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Modeling point and areal data

Both point and areal data are common.
Particularly with the increase in computer code output and
remote sensing information, many environmental analyses
involve both point and areal data.
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How could we model both types of data using a single
framework?
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Latent process representations

1 Use a latent Gaussian process.

1 Relate the process to point locations in the standard way.
2 One can take integrals over areas to derive the areal data

distribution (Kelsall and Wakefield 2002, Fuentes and Raftery
2005)

2 Use a Markov random field on a fine regular grid.

1 Relate point observations to the relevant grid cells, possibly
with covariate adjustments for within-cell heterogeneity.

2 Relate areal observations to weighted averages of grid cells
overlapped by a given area.
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Main points

1 MRF models can be used to model both point and area data,
and of course have nice computational properties.

2 Standard nearest neighbor MRF models (’ICAR’) represent
processes that are not smooth.

Only certain higher-order MRF models make sense. Simply
expanding the neighborhood gives unexpected results.
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Using a standard MRF model for point data

Options:

1 Create areas (e.g., by tesselation) centered around each
observation.

Obvious problems with prediction and if new data arrive.

2 An alternative: use the MRF to represent a latent process on
a fine grid and relate observations to relevant grid cells.
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Proposed MRF-based GLMM

1 For Yi either a point or area observation, let µi = E (Yi |Xi , g),
with

h(µi ) = Xiβ + Kig

where Ki is the ith row of a mapping matrix, K .

2 Represent the unknown, latent spatial process, g , as a
piecewise constant surface on a fine regular grid,

g ∼ N (0, (κQ)−)

where Q is a (singular) MRF precision matrix.
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Mapping data to the fine grid
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MRF models

ICAR - intrinsic (improper) conditional auto-regressive model:
neighbors given a weight of one, all others a weight of zero.

TPS-MRF - MRF approximation to a thin plate spline: weights
derived from discrete approximation on grid to the usual thin plate
spline penalized likelihood (Rue and Held 2005, Yue 2009 PhD).

J(g) =
∫ ∫

<2

[(
∂2g(s1,s2)

∂s2
1

)2

+ 2
(

∂2g(s1,s2)
∂s1∂s2

)2

+
(

∂2g(s1,s2)
∂s2

2

)2
]

ds1ds2.

HICAR - ICAR with equal weights on higher-order neighbors.

DICAR - ICAR with weights decaying with distance (Hrafnkelsson
& Cressie 2003; Pettit et al. 2002)

EAR - extended auto-regressive model (Linder, unpub.)

Matern-MRF - MRF approximation to a Matern covariance GP
(Lindgren et al. 2011)

TPS-MRF is a limiting case for Matern with ν = 1.
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MRF Model Precision Matrices
Matrix elements for a single location (single row)
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What do we know about ICAR model properties?

Besag and Mondal (2005): ICAR model approaches
two-dimensional Brownian motion (de Wijs process) as the
grid resolution increases.

Continuous but non-differentiable sample paths.

CAR models in one dimension are equivalent to AR(1) models
in discrete time, which can be expressed as GPs for discrete
time points with exponential covariance.

Question: can higher-order neighbors (HICAR) and
distance-based weights (DICAR) give us smoother
representations?
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Eigenvalues of MRF inverse precision matrices
Q− = ΓΛ−Γ>; 100 x 100 grid
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ICAR model puts high weight on high-frequency eigenvectors and
low weight on low-frequency eigenvectors; even more extreme than
exponential-based GP.
Higher-order (HICAR) and distance-based (DICAR) versions are
even more extreme.
[Visual comparison indicates eigenvectors are essentially the same.
Projection of various model Q matrices on ICAR eigenvectors gives
very similar results.]
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Equivalent kernels of MRF specifications, ĝ = Sy
Two-dimensional image
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Equivalent kernels of MRF specifications
One-dimensional cross-section
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Note heavy ICAR weight on focal cell, reduced weight nearby
and large weight in tails.

Recall the weird behavior in the ICAR fit of point data.
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Analytic comparison of prediction error
n=100; averages over multiple sets of randomly-sampled spatial locations

The MSE, EgEY (
∑

i (ĝ − g)2), where ĝ = (I + λQ)−1Y , can
be calculated analytically and only λ is unknown in the fitting.

This suggests an ’oracle’ analysis where we set the penalty
parameter, λ = τ2κ fixed at the value that optimizes MSE.
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Surface types considered

range =  0.005 range =  0.02 range =  0.08

range =  0.32 range =  1.28 range =  2.56
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Analytic comparison of prediction error (2)
10000 observations; one per grid cell

● ● ● ● ● ●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0

● ● ● ● ● ●

ICAR
GP

ν
=

0.
5

lo
g2

 o
f M

S
E

 r
el

at
iv

e 
to

 T
P

S
−

M
R

F

Increasing noise variance =======>

● ● ● ● ● ●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0
● ● ● ● ● ● ● ● ● ● ● ●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0

● ● ● ● ● ●

●
●

● ● ● ●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0

●

● ● ● ● ●

● ●

●

●

●

●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0

● ●
● ● ● ●ν

=
2

spatial range parameter (log scale)

● ●

●

●

●

●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0

● ●
● ● ● ●

●

●

●

●

●

●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0
●

● ● ● ● ●
●

●

●

●

●
●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0

●

● ● ● ● ●

Chris Paciorek MRF Modeling 16



Background and model structure
Analytic comparison of MRF specifications

Simulations and example
Discussion

Example fits of ICAR and TPS-MRF models

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scenario 1

O
bs

er
va

tio
ns

1:m1

Tr
ue

 s
ur

fa
ce

1:m1

IC
A

R
 fi

t
T

P
S

−
M

R
F

 fi
t

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scenario 2

1:m1

1:
m

2

1:m1

1:
m

2
1:

m
2

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scenario 3

1:m1

1:
m

2

1:m1

1:
m

2
1:

m
2

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scenario 4

1:m1

1:
m

2

1:m1

1:
m

2
1:

m
2

Chris Paciorek MRF Modeling 17



Background and model structure
Analytic comparison of MRF specifications

Simulations and example
Discussion

Simulation results
n = 100, little noise
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Example: Modeling particulate matter (PM)

Regulatory agencies collect PM monitoring data (point data).

Proxy information available from atmospheric modeling and
from remote sensing, but quality is an issue.

I’ll call the systematic difference between the truth and the
proxy ’discrepancy’.
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Flexible Spatial Discrepancy Modeling

Consider additive bias as a spatial discrepancy process, D(·):

Y ∼ N (µy (x) + KyL, σ2
y )

A ∼ N (KAD + β1KAL, σ2
a)

L ∼ MRF(µL(x),QL)

D ∼ MRF(µD(x),QD)

Latent processes, L(·) and D(·), are represented on a fine grid.

We can explore the relationship of the proxy and gold
standard through analysis of the spatial scales of D(·).

µy (x) involves the effect of covariates that explain sub-grid
scale variation in the point measurements, while µL(x) and
µD(x) are covariate effects on the grid-scale process and the
discrepancy term, respectively.
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Predicted PM

Y PM = L D A
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Conclusions from the example

The MRF approach helped in terms of computational
challenges and combining information.

In the example, the proxy information did not help with
prediction - including the discrepancy component was critical
for reasonable modeling.

More statistical methodology is needed for combining data
with highly-structured proxy information in the face of
discrepancy.
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Computation for the basic model

1 With normal data, one has a marginal likelihood (integrating
over g) that involves large, but sparse, matrices and therefore
efficient calculation.

1 This allows either maximization or MCMC in the
hyperparameter space.

2 For non-normal data:

1 PQL: Consider the model to be a GLMM with Kg playing the
role of the usual Zb notation.

The forthcoming glmmGS package for R implements the PQL
approach (Breslow and Clayton 1993) based on sparse matrix
calculations for Q and K .

2 INLA (Rue et al. 2009): software at r-inla.org should be able
to fit the model proposed here, including making use of the
sparsity of Q and K .
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Other computationally-efficient spatial representations

Reduced-rank kriging (Kammann and Wand 2003; Banerjee et
al. 2008)

Good for low-frequency surfaces but requires many knots for
high-frequency variability.

Tapering (Furrer et al. 2006; Kaufman et al. 2008)

Induces sparse covariance so effectiveness in modeling
low-frequency surfaces is unclear.
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Advantages of proposed MRF approach

The approach handles both point and area data in an
aggregation-consistent fashion.

Computational efficiency

MRF-based thin plate spline approximation provides for
smooth latent spatial surfaces, unlike standard ICAR and
extensions to higher-order neighbors.

Basic extension to space-time based on specification of time
’neighbors’ also provides for sparse matrix calculations and
gives a Kronecker product structure for the precision.
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Potential disadvantages of the proposed MRF approach (1)

(1) Extrapolation issues:

GP specifications naturally handle extrapolation (on boundary
or in ’large’ gaps [relative to correlation range]) by mean
reversion and increased uncertainty.
Basis functions local to gaps and near boundaries may be
poorly estimated in spline models, causing ’ballooning’.
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Potential disadvantages of the proposed MRF approach
(2-3)

(2) GP models have both marginal variance and a correlation
range parameters, while MRF models have a single precision
parameter.

Zhang (2004) shows non-identifiability in infill asymptotic
regime with no nugget.
In applications/finite samples, does the additional GP
parameter improve performance?
Hypothesis: spline models and GPs perform similarly when
data are uniformly distributed in space, but with gaps [relative
to correlation range], GPs may be more robust.

(3) Nonstationarity is not addressed, but note Yue and
Speckman (2010) TPS-MRF extension with spatially-varying
penalty and Lindgren et al. (2011)
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