treated the
binary coalescent model where each pair of masses x and y is subject to a coa-
lescent collision at rate κ�x�y� for a suitable rate kernel κ. This paper studies
a family of partition-valued Markov processes, with state space the compact
set of all partitions of � �= �1�2� � � �	, such that the restriction of the partition
to each finite subset of � is a Markov chain with transition rates of a simple
form determined by the moments of a finite measure � on the unit interval.
The case � = δ0, a unit mass at 0, is Kingman’s coalescent in which every

Received November 1997; revised March 1999.
1Supported in part by NSF Grant DMS-97-03961.
AMS 1991 subject classifications. Primary 60J75; secondary 60G09, 60G57, 05A18.
Key words and phrases. Exchangeable random partition, ranked frequencies, random discrete

distribution, two-parameter Poisson–Dirichlet, stable subordinator, coagulation, fragmentation,
time reversal, Ewens sampling formula.

1870



COALESCENTS WITH MULTIPLE COLLISIONS 1871

pair of blocks coalesces at rate 1. The case � = U, the uniform distribution
on �0�1� yields the coalescent derived by Bolthausen and Sznitman [9] from
Ruelle’s probability cascades [40]. See [8] for a derivation of this coalescent
from the genealogy of a continuous-state branching process. The coalescents
introduced in this paper have also been derived independently by Sagitov [41],
as weak limits for the ancestral process of a fixed size population model with
exchangeable family sizes.
The rest of this paper is organized as follows. Section 2 describes the main

results, with pointers to following sections for details. Section 2.1 gives some
results for the partition-valued �-coalescent for general �. Section 2.2 de-
scribes an associated discrete measure-valued process, the ranked mass �-
coalescent. Section 2.3 presents a theorem which shows how certain operations
of coagulation and fragmentation act on the two-parameter family of distribu-
tions of exchangeable random partitions of � introduced in [32] and studied
further in [34], [35]. Section 2.4 applies this theorem to the U-coalescent to
recover some of the results of Bolthausen–Sznitman and to obtain various
further developments. The conceptual framework of the paper is provided by
Kingman’s theory of exchangeable random partitions of �, as reviewed in the
Appendix.

2. Summary of results. For n ∈ � �= �1�2� � � �	 let �n be the finite
set of all partitions of the set �n� �= �1� � � � � n	. Let �∞ be the set of all
partitions of �. Each π ∈ �∞ is identified with the sequence �π1� π2� � � �� ∈
�1 × �2 × · · · where πn is the restriction of π to �n�. Give �∞ the topology it
inherits as a subset of �1×�2× · · · with the product of discrete topologies. So
�∞ is compact and metrizable. Following [25], [15], call a �∞-valued stochastic
process �∞ �= ��∞�t�� t ≥ 0� a coalescent if �∞ has cadlag paths and �∞�s�
a refinement of �∞�t� for every s < t. That is to say, for each n the restriction
�n �= ��n�t�� t ≥ 0� of �∞ to �n� is a process with right-continuous step
function paths such that �n�s� is a refinement of �n�t� for every s < t. The
following result is established in Section 3.1:

Theorem 1. Let �λb�k� 2 ≤ k ≤ b < ∞� be an array of nonnegative real
numbers. There exists for each π ∈ �∞ a �∞-valued coalescent �∞ with
�∞�0� = π, whose restriction �n to �n� is for each n a Markov chain such
that, when �n�t� has b blocks, each k-tuple of blocks of �n�t� is merging to
form a single block at rate λb�k, if and only if

λb�k =
∫ 1
0
xk−2�1− x�b−k��dx�(1)

for some nonnegative and finite measure � on the Borel subsets of �0�1�. For
�λb�k� so derived from � and π ∈ �∞, let ���π denote the probability distribu-
tion governing �∞ with �∞�0� = π on the space of cadlag �∞-valued paths
with the Skorohod topology. Then the collection of laws ����π� π ∈ �∞� defines
a strong Markov process with state space �∞ and Feller semigroup. Moreover
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the map ���π� �→ ���π is continuous when the spaces of measures are given
their weak topologies.

Definition 2. Call this �∞-valued Markov process induced by a finite
measure � on �0�1� the �-coalescent. Let 1∞ denote the partition of � into
singletons. Call a �-coalescent started in state 1∞ a standard �-coalescent.

For � = δ0, the transition rates are λb�k = 1�k = 2�. So the δ0-coalescent
is Kingman’s coalescent [25], [27] in which each pair of blocks coalesces at
rate 1, and no multiple collisions are allowed. For r� s > 0 and � = beta�r� s�,
the probability distribution on �0�1� with density B�r� s�−1xr−1�1 − x�s−1 at
x ∈ �0�1� where B�r� s� = ��r���s�/��r + s�, the rates are λb�k = B�r + k −
2� s+b−k�/B�r� s�. In particular, if U = beta�1�1� is the uniform distribution
on �0�1�, then

λb�k =
�k− 2�!�b− k�!

�b− 1�! =
[
�b− 1�

(
b− 2
k− 2

)]−1
�(2)

These rates identify the U-coalescent with the coalescent studied in [9].
Provided � has no mass at 0, it is easily checked that a family of chains �n

with the transition rates (1) can be constructed as follows from the countable
collection of points of a Poisson point process N on �0�∞� × �0�1	∞ with
intensity dtL�dξ� where

L �=
∫
�0�1�
x−2��dx�Px(3)

with Px governing ξ �= �ξ1� ξ2� � � �� as a sequence of independent Bernoulli
trials with Px�ξi = 1� = x for all i. Given an arbitrary partition π of �,
let �n�0� be the restriction of π to �n�, and let the process �n be allowed
the possibility of jumping only at the times t of points �t� ξ� of N such that∑n
i=1 ξi ≥ 2. Formula (3) implies that this set of times is discrete almost surely.

For times t in this set, if �n�t−� = �A1� � � � �Ab	 say, where the Ai are in the
order of their least elements, let �n�t� be derived from �n�t−� by merging
those Ai with ξi = 1. This will result in a transition of �n at time t if and
only if

∑b
i=1 ξi ≥ 2. It follows immediately from the definition (3) of L that �n

is Markovian with the desired transition rates (1). By construction, �n is the
restriction to �n� of �n+1 for every n. The Poisson point process N therefore
determines a unique �∞-valued coalescent process �∞ whose restriction to
�n� is �n for every n. To summarize, we have the following.

Corollary 3. Provided � has no mass at 0, the above construction of
consistent coalescent chains �n from a Poisson point process on �0�∞�×�0�1	∞
with intensity dtL�dξ� for L in (3) yields a �-coalescent process �∞.

In particular, for ��dx� = dx, Corollary 3 gives a new construction of the
U-coalescent.
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2.1. Some results for general �. Throughout the paper, the notation

µr �=
∫ 1
0
xr��dx�

is used for the rth moment of the finite measure � on �0�1� for arbitrary real
r. Note that µr is a decreasing function of r with ∞ > µ0 ≥ µr ≥ 0 for r ≥ 0,
while µr may be either finite or +∞ for r < 0. For r = 0�1� � � � observe from
(1) that µr = λr+2� r+2 is the rate at which �n is jumping to its absorbing state
��n�	 from any state with r+ 2 blocks. To avoid trivialities, assume from now
on that µ0 > 0. Let F denote a generic probability measure on �0�1�, and take
� = µ0F. By rescaling the time parameter, there is no loss of generality in
supposing µ0 = 1. So when convenient, results may be presented just for an
F-coalescent. LetX denote a random variable with distribution F, defined on
some background probability space �!�� ��� with expectation operator Ɛ, so
Ɛ�Xr� = µr/µ0. From (1), the transition rates of the �-coalescent are

λb�k �= µ0 Ɛ�Xk−2�1−X�b−k� for all 2 ≤ k ≤ b�(4)

Let �∞ be a �-coalescent started at π. For i� j ∈ � with i and j in different
blocks of π, let τi� j denote the collision time of i and j, meaning the unique
time t such that i and j belong to the same block of �∞�t� but different blocks
of �∞�t−�. By the exchangeability property of the �-coalescent described in
Section 3.2, the random time τi� j has the same exponential distribution with
rate λ2�2 = µ0 for all such i� j. Write #π for the number of blocks of a parti-
tion π.

Theorem 4. For anF-coalescent �∞ started with i and j in distinct blocks
of �∞�0� and τi� j the collision time of i and j, if the event �#�∞�τi� j−� = ∞�
has strictly positive probability, then given this event a random variable Xi�j
with distribution F is recovered as the almost sure relative frequency of blocks
of �∞�τi� j−� which merge at time τi� j to form the block containing both i
and j.

According to Proposition 23, provided F has no atom at 1, in a standard
�-coalescent the probability of the event �#�∞�τi� j−� = ∞� is either 0 for
all i� j or 1 for all i� j. In particular, it will be seen that for a standard U-
coalescent, this event has probability 1 for all i� j. So at each collision time
τi� j in a standard U-coalescent, the relative frequency of blocks involved has
the uniform distribution U.
For any initial partition with a finite number of blocks b ≥ 2, the total rate

of transitions of all kinds in a �-coalescent can be variously expressed as

λb �=
b∑
k=2

(
b

k

)
λb�k =

b−2∑
i=0

�−1�i�i+ 1�
(
b

i+ 2
)
µi(5)

= µ0 Ɛ
[
1− �1−X�b − bX�1−X�b−1

X2

]
�(6)



1874 J. PITMAN

where the ratio is interpreted by continuity to equal
(
b
2

)
if X = 0. From (6),

λb ↑ µ−2 �=
∫ 1
0
x−2��dx� as b ↑ ∞�(7)

It follows that the holding time of the initial state 1∞ of the standard �-
coalescent has an exponential distribution with rate µ−2, and that the �-
coalescent is a Markov process of jump-hold type with bounded transition
rates and step-function paths if and only if µ−2 < ∞. Example 19 describes
more explicitly the simple transition mechanism of the �-coalescent when
µ−2 <∞.
It was observed by Kingman for � = δ0, and is true also for general �, that

in a standard �-coalescent the partition �∞�t� is for each t an exchangeable
random partition of �. That is, for each particular partition �B1� � � � �Bk	 of
�n� into k blocks, the probability that �n�t� = �B1� � � � �Bk	 is a symmetric
function of the sizes n1� � � � � nk of the blocks B1� � � � �Bk, say

���1
∞��n�t� = �B1� � � � �Bk	� =� p�t �n1� � � � � nk��(8)

For each fixed t and �, this function p�t of finite sequences of positive integers
�n1� � � � � nk� is the exchangeable probability function (EPF) associated with the
���1

∞
distribution of �∞�t� on �∞. This probability distribution on �∞ may

also be denoted p�t . The Appendix reviews the basic properties of the EPF
determining the distribution on �∞ of an exchangeable random partition of
�. For fixed � and n, the EPF p�t �n1� � � � � nk� is determined for all �n1� � � � � nk�
with

∑k
i=1 ni = n and all t ≥ 0 by the n − 1 moments µ0� µ1� � � � � µn−2 of �.

For these moments determine the transition rates of the finite state chain
��n�t�� t ≥ 0�, and these rates in turn determine pt�n1� � � � � nk� for all such
�n1� � � � � nk� and all t ≥ 0 via Kolmogorov’s differential equations. Section 3.8
gives some more explicit expressions.

Definition 5. For a partition π of �n�, where n ∈ � ∪ �∞	 and �∞� �= �,
write π = �A1�A2� � � �	 to indicate that the blocks of π in increasing order of
their least elements are A1�A2� � � � � with the convention Ai = � for i > #π.
For a partition π = �A1�A2� � � �	 of � and a partition � �= �B1�B2� � � �	 of
�n� with n ≥ #π let the �-coagulation of π be the partition of � whose blocks
are the nonempty sets of the form

⋃
j∈Bi Aj for some i = 1�2� � � � � For each

probability distribution p on�∞, define aMarkov kernel p -coag on�∞, the p-
coagulation kernel, as follows: for π ∈ �∞ let p -coag�π� · � be the distribution
of the �-coagulation of π for � with distribution p.

Think of � as describing a coagulation of singleton subsets into the blocks
B1�B2� � � � � Then the �-coagulation of π describes a corresponding coagulation
of blocks of π.
Let �π∞ be a �∞-valued coalescent process with �π∞�0� = π for some π with

#π = n ∈ � ∪ �∞	. Then it is easily seen that
�π∞�t� = the �n�t�-coagulation of π for t ≥ 0(9)
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for some uniquely defined �n-valued coalescent process �n with initial state
1n, the partition of �n� into singletons.

Theorem 6. A coalescent process �π∞ starting at π with #π = n for some
1 ≤ n ≤ ∞ is a �-coalescent if and only if �n defined by (9) is distributed as the
restriction to �n� of a standard �-coalescent. The semigroup of the �-coalescent
on �∞ is thus given by

���π��∞�t� ∈ ·� = p�t -coag�π� · ��(10)

where p�t � · � �= ���1
∞��∞�t� ∈ ·� is the distribution of an exchangeable random

partition of � with the EPF p�t �n1� � � � � nk� which is uniquely determined by
Kolmogorov equations for the finite state chains �n for n = 2�3� � � � �

For a standard �-coalescent �∞ let �∞�t� = �B1�t��B2�t�� � � �	. By King-
man’s theory of exchangeable random partitions, each block Bj�t� has an al-
most sure limiting frequency

f̃j�t� �= lim
n→∞

1
n

n∑
i=1
1�i ∈ Bj�t���(11)

with 0 ≤ f̃j�t� ≤ 1 and
∑
j f̃j�t� ≤ 1 almost surely for each t. Define f�t� �=

�f1�t�� f2�t�� � � �� to be the ranked rearrangement of �f̃1�t�� f̃2�t�� � � ��, and let
P�t denote the probability distribution of f�t� on the set ¯� ↓ of all nonneg-
ative sequences x = �x1� x2� � � �� with

∑
i xi ≤ 1 which are ranked, meaning

x1 ≥ x2 ≥ · · · ≥ 0. According to Kingman’s correspondence p↔ P between dis-
tributions p of exchangeable random partitions of � and probability measures
P on ¯� ↓ (Theorem 36), the distribution p�t of �∞�t� and the distribution P�t
of f�t� determine each other uniquely: p�t ↔ P�t . It appears that for general �
there is neither a simple formula for the EPF p�t nor any simple description
of the corresponding distribution P�t on ¯� ↓. So Theorem 6 is a rather soft
generalization of results of Kingman for � = δ0 and of Bolthausen–Sznitman
for � = U (recalled in Theorem 14 below) which give explicit descriptions of
both p�t and P

�
t for these �.

2.2. The ranked mass �-coalescent. As in [15], [27], [9], the �∞-valued �-
coalescent can be used to build various discrete measure valued coalescent
processes. Section 3.7 gives some results for the ranked mass �-coalescent
�X�t�� t ≥ 0� with state space � ↓ �= �x ∈ ¯� ↓� ∑i xi = 1	, the set of ranked
probability distributions on �, with the topology it inherits as a subset of &1.
In this process, masses labeled by � collide by the mechanism of the standard
�-coalescent applied to their labels. The state X�t� �= �X1�t��X2�t�� � � �� of the
process at time t is the ranked rearrangement of the masses. The existence
of this process is made precise by the following corollary, which follows from
Theorems 1 and 6 by the well-known criterion of Dynkin ([13], Theorem 10.13)
for a function of a Markov process to be Markov. See also [15], Section 5, where
the same construction is applied to other �∞-valued coalescents. Variations of
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the corollary yield corresponding basic and shunted coalescents with similar
regularity properties, as treated in [15].

Corollary 7. Let �∞ be a standard �-coalescent. For x ∈ � ↓ and π ∈ �∞
let �x� π� ∈ � ↓ be the decreasing rearrangement of the x-masses of the blocks
of π. For each x ∈ � ↓ the process ��x��∞�t��� t ≥ 0� is an � ↓-valued process
with cadlag paths. Let ���x be the law of this process on the space of cadlag
� ↓-valued paths with the Skorohod topology. Then ����x� x ∈ � ↓� is for each
� the collection of laws of a strong Markov process X with state space � ↓.

Consider now the sequence of ranked frequencies f�t� derived from the
standard �-coalescent at time t. Call the frequencies proper if

∑
i fi�t� = 1

almost surely. Recall that µ−1 �=
∫ 1
0 x

−1��dx�.

Theorem 8. If µ−1 = ∞, then the standard �-coalescent has proper fre-
quencies almost surely for each t > 0; the � ↓-valued process �f�t�� t > 0�
defined by these ranked frequencies then has the unique distribution of a cad-
lag � ↓-valued process Y �= �Y�t�� t > 0� governed by the semigroup of the
ranked mass �-coalescent and such that Y1�0+� = 0 almost surely. Whereas,
if µ−1 < ∞ then the standard �-coalescent does not have proper frequencies
almost surely for each t > 0, and there exists no such process Y.

Put another way, if µ−1 = ∞, the family of distributions �P�t � t > 0� on � ↓

derived from the standard �-coalescent �∞ defines an entrance law for the
ranked mass �-coalescent semigroup �Q�t � t ≥ 0�. That is, for s� t > 0 there is
the identity P�s Q

�
t = P�s+t, where P�t is the distribution of ranked frequencies

of �∞�t�, and Q�t �x� · � is the distribution of �x��∞�t��. The ranked frequen-
cies of the standard �-coalescent then define a process with this entrance
law which comes in from “dust” at time 0+, meaning that the largest mass
vanishes almost surely as t ↓ 0. The construction of this entrance law was in-
dicated by Kingman ([27], Section 8) for � = δ0 and Bolthausen and Sznitman
([9], Corollary 2.3) for � = U. The uniqueness property of this entrance law for
� = δ0 was shown in [3], A.5. See Section 3.7 for a description of the process
of ranked frequencies �f�t�� t ≥ 0� in the improper case µ−1 < ∞. Theorem
27 characterizes the entrance boundary of the ranked mass �-coalescent in
both the proper and improper cases. See also [1], [4], [5] and [15] regarding
similar entrance laws and the entrance boundary for some particular binary
coalescents with time parameter set �−∞�∞� instead of �0�∞�.

2.3. The two-parameter family. The following two lemmas recall some
known results regarding a two-parameter family of probability distributions
of exchangeable random partitions of �. These results turn out to be the basis
of various descriptions of the U-coalescent.

Lemma 9. [32], [33]. There exists an exchangeable random partition of �
whose block frequencies f̃n in order of least elements are strictly positive with
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∑
n f̃n = 1 almost surely and such that

f̃1 = Ỹ1� f̃n = �1− Ỹ1� · · · �1− Ỹn−1�Ỹn �n ≥ 2�(12)

for a sequence of independent random variables �Ỹn�, if and only if
Ỹn has beta�1− α� θ+ nα� distribution for n = 1�2� � � �(13)

for some �α� θ� with
0 ≤ α < 1 and θ > −α;(14)

the corresponding EPF is

pα�θ�n1� � � � � nk� �=
�θ/α�k
�θ�n

k∏
i=1

−�−α�ni�(15)

where �x�n �=
∏n
i=1�x+ i− 1�.

Note that (15) contains some factors of θ and α which should be cancelled
before evaluation if either α = 0 or θ = 0. For �α� θ� subject to (14), call
an exchangeable random partition of � characterized by the EPF (15), or by
frequencies of the form (12), (13), an �α� θ� partition. It was shown in [32]
how to construct an �α� θ� partition by a simple urn scheme. Following [38],
define the Poisson–Dirichlet distribution with parameters �α� θ�, abbreviated
PD�α� θ�, to be the distribution of ranked frequencies of an �α� θ� partition.
That is, PD�α� θ� is the distribution on � ↓ obtained after ranking f̃ generated
by (12), (13).

Lemma 10. Define V �= �Vn� ∈ � ↓ by Vn �= Xn/ξ1 where ξ1 �= ∑
mXm

and theXn are the ranked points of a Poisson point process with intensity ν�dx�
on �0�∞�, as obtained by ranking the jumps of a subordinator �ξt� 0 ≤ t ≤ 1�,
that is, an increasing process with stationary independent increments, with

Ɛ exp�−λξs� = exp
(
−s

∫ ∞

0
�1− e−λx�ν�dx�

)
for λ ≥ 0�

(i) [22], [23] If ν�dx� = θx−1e−x dx for θ > 0, corresponding to ξ1 with the
gamma�θ� distribution ��ξ1 ∈ dx� = ��θ�−1xθ−1e−x dx, then V has PD�0� θ�
distribution.
(ii) [31] If ν�dx� = cx−α−1 dx for α ∈ �0�1� and c > 0, corresponding to ξ1

with a stable distribution of index α, then V has PD�α�0� distribution.

The PD�0� θ� distribution has well-known applications in population genet-
ics, number theory, and combinatorics, as reviewed in [17], [6]. Formula (15)
in this case is a variation due to Kingman [26] of the Ewens sampling formula
[16], [20], Chapter 41. See [31], [38] for interpretations of PD�α�0� in terms
of excursions of a Markov process such as a Brownian motion or a recurrent
Bessel process whose zero set is the closed range of a stable subordinator of
index α and [40], [10], [11] and [9] for applications ofPD�α�0� in mathematical
physics.
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Definition 11. For each probability measure p on �∞, define a Markov
kernel p -frag on �∞, the p-fragmentation kernel as follows. Let p -frag�π� · �
be the distribution of a random refinement of π whose restriction to the mth
block of π is the restriction of��m� to that block, where the ���m�� m = 1�2� � � ��
are independent random partitions of � with distribution p.

For p = pα�θ, the distribution of an �α� θ�-partition, the notations �α� θ�-
coal and �α� θ�-frag will be used instead of pα�θ -coag and pα�θ -frag. Say
that �′ is an �α� θ�-coagulation of � if ���′ ∈ · � � = π� = �α� θ� -coag�π� · �
and an �α� θ�-fragmentation of � if P��′ ∈ · � � = π� = �α� θ� -frag�π� · �� The
following theorem is proved in Section 4.

Theorem 12. For all 0 < α < 1� 0 ≤ β < 1� θ > −αβ, the following two
conditions are equivalent:

(i) � is an �α� θ� partition and �′ is a �β� θ/α�-coagulation of �.
(ii) �′ is an �αβ� θ� partition and � is an �α�−αβ�-fragmentation of �′.

For each allowed choice of α�β and θ, these equivalent conditions describe
a particular joint distribution of a pair ����′� of exchangeable random parti-
tions of � such that � is a refinement of �′. Kingman’s correspondence yields
parallel descriptions of a joint distribution of a pair �V�V′� of random ele-
ments of � ↓. Recall that �x� π� is the ranked rearrangement of the partial
sums of x over blocks of π.

Corollary 13. For all 0 < α < 1� 0 ≤ β < 1� θ > −αβ, the following two
conditions are equivalent:

(i) V has PD�α� θ� distribution and V′ = �V��′′� for �′′ a �β� θ/α�-partition
independent of V.
(ii) V′ has PD�αβ� θ� distribution and V is the ranked rearrangement of the

collection of products �V′
mWm�n�m�n ∈ �	, where for each m the sequence

Wm �= �Wm�n� n ∈ �� has PD�α�−αβ� distribution, and the sequences V′ and
Wm� m = 1�2� � � � are independent.

To specify the conditional law of V′ given V as in (i), say V′ is a �β� θ/α�-
coagulation of V, and to specify the conditional law of V given V′ as in (ii),
say V is an �α�−αβ�-fragmentation of V′. As part of the implication (ii) ⇒ (i)
in the previous corollary,

If V′ has PD�αβ� θ� distribution and V is an �α�−αβ�-
fragmentation of V′, then V has PD�α� θ� distribution.

For β = 0 this construction of PD�α� θ� for 0 < α < 1 and θ > 0 from the more
elementary PD�0� θ� and PD�α�0� distributions appears in [38], Proposition
22. As part of the implication (i) ⇒ (ii) in Theorem 12,

If � is an �α� θ� partition and �′ is a �β� θ/α�-coagulation of
�, then �′ is an �αβ� θ� partition.
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The case θ = 0 of this implication amounts to part (i) of the next theorem.
Thus Theorem 12 unifies and generalizes these two known relations involving
fragmentation and coagulation operations on the two-parameter family.

2.4. The U-coalescent. Starting from a representation of the U-coalescent
in terms of a Poisson process associated with Ruelle’s probability cascades
[40] and using the characterization of PD�α�0� in Lemma 10, Bolthausen and
Sznitman discovered the following much more explicit form of Theorem 6 for
� = U:

Theorem 14 [9].

(i) The family of Markov kernels ��e−t�0� -coag� t ≥ 0� on �∞ forms a
semigroup.
(ii) The Markov process with this semigroup is the U-coalescent,

�U�π��∞�t� ∈ ·� = �e−t� 0� -coag�π� · ��(16)

(iii) For a standard U-coalescent, �∞�t� is an �e−t� 0�-partition, with EPF

pUt �n1� � � � � nk� =
�k− 1�!
�n− 1�! exp �−�k− 1�t�

k∏
i=1

�1− e−t�ni−1�(17)

As shown by Bolthausen and Sznitman [9], (ii) follows easily from (i) by a
transition rate calculation and (iii) can be checked by showing that the right
side of (17) solves the system of Kolmogorov backward equations for pUt . The
EPF in (17) is the instance �α� θ� = �e−t�0� of the EPF in (15). So either
of (ii) and (iii) can be read from the other by application of Theorem 6 and
Lemma 9. Apply Kingman’s correspondence to deduce from Theorem 14 that
the distribution PUt of ranked frequencies of blocks at time t in a standard
U-coalescent is PUt = PD�e−t�0�.
Part (ii) of Theorem 14 combined with the implication (i)⇒ (ii) of Theorem

12 for

α = e−s� β = e−�t−s�� θ = 0
yields part (i) of the next corollary, part (ii) of which follows using the impli-
cation (ii) ⇒ (i) of Theorem 12 for

α = e−s� β = e−�t−s�� θ = −e−T�

Corollary 15. Let �∞ be a standard U-coalescent. Then:

(i) The cotransition probabilities of �∞ are given for 0 < s < t by

���∞�s� ∈ · � �∞�t� = π� = �e−s�−e−t� -frag�π� · ��
(ii) Fix T > 0 and let �∞�T� = �B1�T��B2�T�� � � �	. For 0 ≤ t ≤ T and

m = 1�2� � � � let ��m�
∞ �t� be the restriction of �∞�t� to Bm�T�, regarded as

a �∞-valued process after relabeling Bm�T� by �. Then, independently of
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��∞�u�� u ≥ T�, the processes ���m�
∞ �t�� 0 ≤ t ≤ T� are independent and iden-

tically distributed time-inhomogeneous Markovian coalescents, each with final

state �
�m�
∞ �T� = ��	, and each with the same cotransition probabilities as

those of �∞ described in (i). For each m and 0 < t < T the partition �
�m�
∞ �t�

is an �e−t�−e−T�-partition, and the forward transition probabilities are given
for 0 < s < t < T by

����m�
∞ �t� ∈ · � ��m�

∞ �s� = π� = �e−�t−s�� −e−�T−s�� -coag�π� · ��(18)

Less formally, each of the inhomogeneous Markovian coalescents ��m�
∞ is a

copy of the standard U-coalescent conditioned to reach state ��	 at time T.
For�∞ a standardU-coalescent, let �f̃1�t�� f̃2�t�� � � �� denote the frequencies

of blocks of �∞�t�, in order of least elements, as defined by (11). Combine
Lemma 9 and Theorem 14 to deduce the representation

f̃1�t� = Ỹ1�t�� f̃n�t� = �1− Ỹ1�t�� · · · �1− Ỹn−1�t��Ỹn�t� �n ≥ 2��(19)

where for each fixed t, the Ỹn�t� are independent, and Ỹn�t� has beta�1 −
e−t� ne−t� distribution for n = 1�2� � � � � As shown in Section 3.9, it follows
that the two-dimensional distributions of the process �f̃1�t�� t ≥ 0� are as
described in the following result. What is not at all obvious from this approach
is that the process �f̃1�t�� t ≥ 0� has the Markov property. However, this is an
immediate consequence of the description of the time-reversed U-coalescent
provided by Corollary 15: the process ���1�

∞ �t�� 0 ≤ t ≤ T� is independent of
��∞�u�� u ≥ T�, and �f̃1�t�� 0 ≤ t ≤ T� can be recovered measurably from
f̃1�T� and ���1�

∞ �t�� 0 ≤ t ≤ T�. See [5], Theorem 6, for a strikingly similar
description of the corresponding process derived from the standard additive
coalescent with time parameter set �−∞�∞�.

Corollary 16. Let f̃1�t� be the frequency of the block containing 1 at time
t in a standard U-coalescent. Then:

(i) The process �f̃1�t�� t ≥ 0� is Markovian, with the same distribution
as the process �γ�1 − e−t�/γ�1�� t ≥ 0� where �γ�s��≥ 0� is a gamma process,
with stationary independent increments and ��γ�s� ∈ dx�=��s�−1xs−1e−x dx�
x>0�
(ii) The distribution of f̃1�t� is beta�1−e−t� e−t�, and the process �− log�1−

f̃1�t��� t ≥ 0� has nonstationary independent increments.
(iii) Let J1 ≥ J2 ≥ · · · be the ranked magnitudes of jumps of the process

�f̃1�t�� t ≥ 0�, and let Ti be the time when the jump of magnitude Ji occurs.
Then the distribution of the sequence �J1�J2� � � �� on � ↓ is PD�0�1�, and this
sequence is independent of the Ti, which are independent with standard expo-
nential distribution.

To restate (i), the random measure on �0�∞� which assigns mass f̃1�t� to
�0� t� is a Dirichlet random measure governed by the standard exponential
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distribution, as in [19]. Parts (ii) and (iii) are equivalents of (i) by well-known
properties of the Dirichlet random measure ([12], Theorem 3.1, [19]). To in-
terpret these results, regard the frequencies of blocks of �∞�t� as masses
engaged in coalescent collisions governed by the ranked mass U-coalescent
with conservation of total mass. Then f̃1�t� describes the mass at time t that
has coalesced around some particle labeled 1 in the dust at time 0+. Each
jump Ji of the process �f̃1�t�� t ≥ 0� describes the increment of this mass
due to a collision at some time Ti. According to Theorem 4, with probability
1 the collision at each of these times Ti involves an infinite number of other
masses besides the mass of magnitude f̃1�Ti−� containing particle 1. The sum
of all these other masses is Ji. As an application of Corollary 16, consider the
increment of mass to the cluster containing 1 at the instant τ1�2 when this
cluster first collides with the cluster containing a second particle labeled 2.
By exchangeability considerations, for any standard �-coalescent there is the
formula

���1
∞�τ1�2 ≤ s � f̃1�t�� t ≥ 0� = f̃1�s� for all s ≥ 0�(20)

For the U-coalescent, this fact can be combined with Corollary 16 as follows,
to yield an explicit description of the trivariate law of τ1�2 and the random
variables f̃1�τ1�2−� and f̃1�τ1�2�, which represent the mass of the cluster con-
taining 1 just before and just after the collision with the cluster containing 2.
Let

J1�2 �= f̃1�τ1�2� − f̃1�τ1�2−��

which is the mass added to the cluster containing 1 at the time τ1�2 when
that cluster first collides with the cluster containing 2. Then from (20) and
Corollary 16 there is the equality of trivariate distributions

�τ1�2� f̃1�τ1�2−�� J1�2� d= �X� D�X−��D�X� −D�X−���(21)

whereD is the cumulative distribution function of a Dirichlet random discrete
distribution on �0�∞� governed by the standard exponential law, and X is a
sample from D. It is well known (see, e.g., [34], Corollary 9) that D�X� −
D�X−� has uniform distribution on �0�1� and is independent of X, that the
pair �X� D�X� −D�X−�� is independent of the random distribution function
D′ derived from D by deleting the atom of magnitude D�X� −D�X−� at X
and renormalizing to obtain a probability distribution and that D′ has the
same distribution as D. So (21) yields the following corollary.

Corollary 17. In the standard U-coalescent, let J1�2 be the mass added
to the cluster containing 1 at the time τ1�2 when that cluster first collides with
the cluster containing 2. Then J1�2 has the uniform distribution U indepen-
dent of the standard exponential time τ1�2, and the conditional distribution of

f̃1�τ1�2−�/�1− u�, given J1�2 = u and τ1�2 = t, is beta�1− e−t� e−t�.



1882 J. PITMAN

3. The �-coalescent.

3.1. Construction. For 1 ≤ n < N ≤ ∞ and π ∈ �N let Rn�π� ∈ �n be
the restriction of π to �n�. For each finite n let �n �= ��n�t�� t ≥ 0� be a
�n-valued coalescent Markov chain defined by the following transition rates:
when the partition of �n� has b blocks, each k-tuple of blocks is merging to
form a single block at rate λb�k, for some array of nonnegative real numbers
�λb�k� indexed by 2 ≤ k ≤ b. Call such an array of rates �λb�k� consistent if for
all n < m <∞ and each πm ∈ �m, the process Rn��m� given �m�0� = πm has
the same distribution as �n given �n�0� = Rn�πm�.

Lemma 18. An array of rates �λb�k� is consistent if and only if
λb�k = λb+1� k + λb+1� k+1 for all 2 ≤ k ≤ b�(22)

Formula (1) sets up a bijection between consistent arrays �λb�k� and finite non-
negative measures � on the Borel subsets of �0�1�.

Proof. It is easily seen that to check consistency for an array of rates it
suffices to consider m = n + 1. Condition (22) then appears from the well-
known condition in terms of transition rates for a function of a finite state
Markov chain Y to be Markovian with some specified rates, no matter what
the initial state of Y. See, for example, [39], Section IIId. Let

µi�j �= λi+j+2� i+2 for i� j = 0�1� � � � �(23)

Then condition (22) becomes

µi�j = µi+1� j + µi�j+1 for i� j = 0�1� � � � �(24)

It follows from de Finetti’s representation of infinite exchangeable sequences
of 0’s and 1’s ([18] VII.4) that (24) is the necessary and sufficient condition for
an array of nonnegative numbers �µi�j� i� j = 0�1� � � �� with µ0�0 = 1 to be of
the form

µi�j = Ɛ�Xi�1−X�j� �i� j = 0�1� � � ��(25)

for some random variable X with values in �0�1�. The conclusion now follows
easily. ✷

Proof of Theorem 1. The necessity of condition (1) follows from the pre-
vious lemma. Assuming (1) holds, the desired process �∞ is constructed as
in Kingman [27], who carried out this construction in the case � = δ0. An
application of the Kolmogorov consistency theorem shows that for each ini-
tial partition π of � it is possible to construct the Markov chains �n all on
the same probability space, each with right-continuous step function paths, in
such a way that �n�0� = Rnπ, and �n = Rn��m� for n < m < ∞. The desired
process �∞ is then obtained by letting �∞�t� be the unique partition of �
whose restriction to �n� is �n�t� for every n. The claimed regularity properties
of �∞ then follow by straightforward arguments given in [15], [9] for similar
constructions. ✷
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3.2. Symmetry properties. For a bijection σ with domain A and range B
and a partition π of A, let σπ denote the partition of B whose blocks are the
σ-images of the blocks of π. The form of the transition rates of �n implies
that if �n is started in state πn, then for every permutation σ of �n� the
process σ�n is a copy of �n started in state σπn. This basic exchangeability
property of the chains �n implies the following exchangeability property of
the �-coalescent. Let �∞� �= �. For each n = 1�2� � � � �∞, and each subset H
of � containing n elements, the restriction of �∞ to H, when regarded as a
�n-valued process by labelingH by an arbitrary bijection σ fromH to �n�, has
the same distribution as �n started in state σπH, where πH is the restriction
to H of the initial state π of �∞.

Proof of Theorem 6. The exchangeability for each t of the random parti-
tion �∞�t� derived from a standard �-coalescent is evident from the previous
paragraph. The construction of the �-coalescent started in state π from the
standard �-coalescent, and vice versa, are easily established by consideration
of restrictions to �n� for each finite n. ✷

3.3. Generalizations. Note from Definition 5 that no matter what the dis-
tribution p on �∞, each of the kernelsK = p -coag acts locally on �∞, mean-
ing that if �π denotes a random partition of � with distributionK�π� · �, then
for each n the distribution of Rn�π depends on π only through Rnπ. It follows
that any �∞-valued Markov process �∞, each of whose transition kernels is
of the form p -coag for some p, is such that the �n-valued process Rn�∞ is a
Markov chain. Such a coalescent process �∞ with cadlag paths could therefore
be constructed more generally than in Theorem 1 from a consistent family of
Markov chains with more complex transition rules, allowing not just multiple
collisions in which several blocks merge to form one block, but simultane-
ous multiple collisions, in which several new blocks might be formed, each
from the merger of two or more smaller blocks. There is a composition rule
for coagulation kernels associated with exchangeable distributions pi on �∞
which induces a semigroup operation on these distributions, or equivalently
on ¯� ↓� �p1 -coag��p2 -coag� = p3 -coag where p3 is determined explicitly by
Lemma 34. From this perspective, Theorems 1 and 6 must be special cases of
some more general characterization of consistently defined �n-valued Markov
chains with appropriate exchangeability properties, or of one-parameter semi-
groups of exchangeable coagulation kernels �pt -coag� t ≥ 0�. Similar remarks
apply to Markovian fragmentation processes each of whose transition kernels
is p -frag for some p. Such generalizations will not be pursued further here.
See [30] for a recent result in this vein.

3.4. Examples.

Example 19. � such that µ−2 <∞.
Fix λ > 0, let p be the distribution on �∞ of an exchangeable random

partition of � with ranked frequencies Y = �Y1�Y2� � � �� ∈ ¯� ↓ and define for
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each t ≥ 0 a transition probability kernel Pt on �∞ by

Pt �=
∞∑
m=0
e−λt

�λt�m
m!

�p -coag�m�(26)

From the previous general remarks about coagulation kernels, it is clear that
this formula defines the semigroup of a �∞-valued Markov process �∞ whose
restrictions �n are Markovian for every n. Such a process �∞ can be con-
structed with step function paths by the usual scheme of jumping according
to p -coag at the arrival times of a homogeneous Poisson process with rate
λ. If ��Y2 > 0� > 0 then starting in state 1∞ there is positive probability
of at least two new blocks being formed at the first jump. So the only dis-
tributions of Y such that �∞ could be a �-coalescent for some � are those
with ��Y2 = 0� = 1. Assuming ��Y2 = 0� = 1, let F1 be the distribution
of Y1, so F1 could be any probability distribution on �0�1�, and p is the dis-
tribution of the exchangeable random partition of � with ranked frequencies
�Y1�0� � � ��. By consideration of restrictions to �n� it is easily verified that �∞
so constructed is a �-coalescent for ��dx� = λx2F1�dx�. This construction
can therefore be used to make a �-coalescent for any � with µ−2 <∞ by use
of λ = µ−2 and F1�dx� �= x−2��dx�/µ−2. Indeed, this is just another way of
expressing the result of Corollary 3 when µ−2 < ∞. Each jump in this con-
struction according to p -coag can be described by the following variation of
Kingman’s paintbox scheme for generating an exchangeable random partition
with distribution p: given the current partition is π, to make the next par-
tition π ′ with distribution p -coag�π� · �, first pick Y1 with distribution F1.
Given Y1 = y toss a coin which lands heads independently with probability
y for each block of π, and let π ′ be derived from π by merging all the blocks
whose coins land heads.

Example 20. � with an atom at 1. Let �1 = �+λδ1 where � has no atom
at 1, for λ > 0 and δ1 a unit mass at 1. Let �∞ be a �-coalescent, let T be
an independent exponential time with rate λ and let �′

∞�t� equal �∞�t� if
t < T and ��	 if t ≥ T. Then it is easily seen that �′

∞ is a �1-coalescent. As
the �1-coalescent is so easily described in terms of the �-coalescent, to avoid
trivial exceptions in the formulation of some later results it may be assumed
that � has no atom at 1.

3.5. Behavior at collision times. Theorem 4 is an immediate consequence
of the following lemma and de Finetti’s strong law of large numbers for ex-
changeable indicator variables. In view of the exchangeability property of the
�-coalescent, for i and j in distinct blocks of the initial partition, all proba-
bilistic features of the collision at time τi� j are identical, modulo relabeling,
to corresponding features of the collision at time τ1�2, assuming 1 and 2 are
in different blocks of π. So to simplify notation, take �i� j� = �1�2�. Say that
indicator variables J1� � � � � Jn are exchangeable�F� indicators if the Ji have
the same distribution as K1� � � � �Kn where the Ki are conditionally indepen-
dent given X with ��Ki = 1 � X� = X for all i, for some random variable X



COALESCENTS WITH MULTIPLE COLLISIONS 1885

with distribution F. That is, for every subset A of �n�,
���i ∈ �n�� Ji = 1	 = A� = Ɛ�X�A��1−X�n−�A���(27)

where �A� is the number of elements of A. Recall that #π is the number of
blocks of a partition π.

Lemma 21. Let �∞ be an F-coalescent started at π with 1 and 2 in distinct
blocks of π. Let B1�B2� � � � denote the blocks of �∞�τ1�2−�, in order of their
least elements, so 1 ∈ B1 and 2 ∈ B2. Let Ij be the indicator of the event that
the collision between B1 and B2 at time τ1�2 also involves block Bj, meaning
that Bj�B1 and B2 all belong to the same block of �∞�τ1�2�. Then for each
n ≥ 3, conditionally given τ1�2 and #�∞�τ1�2−� ≥ n, the I3� I4� � � � � In are
exchangeable�F� indicators.

Proof. By (27) it is enough to show for arbitrary n ≥ 3 and t > 0 that for
every subset A of �3� � � � � n	 with �A� = a,

���j� 3 ≤ j ≤ n� Ij = 1	 = A � τ1�2 = t� #�∞�t−� ≥ n� = µa�n−a−2(28)

for µi�j defined by (23)–(25) with X distributed according to F. For π ∈ �∞
with #π ≥ n let νnπ be the least m such that the restriction of π to �m� has at
least n blocks. Then it suffices to establish (28) with conditioning on τ1�2 = t
and #�∞�t−� ≥ n replaced by conditioning on τ1�2 = t, #�∞�t−� ≥ n and
νn�∞�t−� = m for arbitrary m = n�n + 1� � � � � This variant of (28) is implied
by another variant of (28) with conditioning on τ1�2 = t and #�∞�t−� ≥ n
replaced by conditioning on τ1�2 = t and �m�t−� = πm for some arbitrary
partition πm of �m� into n blocks, say �Bm�1�Bm�2� � � � �Bm�n	, with 1 ∈ Bm�1
and 2 ∈ Bm�2. However, this last form of (28) follows immediately from the
description of the transition rates of �m: given that �m is in such a state
πm, the rate of all transitions that cause blocks Bm�1 and Bm�2 to be merged
(perhaps also with other blocks) is λ2�2 = µ0�0 = 1, while the rate of these
transitions in which the set of other blocks involved is �Bm�j� j ∈ A	, where
�A� = a, is λn�a+2 = µa�n−a−2. ✷

Example 22. As a check on Theorem 4, consider the F-coalescent �∞
constructed for F such that µ−2 < ∞, as in Example 19, for F with no atom
at 1. Let the initial state π with infinitely many blocks have 1 and 2 in different
blocks. From the description of Example 19, it is clear that the coalescent has
infinitely many blocks at all times t > 0 and that τ1�2 = TN for some random
index N, where Ti is the time of the ith jump of �∞. The variable X1�2 in
Theorem 4 is then X1�2 = YN where by construction the Yi� i = 1�2� � � � are
independent with

��Yi ∈ dx� = x−2F�dx�/µ−2

and for i = 1�2� � � � �
P�N = i � Y1�Y2� � � �� = �1−Y21� · · · �1−Y2i−1�Y2i �
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It follows easily that ��YN ∈ dx� = F�dx� as claimed and that N is inde-
pendent of YN with geometric distribution with mean µ−2. As a final check,
τ1�2 = TN is the sum of N independent exponential variables with mean
1/µ−2, hence exponential with mean µ−2/µ−2 = 1, as required since λ2�2 = 1.

3.6. The total number of blocks. Let #�t� �= #�∞�t�, the number of blocks
at time t in a �-coalescent �∞. It was observed by Kingman for � = δ0 and
Bolthausen and Sznitman for � = U, and is easily seen for general �, that
the process �#�t�� t ≥ 0� is a time-homogeneous Markov process relative to the
filtration of �∞, with state-space �1�2� � � � �∞	 and only downwards jumps,
such that for 2 ≤ k ≤ b <∞ the rate of jumps down from b to b− k+ 1 is

rate�b→ b− k+ 1� = λ#b� k �=
(
b

k

)
λb�k�(29)

The total rate of downward jumps is λb �=
∑b
k=2 λ

#
b� k, as in (5), (6). By (6),

the sequence �λb� b = 1�2� � � �� is strictly increasing, no matter what nonzero
� is considered. And (5) shows that the µi for 0 ≤ i ≤ n−2 and hence the λb�k
for all 2 ≤ k ≤ b ≤ n are universal linear combinations of λ2� � � � � λn.
For the rest of this section, � is fixed and suppressed in the notation. Let

� govern �∞ as a standard �-coalescent. For each n = 1�2� � � � �∞ let

Tn �= inf�t� #�n�t� = 1	�(30)

call it the absorbtion time of �n. By construction, the distribution of T2 is
exponential with rate λ2 > 0, and

0 = T1 < T2 ≤ T3 ≤ T4 ≤ · · · ↑ T∞ ≤ ∞�(31)

For θ > 0 and n = 1�2� � � � �∞, let

φn�θ� �= Ɛ�exp �−θTn�� = θ
∫ ∞

0
��Tn ≤ t�e−θt dt�(32)

For each θ > 0 the rates λb�k determine φn�θ� for all finite n by the recursion

φn�θ� =
(

1
λn + θ

) n∑
k=2
λ#n�kφn−k+1�θ� where φ1�θ� = 1�(33)

which follows from (29) by conditioning on the number of blocks after the first
collision. By (31), as n→ ∞,

φn�θ� ↓ φ∞�θ� = Ɛ�exp �−θT∞���(34)

Say the �-coalescent comes down from infinity if ��#�t� < ∞� = 1 for each
t > 0. Say it stays infinite if ��#�t� = ∞� = 1 for each t > 0. Kingman showed
that the δ0-coalescent comes down from infinity. The results of Bolthausen
and Sznitman reviewed in Theorem 14 show the U-coalescent stays infinite.
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Proposition 23. Suppose that � has no atom at 1. Then either: φ∞�θ� > 0
for all θ > 0, in which case the standard �-coalescent comes down from infinity
in such a way that #�0+� = ∞ a.s., by an infinite number of collisions, each
involving only a finite number of blocks almost surely; the absorbtion time T∞
is then a.s. finite.
or: φ∞�θ� = 0 for all θ > 0, in which case the standard �-coalescent stays

infinite by an infinite number of collisions, each involving an infinite number
of blocks almost surely. The absorbtion time T∞ is then a.s. infinite.

Proof. Let T �= inf�t� #�t� <∞	. One possibility to be eliminated is that
��0 < T <∞� > 0. If ��0 < T <∞� > 0 the strong Markov property implies
that #�T� <∞ a.s. on the event �0 < T <∞	. On the same event #�T−� = ∞
by the definition of T. Hence T must be a collision time, and Theorem 4 gives
a contradiction. The remaining possibilities are eliminated similarly. Theorem
4 also implies that if the coalescent stays infinite then every collision involves
infinitely many blocks almost surely. ✷

Continuing to suppose � has no atom at 1, Lemma 25 in the next section
shows that if µ−1 <∞ then the �-coalescent stays infinite. But this condition
is not necessary, as shown by the U-coalescent. If � has an atom at 0 of
magnitude λ0 > 0, then the �-coalescent comes down from infinity. For it is
easy to see that �#�t�� t ≥ 0� can then be constructed on the same probability
space as �#0�t�� t ≥ 0� derived from a λ0δ0-coalescent in such a way that
#�t� ≤ #0�t� for all t ≥ 0. In principle, the condition on φ∞ in Proposition
23 is a condition on � equivalent to the �-coalescent staying infinite, but the
condition is not an easy one to check. Recently, J. Schweinsberg [42] has shown
that the �-coalescent stays infinite if and only if

∞∑
b=2

( b∑
k=2

�k− 1�
(
b

k

)
λb�k

)−1
= ∞

The following proposition develops Theorem 4 to give a more complete de-
scription of the nature of collisions in a �-coalescent that stays infinite.

Proposition 24. Suppose that � has no atom at either 0 or 1 and that the
standard �-coalescent �∞ stays infinite. Let τi� j be the collision time of i� j in
�∞, andXi�j the almost sure limiting fraction of blocks of �∞�τi� j−� involved
in the collision at time τi� j, as in Theorem 4. Then the random set

S �= ��τi� j�Xi�j�� i� j ∈ �	 ⊂ �0�∞�× �0�1�
is the set of points of a Poisson point process with intensity dtx−2��dx�.

Proof. Without loss of generality, it can be supposed that the standard
�-coalescent �∞ is created by the Poisson construction of Corollary 3. By the
assumption that the coalescent stays infinite, the random set S is identical to
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the set of all points �t� x� where x is the limiting relative frequency of 1’s of
ξ as �t� ξ� ranges over the points used in the Poisson construction of �∞. The
conclusion is now evident. ✷

3.7. The ranked mass coalescent. The following lemma starts the proof of
Theorem 8.

Lemma 25. The standard�-coalescent has proper frequencies almost surely
for each t > 0 if and only if µ−1 = ∞.

Proof. By Kingman’s correspondence, the exchangeable random partition
�∞�t� has proper frequencies iff the singleton set �1	 is almost surely not a
block of �∞�t�. In the restriction of the �-coalescent to �n�, when there are b
blocks including �1	, the total rate at which �1	 is colliding with one or more
of the b− 1 other blocks is found to be

ρb �=
b∑
k=2

(
b− 1
k− 1

)
λb�k = µ0Ɛ

[
1− �1−X�b−1

X

]
�(35)

where the ratio is interpreted by continuity to equal b − 1 if X = 0. Thus ρb
increases to µ0Ɛ�X−1� = µ−1 as b increases to∞. In the standard �-coalescent,
the rate at which �1	 is colliding with some other block is therefore always
bounded above by µ−1. If this moment is finite, the probability that 1 is still a
singleton at time t is at least exp�−µ−1t� > 0, so the frequencies of �∞�t� are
not proper. If µ−1 = ∞ there are two possibilities. Either #�t� = ∞, in which
case �1	 has been subject to collisions at an infinite rate for time t, so some
such collision has a.s. occurred by time t, or #�t� <∞, in which case also �1	
is a.s. not a singleton of �∞�t�, because an exchangeable random partition of
� with a finite number of blocks contains no singletons a.s. ✷

If µ−1 < ∞, the process of frequencies �f�t�� t ≥ 0� derived from a stan-
dard �-coalescent is an ¯� ↓-valued process governed by an analog of the
�-coalescent ranked mass semigroup on ¯� ↓ which allows creation of mass,
starting from mass 0 at time 0 and terminating with mass 1 at time∞−. The
missing mass in this process at time t, that is, 1−∑i fi�t�, is the relative fre-
quency of the union of all singleton blocks of �∞�t�. Only in the case µ−1 = ∞
is mass 1 instantaneously created at time 0+ so that the state-space can be
restricted to � ↓ for t > 0. The process of creation of mass when µ−1 < ∞ is
described by the following proposition.

Proposition 26. Let St �= 1 −∑
i fi�t�, which is the frequency of single-

tons at time t in a standard �-coalescent �∞. If µ−1 < ∞ then the process
�− log St� t ≥ 0� is a drift-free subordinator whose Lévy measure is the image
of x−2��dx� via the map x �→ − log�1 − x�. Consequently, the distribution of
St on �0�1� is that determined by Mellin transform,

Ɛ�Sηt � = exp
[
−t
∫ 1
0
�1− �1− x�η�x−2��dx�

]
for η ≥ 0�(36)
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For η ∈ � this formula gives the probability that each element of �η� is still a
singleton at time t. In particular, the mean frequency of singletons in �∞�t� is

Ɛ�St� = ���1	 ∈ �∞�t�� = exp�−µ−1t��(37)

Proof. As in the proof of Proposition 24, it can be supposed that �∞ is
created by the Poisson construction of Corollary 3. Formula (36) for η ∈ � can
be read directly from this Poisson construction. It is clear from the Markov
property of �∞ expressed in Theorem 6 that the process �− log St� t ≥ 0� has
stationary independent increments. But if Ŝt �= exp�−Yt� where �Yt� t ≥ 0� is
a drift free subordinator whose Lévy measure is the image of x−2��dx� via the
map x �→ − log�1 − x�, then the Lévy–Khintchine formula shows that E�Ŝηt �
equals the right side of (36) for every η ≥ 0. Since a probability distribution
on �0�1� is determined by its positive integer moments, St and Ŝt must have
the same distribution for each t > 0, and the conclusion follows. ✷

Consider now the problem of characterizing all entrance laws �qt� t > 0� for
the ranked mass �-coalescent. By general theory [14], each entrance law is an
integral mixture over some set of extreme entrance laws, called the entrance
boundary of the semigroup. The following theorem identifies this entrance
boundary with � ↓ if µ−1 < ∞ and with ¯� ↓ if µ−1 = ∞. Theorem 8 is an
immediate consequence of this more general result.

Theorem 27. Let �X�t�� t > 0� be a process with cadlag � ↓-valued paths
governed by the �-coalescent ranked mass semigroup. Then X�0+� �= limt↓0
X�t� exists almost surely as limit in ¯� ↓ in the sense of componentwise conver-
gence.

(i) If µ−1 < ∞ then X�0+� ∈ � ↓ a.s. and the extreme entrance laws are
obtained by starting the ranked mass �-coalescent at x as x ranges over � ↓.
(ii) If µ−1 = ∞ then X�0+� may have an arbitrary probability distribution

on ¯� ↓. There is then for each x ∈ ¯� ↓ a unique extreme entrance law under
which X�0+� = x a.s. The corresponding process may be constructed by defin-
ing X�t� to be the ranked frequencies of �∞�t�, where �∞ is a �-coalescent
with �∞�0� an exchangeable random partition of � whose sequence of ranked
frequencies is x.

Proof. According to the definition of the �-coalescent ranked mass semi-
group by Corollary 7, for each ε > 0 the process �X�t�� t ≥ ε� has the same
distribution as ��X�ε�� �∗

∞�t− ε��� t ≥ ε� for a standard �-coalescent �∗
∞ that

is independent of X�ε�. Let ��ε∞�t�� t ≥ ε� be a �-coalescent with initial state
�ε∞�ε� which is an exchangeable random partition of � such that f��ε∞�ε��
has the same distribution as X�ε�, where f��� denotes the sequence of ranked
frequencies of an exchangeable random partition �. By application of Theorem
6 and [15], Lemma 29, the process ��X�ε�� �∗

∞�t − ε��� t ≥ ε� has the same
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law as �f��ε∞�t��� t ≥ ε�. Thus

�X�t�� t ≥ ε� d= �f��ε∞�t��� t ≥ ε��

where d= denotes equality in distribution of processes. An application of Kol-
mogorov’s extension theorem now shows that there exists a �∞-valued Markov
process ��∞�t�� t > 0� governed by the �-coalescent semigroup, with �∞�t�
an exchangeable random partition of � for each t > 0, such that

�X�t�� t > 0� d= �f��∞�t��� t > 0��
Since �∞�t� is refining as t decreases, its limit �∞�0+� exists in �∞ and is
exchangeable. Since for each m the sum of the m largest frequencies of �∞�t�
is a nondecreasing function of t, the limit of f��∞�t�� as t ↓ 0 exists in ¯� ↓

almost surely, hence the limit X�0+� exists in ¯� ↓ almost surely. Moreover,
the continuity of Kingman’s correspondence (Theorem 36) implies that X�0+�
has the same distribution as the ranked frequencies of �∞�0+�. By the Feller
property of the �-coalescent semigroup on �∞, the process ��∞�t�� t > 0�must
be just the restriction to the time interval �0�∞� of a �-coalescent started in
the random state �∞�0+�. If X�0+� is improper with positive probability, then
�∞�0+� has a strictly positive frequency of singletons with positive probability.
If µ−1 <∞, (37) implies that �∞�t� has a positive frequency of singletons with
positive probability, contradicting the assumption that X�t� ∈ � ↓ for every
t > 0. If on the other hand µ−1 = ∞, there is no contradiction. Rather, for
any given vector x ∈ ¯� ↓, a process started with X�0+� = x is obtained as
indicated in the theorem. Finally it is easily shown that the law of each such
process is extreme, by application of Kingman’s result that the extreme laws
of exchangeable random partitions of � are the laws px corresponding to a
given sequence of ranked frequencies x ∈ ¯� ↓. ✷

3.8. The exchangeable probability function. Formulas for the EPF p�t �n1�
� � � � nk� derived from the standard �-coalescent for general �, as in (8) can
be found explicitly, at least for some particular �n1� � � � � nk�. Fix � and let
pt�· · ·� stand for p�t �· · ·�. Due to symmetry of the EPF, it suffices to consider
pt�n1� � � � � nk� for decreasing sequences �n1� � � � � nk�. Write, for instance, 32231
for the decreasing sequence �3�3�2�2�2�1�. The decreasing rearrangement of
the sizes of blocks of a partition π of �n� is a partition of the integer n; call it
the type of π. Note that pt�32231� is not the probability that �13�t� is of type
32231, but rather the probability that �13�t� = π for each particular partition
π of �1� � � � �13	 of type 32231. The holding time of ��n�t�� t ≥ 0� in its initial
state 1n is exponential with rate λn, as in (5), so

pt�1n� = exp �−λnt� for n = 2�3� � � � �(38)

where

λ2 = µ0� λ3 = 3µ0 − 2µ1� λ4 = 6µ0 − 8µ1 + 3µ2
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and so on. Note that the λj simplify to j�j− 1�/2 for � = δ0 and to j− 1 for
� = U. The values of pt�n1� � � � � nk� for all �n1� � � � � nk� with

∑
j nj ≤ 3 can be

deduced from (38) for n = 2�3 and the addition rules (66) for an EPF. Thus
pt�1� = 1� pt�12� = exp �−λ2t�� pt�2� = 1− exp �−λ2t��(39)

pt�13� = exp �−λ3t�� pt�211� = 1
2 exp �−λ2t� − 1

2 exp �−λ3t��
pt�3� = 1− 3

2 exp �−λ2t� + 1
2 exp �−λ3t��

(40)

As a check, for � such as U with µ0 = 1� µ1 = 1/2, (17) is recovered for all
�n1� � � � � nk� with

∑
i ni ≤ 3.

For n ≥ 3 a state of type 21n−2 can only be entered directly from 1n. So by
conditioning on the entry time and using (38),

pt�21n−2� =
∫ t
0
exp �−λns�λn�2 exp �−λn−1�t− s��ds

= λn�2
�λn − λn−1�

�exp �−λn−1t� − exp �−λnt���

For n ≥ 4 a state of type 31n−3 can only be entered directly from 1n or via one
of three different states of type 21n−2. Conditioning on these cases and the
entry time gives

pt�31n−3� =
∫ t
0
ps�1n�λn�3 exp �−λn−2�t− s��ds

+ 3
∫ t
0
ps�21n−2�λn−1�2 exp �−λn−2�t− s��ds

and hence by integration,

pt�31n−3� =
{

λn�3
�λn − λn−2�

+ 3λn�2λn−1�2
�λn − λn−1�

[
1

λn−1 − λn−2
− 1
λn − λn−2

]}

× exp �−λn−2t� +
3λn�2λn−1�2
�λn − λn−1�

[ −1
λn−1 − λn−2

]
exp �−λn−1t�

+
{
− λn�3
�λn − λn−2�

+ 3λn�2λn−1�2
�λn − λn−1�

[
1

λn − λn−2

]}
exp �−λnt��

Proceeding in this way, it is clear that for given n the values of pt�n1� � � � � nk�
with

∑
i ni = n can be found one by one by repeated integration for k =

n� n − 1� n − 2 and so on. So a reverse induction on k for fixed n yields the
following.

Proposition 28. The EPF p�t derived from a standard �-coalescent is of
the form

p�t �n1� � � � � nk� =
n∑
j=k

a�j �n1� � � � � nk�∏
k≤i<h≤b

�λh − λi�
exp �−λjt��(41)
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where n �= ∑
i ni and a

�
j �n1� � � � � nk� is a polynomial in the λb� i for k ≤ b ≤ n

and 2 ≤ i ≤ b, with integer coefficients.

In principle, the inductive derivation of this result yields a recursive de-
scription of the a�j �n1� � � � � nk�, but this recursion seems very complicated.
Neither does there appear to be any substantial simplification for � with sim-
ple rates, such as � = δx or � = beta�r� s�, except in the special cases � = δ0
(see [25], [27] and [43], (6.1)), and � = U (Theorem 14).
An unfortunate feature of formula (41) is that, for given n = ∑

i ni, the
description of pt�n1� � � � � nk� is most complicated when k = 1, which is one
of the most interesting cases. A more explicit description of pt�n� can be ob-
tained as follows. Observe first that for Tn the absorbtion time of �n as in (30),
there is the formula pt�n� = ��Tn ≤ t�, so (32) yields the Laplace transform∫∞
0 pt�n�e−θt dt = φn�θ�/θ where φn�θ� = Ɛ�exp �−θTn�� is determined recur-
sively by (33). The connection with Tn can be exploited to obtain the following
formula, by conditioning the range of the process �#�n�t�� 0 ≤ t ≤ Tn� to be a
particular subset �m0� � � � �mc	 of �n�:

pt�n� = 1−
n−1∑
c=1

∑
�m0� ����mc�

(
c∏
i=1

λ#�mi�mi −mi−1 + 1�
λmi

)
Gt�λm1

� � � � � λmc��(42)

where λ#�m�k� �= λ#m�k as in (29), for each c = 1� � � � � n − 1 the sequence
�m0� � � � �mc� ranges over the set of

(
n−2
c−1
)
strictly increasing sequences of pos-

itive integers with m0 = 1 and mc = n, and for θ1 < · · · < θc as in (42) for
θi = λmi ,

Gt�θ1� � � � � θc� �= �

(
c∑
i=1
εi/θi > t

)
=

c∑
i=1

{∏
j  =i

(
θj

θj − θi

)}
exp �−θit��(43)

where εi� i = 1�2� � � � is a sequence of independent standard exponential vari-
ables. This calculation yields the following proposition.

Proposition 29. For a �-coalescent, the probability that any particular
set of n blocks in the initial partition is contained in the same block at time t
is

pt�n� = 1−
n∑
r=2
an� r exp �−λrt��(44)

where for each 2 ≤ r ≤ n the function an� r �= an� r�λ2� � � � � λn� is a rational
function of λ2� � � � � λn, or of the first n−2moments of �, which may be expressed
as follows in terms of the λi and the λ

#
b� k which are just linear combinations

of the λi:

an� r =
n−1∑
c=1

∑
�m0� ����mc�!r

c∏
i=1
λ#�mi�mi −mi−1 + 1�

1�mi  = r�
�λmi − λr�

�(45)
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where for each c = 1� � � � � n − 1 the inner sum is over the set of
(
n−2
c−2
)
strictly

increasing sequences of positive integers �mi� 0 ≤ i ≤ c� with m0 = 1� mc = n
and mi = r for some i, and the factor 1�mi  = r�/�λmi − λr� equals 1/�λmi −λr�
if mi  = r and 0 otherwise.

For n = 2�3 it is easily checked that these formulas (44), (45) are consistent
with the previous formulas (39), (40). For n = 4, after simplification using
λ3�2/�λ3 − λ2� = 1/2, it is found that the coefficients are

a4�2 =
3
2
+ 2λ4�3 + 3λ4�2

2�λ4 − λ2�
�

a4�3 = −1
2
− 3
2
λ4�2

�λ4 − λ3�
�

a4�4 = − λ4�3
λ4 − λ2

+ 3λ3�2λ4�2
�λ4 − λ2��λ4 − λ3�

�

(46)

For � = U,

λb = b− 1� λ#b� k =
b

k�k− 1� �(47)

so in particular λ4�2 = 1/3� λ4�3 = 1/6� λ3�2 = 1/2. Expression (44) for n = 4
with the substitutions (46), (47) rather miraculously reduces to the following
instance of (17):

pUt �4� =
1
3!

(
6− 11e−t + 6e−2t − e−3t) = 1

3!
�1− e−t��2− e−t��3− e−t��(48)

It does not seem at all evident from (45) why the substitutions (47) allow (44)
to be factorized for every n, as implied by (17). As a consequence of (17), for
1 ≤ j ≤ n − 1 the coefficient of e−jt in the generalization of (48) to n instead
of 4 is

�−1�j
[
n

j+ 1

]/
�n− 1�!�

where
[
n
k

]
is the Stirling number of the first kind which is the number of per-

mutations of �n� with k cycles. The only j for which this is obviously consistent
with (44) is j = 0. Equate coefficents of e−jt for 1 ≤ j ≤ n− 1 to see that the
factorization implied by (17) amounts to the identity

an� r = �−1�r
[
n

r

]/
�n− 1�! for 2 ≤ r ≤ n for λb� λ#b� k as in (47)�(49)
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3.9. Distribution of the frequencies. In this section, let ��∞�t�� t ≥ 0� be
a standard F-coalescent for some probability distribution F on �0�1�, with
moments µr �=

∫ 1
0 x

rF�dx�. For j = 1�2� � � � let f̃j� t �= f̃j�t� as in (11) be the
frequencies of blocks of �∞�t� in order of least elements.
Let F̃t denote the probability distribution of f̃1� t on �0�1�. As a consequence

of known formulas for exchangeable random partitions and associated ran-
dom discrete distributions [33], [32], this probability distribution F̃t on �0�1�
carries a good deal of information about the distribution of �∞�t� and the cor-
responding distribution of ranked frequencies on ¯� ↓. The distribution F̃t is
determined by the following formula for its moments ([32], Corollary 8):∫ 1

0
xmF̃t�dx� = Ɛ�f̃m1� t� = pt�m+ 1� for m = 0�1� � � � �(50)

where pt�n� is given by (44). In particular, f̃1� t has mean
Ɛ�f̃1� t� = pt�2� = 1− e−t(51)

no matter what F, and (40) gives the variance

Var�f̃1� t� = pt�3� − �pt�2��2 = 1
2e

−t + 1
2e

−λ3t − e−2t�(52)

where λ3 = 3− 2µ1 for µ1 the mean of F. One other simple general feature of
F̃t can be read from Proposition 26,

F̃t�0	 = ��f̃1� t = 0� = exp�−µ−1 t��(53)

The following proposition records some basic properties of the process �f̃1� t�
t ≥ 0�.

Proposition 30. No matter what F, the process �f̃1� t� t ≥ 0� is an increas-
ing pure jump process with cadlag paths, with

f̃1�0 = 0 and f̃1�∞− = 1 almost surely.(54)

If µ−1 = ∞ then almost surely f̃1� t > 0 for all t > 0 while f̃1�0+ = 0. Whereas if
µ−1 <∞ the process �f̃1� t� t ≥ 0� starts by holding at zero until an exponential
time with rate µ−1, when it enters �0�1� by a jump, and proceeds thereafter by
a succession of holds and jumps, with holding rates bounded above by µ−1.

Proof. It is obvious that the process �f̃1� t� t ≥ 0� has increasing sample
paths, and the facts (54) follow immediately from this and (51). If µ−1 =
∞, then by Lemma 25 the exchangeable random partition �∞�t� has proper
frequencies a.s. for each t > 0, hence f̃1� t > 0 for all t > 0, and f̃1�0+ = 0
by the continuity of Kingman’s correspondence. According to [15], Proposition
30, the process �f̃1� t� t ≥ 0� has cadlag paths, and by [15], Proposition 1, the
paths are of pure jump type. If µ−1 <∞, the Poisson construction of Corollary
3 shows that the process �f̃1� t� t ≥ 0� has cadlag step function paths which can
jump only when there is a collision involving 1. The rate of such jumps at time
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t is bounded above by µ−1, and equal to µ−1 as long as 1 remains a singleton
of �∞�t�, meaning as long as f̃1� t = 0. Let T be the time of the first collision
involving 1 and let ST− be the frequency of singletons in �∞�T−�. Proposition
26 shows that ST− > 0 almost surely, hence there is a relative frequency
X1 > 0 of classes involved in the collision, that is, the common value of X1� j

in Theorem 4 for all j involved in the collision. Since f̃1�T ≥ ST−X1 > 0 the
process �f̃1� t� t ≥ 0� enters �0�1� by a jump at time T.
Suppose now that µ−1 = ∞, so f̃1� t can be interpreted via Theorem 8 as the

mass at time t containing a particle labeled 1 in the ranked mass coalescent
derived from frequencies of the standard F-coalescent. The following proposi-
tion, which follows easily from the dynamics of �∞ described in Theorem 6,
shows that the joint law of f̃1� t and f̃1� t+u is uniquely determined by the dis-
tribution of the sequence �f̃i� t� i = 1�2� � � �� and the distribution F̃u of f̃1� u. In
principle, a similar description could be given of the conditional distribution
of �f̃i� t+u� i = 1�2� � � �� given �f̃i� t� i = 1�2� � � ��, which would determine the
Markovian dynamics of the shunted �-coalescent, defined as in [15], whose
state at time t is �f̃i� t� i = 1�2� � � ��. ✷

Proposition 31. Let �∞ be a standard �-coalescent for � with µ−1 = ∞.
Let Ii�t� u� be the indicator of the event that the ith block of �∞�t�, whose
frequency is f̃i� t, has merged with the block containing 1 by time t+u, so that

f̃1� t+u =
∞∑
i=1
f̃i� tIi�t� u�(55)

where I1�t� u� = 1. Then the �Ii�t� u�� i = 2�3� � � �� are exchangeable�F̃u� indi-
cators which are independent of the sequence �f̃i� t� i = 1�2� � � ��.

As a check, take expectations in (55) and use Ɛ�∑∞
i=2 f̃i� t� = 1−Ɛ�f̃1� t� = e−t

and Ɛ�Ii�t� u�� = Ɛ�f̃1� u� = 1−e−u to recover 1−e−�t+u� = �1−e−t�+e−t�1−e−u�.
Less obvious identities can be obtained from the equality of higher moments
in (55).
Applied to the U-coalescent, Proposition 31 yields the following result,

which amounts to the description of two-dimensional distributions given in
parts (i) and (ii) of Corollary 16.

Proposition 32. In the standard U-coalescent, for each t� u > 0 the joint
law of f̃1� t and f̃1� t+u is determined as follows: the distribution of f̃1� t is
beta�1− e−t� e−t�, and

1− f̃1� t+u = �1− f̃1� t�Zt�u�(56)

where Zt�u is independent of f̃1� t with beta�e−t − e−�t+u�� e−�t+u�� distribution.

Proof. The identification of the distribution F̃t of f̃1� t for the standard
U-coalescent was indicated already in (19). Lemma 9 and (19) yield also that
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f̃i� t = �1 − f̃1� t�f̃∗i−1� t for i = 2�3� � � � where �f̃∗j� t� j = 1�2� � � �� is the se-
quence of frequencies of blocks of an �e−t� e−t� partition, and this sequence is
independent of f̃1� t. A manipulation of (55) now yields (56) with

Zt�u = 1−
∞∑
j=1
f̃∗j� tIj+1�t� u��(57)

which is independent of f̃1� t. Finally, the distribution of Zt�u is identified by
a moment computation. ✷

In the proof of the previous proposition, the distribution of Zt�u displayed
in (57) was identified. Take α = e−t and β = e−u in (57) to deduce the following
corollary.

Corollary 33. For α and p in �0�1� let gα�p�x� denote the probability
density at x ∈ �0�1� of the random variable

∑∞
n=1Vn�αYn�p where the se-

quence �Vn�α� n = 1�2� � � �� has PD�α� α� distribution, �Yn�p� n = 1�2� � � ��
is a sequence of independent Bernoulli�p� indicators, and the two sequences
are independent. Then for each α� x ∈ �0�1�, the function p �→ gα�p�x� is char-
acterized by the following formula: for β ∈ �0�1�,

1
��1− β���β�

∫ 1
0
p−β�1− p�β−1gα�p�x�dp

= ��α�
��α− αβ���αβ�x

α−αβ−1�1− x�αβ−1�
(58)

That is to say, the mixture over p of the distribution of
∑
n Vn�αYn�p, for

p given a beta�1 − β� β� distribution, is the beta�α − αβ� αβ� distribution.
For fixed α and x the left side of (58) is essentially a Mellin transform in β,
so this formula determines the the function p �→ gα�p�x� by uniqueness of
Mellin transforms. The probability density x �→ gα�p�x� was characterized in
a different way in [7], (4.b′) by the following formula: for λ > 0,∫ 1

0

gα�p�x�dx
�1+ λx�α = 1

1+ ��1+ λ�α − 1�p�(59)

This probability density gα�p�x� is the density of the time spent positive by a
skew-Bessel bridge �bt� 0 ≤ t ≤ 1� of dimension 2 − 2α, with p = ��Xt > 0�
for each fixed t ∈ �0�1�. See also [37], Section 4. For α = p = 1/2 this is
the density of the time spent positive by a standard Brownian bridge, which,
according to a famous result of Lévy, is uniform. That is g1/2�1/2�x� = 1 for all
x. No explicit formula for gα�p�x� seems to be known for other values of �α�p�,
but one should be obtainable from (58) by inversion of the Mellin transform.
See also [44] for study of related distributions.
As a check on Corollary 33, (58) can be derived from (59) as follows. For

k = 0�1�2� � � � a random variable Zr� s with beta�r� s� distribution has kth
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moment Ɛ�Zkr� s� = �r�k/�r + s�k where �x�k = x�x + 1� · · · �x + k − 1�. So for
β ∈ �0�1� and �a� < 1,

Ɛ

(
1

1+ aZ1−β�β

)
=

∞∑
k=0

�−a�kƐ�Zk1−β�β� =
∞∑
k=0

�−a�k �1− β�k
k!

= �1+ a�−�1−β��

Apply this with a = �1 + λ�α − 1 to see that for Z whose distribution is the
mixture of the distributions characterized by (59), for p given a beta�1−β�β�
distribution,

Ɛ

[
1

�1+ λZ�α
]
= �1+ λ�−�α−αβ��(60)

However,

Ɛ

[
1

�1+ λZα−αβ�αβ�α
]
=

∞∑
k=0

�−λ�k �α�k
k!

�α− αβ�k
�α�k

= �1+ λ�−�α−αβ��(61)

From the identity of these transforms it follows that Z has the same distri-
bution as Zα−αβ�αβ, as claimed in Corollary 33.

4. Coagulation and fragmentation operations on the two-parameter
family. Theorem 12 will be proved after two lemmas which follow easily from
Definitions 5 and 11.

Lemma 34. Let �i∞ for i = 1�2 be two random partitions of �, with restric-
tions �in to �n�. Let p1 and p be two exchangeable probability distributions on
�∞. Then the following two conditions are equivalent:

(i) �1∞ is exchangeable with distribution p1 and for all π ∈ �∞,

���2∞ ∈ · � �1∞ = π� = p -coag�π� · ��
(ii) For each n = 1�2� � � � the joint law of ��1n��2n� on �n×�n is given by the

following formula: for each pair of partitions π1 �= �A1� � � � �AK	 and π2 �=
�B1� � � � �Bk	 of �n� such that π1 is a refinement of π2 and #�&� A& ⊆ Bi	 = ji
for each 1 ≤ i ≤ k,

���1n = π1� �2n = π2� = p1�a1� � � � � aK�p�j1� � � � � jk��(62)

where ai = �Ai�, and
∑k
i=1 ji =K.

When the conditions of the lemma hold, �2∞ is evidently exchangeable with
EPF p2�n1� � � � � nk� obtained for �n1� � � � � nk� with

∑
i ni = n by summing (62)

over all π1 ∈ �n which are refinements of π2 for any particular π2 with
�Bi� = ni for all i. In principle then, Lemma 34 describes the action of p -coag
on an arbitrary exchangeable distribution p1. This induces an operation on
the set of probability measures on ¯� ↓ via Kingman’s correspondence. But this
operation seems difficult to describe more explicitly. Similar remarks apply to
p -frag instead of p -coag, as a consequence of the following analog of the
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previous lemma. But the action of p -frag on ¯� ↓ is much simpler; this is just
the operation described in a particular case in Corollary 13 and considered
more generally as an action on � ↓ in [36].

Lemma 35. Let �i∞ for i = 1�2 be two random partitions of �, with restric-
tions �in to �n�. Let p2 and p̂ be two exchangeable probability distributions on
�∞. Then the following two conditions are equivalent:

(i) �2∞ is exchangeable with distribution p2 and for all π ∈ �∞,

���1∞ ∈ · � �2∞ = π� = p̂ -frag�π� · ��
(ii) For each n = 1�2� � � � the joint law of ��1n��2n� on �n×�n is given by the

following formula: for each pair of partitions π1 �= �A1� � � � �AK	 and π2 �=
�B1� � � � �Bk	 of �n� such that π1 is a refinement of π2 obtained by breaking
each Bi into ji blocks of sizes ai�1� � � � � ai� ji for some ji ≥ 1 with

∑k
i=1 ji =K,

���1n = π1� �2n = π2� =
k∏
i=1
p̂�ai�1� � � � � ai� ji�p2�b1� � � � � bk��(63)

where bi = �Bi� =
∑ji
&=1 ai� &.

Proof of Theorem 12. Let par �= ��α� θ�� 0 ≤ α < 1� θ > −α	, which
is the set of all �α� θ� such that (15) defines an EPF corresponding to a ran-
dom discrete distribution with an infinite number of atoms almost surely. The
argument yields the following sharper form of the result:

For �α� θ�� �αc� θc�� �α1� θ1� and �αf� θf� in par the joint distribution of ����′�
defined by (i) � is an �α� θ� partition and �′ is an �αc� θc� coagulation of � is
identical to the joint distribution of ����′� defined instead by (ii) �′ is an
�α1� θ1� partition and � is an �αf� θf�-fragmentation of �′ if and only if the
parameters are of the form allowed in Theorem 12, that is

αf = α� θf = −α1 = −ααc� θc = θ/α� θ1 = θ�(64)

Indeed, by application of Lemmas 34 and 35, and the (15) for the EPF of an
�α� θ� partition, the two joint distributions in question are identical if and only
if for all 1 ≤ k ≤ K ≤ n < ∞ and all choices of �a1� � � � � aK�, �b1� � � � � bk� and
�j1� � � � � jk� subject to the obvious constraints,

�θ/α�K
�θ�n

(
K∏
&=1

−�−α�a&
)
�θc/αc�k
�θc�K

k∏
i=1

−�−αc�ji

= �θ1/α1�k
�θ1�n

(
K∏
&=1

−�−αf�a&
)
k∏
i=1

−�−α1�bi�θf/αf�ji
�θf�bi

�

If (64) holds, this equality is evident by inspection. The necessity of (64) can be
deduced using the fact that if

∏k
i=1�−α�ni = cn�k

∏k
i=1�−β�ni for all 1 ≤ k ≤ n

and all �n1� � � � � nk� with
∑
i ni = n for some constants cn�k, then α = β. ✷



COALESCENTS WITH MULTIPLE COLLISIONS 1899

Looking at (62) and (63), there appears to be little hope of matching the
two formulas unless all the EPFs involved are of the Gibbs form

p�n1� � � � � nk� =
bk
cn

k∏
i=1
wni(65)

for some sequences of weights �b1� b2� � � �� and �w1�w2� � � �� and some sequence
of normalization constants �c1� c2� � � �� determined by these weights. As shown
in [21], the �α� θ� formula (15) and its limiting cases yield every EPF of this
form. So it might be that Theorem 12 describes the only possible choices of
nondegenerate laws p1 and p of exchangeable random partitions of � such
that the action of the p -coag on p1 to obtain p2 can be inverted by p̂ -frag
for some p̂.

APPENDIX

Exchangeable random partitions. This Appendix recalls the basic re-
sults of Kingman’s theory of exchangeable random partitions, which are used
throughout the paper.
Let � be a random partition of � with restrictions Rn� to �n� for n = 1�

2� � � � � Call � exchangeable iff for each particular partition �B1� � � � �Bk	 of �n�
into k blocks, the probability ��Rn� = �B1� � � � �Bk	� is a symmetric function
of the sizes n1� � � � � nk of the sets B1� � � � �Bk, say,

��Rn� = �B1� � � � �Bk	� = p�n1� � � � � nk��

Then p is a nonnegative symmetric function of sequences of positive integers
�n1� � � � � nk� of arbitrary finite length, subject to p�1� = 1 and a sequence of
addition rules with obvious probabilistic interpretations, the first few of which
are

p�1� = p�2� + p�1�1�� p�2� = p�3� + p�2�1��
p�1�1� = 2p�2�1� + p�1�1�1��

(66)

Following [32], call p the exchangeable probability function (EPF) of �. The
same symbol p may denote the probability distribution of � on �∞. So p�n1�
� � � � nk� is the p measure of the set �π ∈ �∞� Rnπ = πn	 for each particu-
lar partition πn of �n� into k blocks of sizes �n1� � � � � nk�. For a sequence of
random variables Y1�Y2� � � � � let ��Y1�Y2� � � �� denote the random partition
of � whose blocks are the sets �i� Yi = y	 as y ranges over all values of
the Yi. Let ¯� ↓ be the set of all nonnegative sequences x = �x1� x2� � � �� with
x1 ≥ x2 ≥ · · · ≥ 0 and

∑
i xi ≤ 1, and give ¯� ↓ the topology of coordinate-

wise convergence. For x = �x1� x2� � � �� ∈ ¯� ↓ let px denote the distribution of
��Y1�Y2� � � �� for Yn that are independent and identically distributed accord-
ing to some probability distribution on the line whose nth largest atom is xn
and whose continuous component has probability 1−∑

n xn.
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Theorem 36 (Kingman’s correspondence [24], [25]). A bijective correspon-
dence p ↔ P between probability distributions p of exchangeable random
partitions of � and probability distributions P on ¯� ↓ is determined as fol-
lows. Each block Bn of an exchangeable random partition � = �B1�B2� � � �	 of
� with distribution p has an almost sure limiting relative frequency f̃n. Let P
be the distribution on ¯� ↓ of the ranked rearrangement f of these frequencies.
Then the conditional distribution of � given f = x is px, so p = ∫

¯� ↓ P�dx�px.
This correspondence is continuous in the sense that a sequence of EPFs pn has
a pointwise limit p if and only if the corresponding sequence of probability
distributions Pn on ¯� ↓ has a weak limit P and then p corresponds to P.

The most general distribution p of an exchangeable random partition of
� is thus obtained as the distribution of ��Y1�Y2� � � �� for a sequence of ex-
changeable random variables �Yn�. For, according to de Finetti’s theorem, such
Y1�Y2� � � � are conditionally independent with distribution G given some ran-
dom probability distribution G. The corresponding P is then the distribution
of ranked sizes of atoms of G. Aldous [2] gave a quick proof of Kingman’s
correspondence based on de Finetti’s theorem. If the sequence of ranked fre-
quencies f = �f1� f2� � � �� of the exchangeable random partition � is proper,
meaning

∑
n fn = 1 almost surely, the EPF p is determined by the distribution

P of f via the formula

p�n1� � � � � nk� =
∑

�i1� ���� ik�
Ɛ

(
k∏
j=1
f
nj
ij

)
�(67)

where the sum is over all sequences of distinct positive integers �i1� � � � � ik�.
See also [32], [34] for simpler characterizations of the EPF in terms of the
distribution of frequencies of blocks of � in order of their least elements.
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l’arc sinus. Séminaire de Probabilités XXIII. Lecture Notes in Math. 1372. 294–314.
Springer, Berlin.



COALESCENTS WITH MULTIPLE COLLISIONS 1901

[8] Bertoin, J. and Le Gall, J. F. (1999). The Bolthausen–Sznitman coalescent and the geneal-
ogy of continuous-state branching processes. Probab. Theory Related Fields. To appear.

[9] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract
cavity method. Comm. Math. Phys. 197 247–276.

[10] Derrida, B. (1987). Statistical properties of randomly broken objects and of multivalley
structures in disordered systems. J. Phys. A. 20 5273–5288.

[11] Derrida, B. (1994). Non-self-averaging effects in sums of random variables, spin glasses,
random maps and random walks. In On Three Levels: Micro-, Meso-, and Macro-
Approaches in Physics (M. Fannes, C. Maes and A. Verbeure, eds.) 125–137. Plenum
Press, New York.

[12] Doksum, K. (1974). Tailfree and neutral random probabilities and their posterior distribu-
tions. Ann. Probab. 2 183–201.

[13] Dynkin, E. B. (1965). Markov Processes 1. Springer, Berlin.
[14] Dynkin, E. B. (1978). Sufficient statistics and extreme points. Ann. Probab. 6 705–730.
[15] Evans, S. N. and Pitman, J. (1988). Construction of Markovian coalescents. Ann. Inst. H.
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