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This vignette describes some troublesome features of smoothing with conditional auto-regressive
models using standard 0-1 weights. One very nice solution is to use weights based on thin-plate
spline smoothing as I discuss below.

Conditional auto-regressive models (a type of Markov random field specification) do spatial
smoothing (and smoothing in other spaces) using a precision matrix that is often based on the
neighborhood structure of the areal units under consideration. A standard neighborhood structure
is to let all the neighbors of an areal unit have weight one and non-neighbors have weight zero.
For gridded units, one might let all units whose centroids are within a certain distance have weight
one and others have weight zero. This reduces to the nearest 8 and nearest 4 (i.e, cardinal direction
neighbors) cells if one specifies the distance appropriately.

CAR models are generally used for data in areal units in which the areal units represent a parti-
tion of the domain and there are data in all the units. However, one might also consider using CAR
models for gridded representations of space in which many of the grid cells have no observations.
Rue and Held (2005) have convincingly argued for the computational advantages of CAR models
through the use of sparse matrices and joint MCMC proposals for the full process (and also the
full process and the process hyperparameter). Therefore, let’s consider a latent process on a grid,
g, with an CAR-derived precision matrix, κQ where κ is the precision parameter and Q contains
the negative of the weights for all pairs of points and the diagonal of Q the sum of the weights for
each location. I fit a Bayesian model with a simple likelihood based on the latent process evaluated
at the appropriate cell, yi ∼ N (µ + gi, σ

2
y). Fig. 1 shows results for an example dataset. The

middle row shows the smoothing for simple 0-1 weights for two neighborhoods. Note the strange
surface prediction, with bulls-eyes (cusps) around the observations and, for points away from the
observations, smoothing towards the overall mean. In contrast, Rue and Held (2005, p. 114),
Thomas Kneib’s PhD thesis (p.60), and Yue and Speckman (in preparation, U. Missouri Statistics)
describe weights motivated by the thin-plate spline penalty, with weights of 8 for the four cardinal
neighbors, -2 for the four diagonal neighbors and -1 for the 4 cardinal neighbors at distance of
two units. This structure gives the smoothing seen in the lower left plot, which is very similar to a
thin-plate spline smooth (lower right plot), and displays more attractive smoothing characteristics.
In this case, the best fit to the data is a very smooth surface.

In Fig. 2, I show the smoothing kernels induced by the different neighborhood specifications,
which help to explain the smoothing we see in Fig. 1. I calculate the smoothing kernel as follows.
First, recall that the kriging smoothing matrix is S = C(C + σ2

yI)−1 = (κQ)−1((κQ)−1 + σ2
yI)−1

1



10

15

20

25

raw data

10

15

20

25

CAR smooth, 0−1 weights, 8 neighbors

10

15

20

25

CAR smooth, 0−1 weights, 12 neighbors

10

15

20

25

CAR smooth, TPS weights, 12 neighbors

10

15

20

25

thin−plate spline smooth

Figure 1. (top row) Raw data (average PM2.5 concentrations for July 2004 for Pennsylvania,
USA). (middle row) CAR-based smooth of the gridded raw data using 0-1 weights and either 8 or
12 neighbors. (bottom row) on left, CAR-based smooth with the weights of Yue and Speckman. On
right, a thin-plate spline smooth using gam() from the mgcv package in R.
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where I substitute (κQ)−1 = C for the usual kriging covariance matrix. For example, for the
weights of Yue and Speckman, on the domain of a torus to avoid boundary effects, the diagonal
elements of Q are 20 and the off-diagonals are -8, 2, and 1 for the appropriate neighbor pairs. Of
course we cannot invert Q, so re-express S = (κQ)−1(κQ)(κQ + σ−2

y I)σ−2
y I = (σ2

yκQ + I)−1.
This allows us to consider the smoothing characteristics of different CAR neighborhood structures.

Using the expression, we look at the implied smoothing kernels for a variety of values of κ
(i.e, of σ2

yκ, the effective smoothing parameter) for different neighborhood structures and weights
(Fig. 2). We see that for the higher levels of smoothing (larger κ) the TPS-based CAR model of
Held/Kneib/Yue has a kernel that drops off in a smooth fashion, with reasonably high weights on
nearby grid cells. In contrast, the 0-1 CAR models have kernels that drop quickly from the focal
point. This is what causes the bulls-eyes in the smoothing in Fig. 1 for the 0-1 CAR models.
Also note that with the increasing number of neighbors for the 0-1 approach, the weights drop
very slowly to zero, which would cause some smoothing to the global mean, not a feature that we
probably want in a spatial smoother. The more natural kernels from the Held/Kneib/Yue approach
make sense in light of results in Rue and Held (2005), pp. 192-193, in which they show that one
gets positive and negative weights when one uses CAR models to try to approximate Gaussian
processes based on standard geostatistical covariance functions. One issue with the TPS-based
CAR model is that I don’t know if anyone has shown posterior propriety for models that use this
GMRF prior.

The implications are that one would not want to use the 0-1 approach to do smoothing as it
gives a very strange smoother. While I have demonstrated this on sparse data, the results carry
over to the situation with data in all the grid cells. As a result, I would not recommend use of the
standard 0-1 CAR model in either the sparse or dense cases, including standard disease mapping
settings. In contrast the thin-plate spline-based CAR model seems to have very nice features.
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Figure 2. Smoothing kernels for three levels of smoothing: top row is minimal smoothing with κ =
10, middle row is moderate smoothing with κ = 100, bottom row is more smoothing with κ = 1000.
In all cases, σ2

y ≡ 0.12. Left column is based on simple 0-1 weights for four nearest neighbors,
middle column on 0-1 weights using 12 neighbors, and right column the Yue and Speckman thin-
plate-spline-motivated weights. Note that I use a torus as the domain to avoid boundary effects.
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