CARNEGIE MELLON UNIVERSITY

NONSTATIONARY GAUSSIAN PROCESSES FOR REGRESSION AND SPATIAL MODELLING

A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree

DOCTOR OF PHILOSOPHY

in

STATISTICS

by Christopher Joseph Paciorek

Department of Statistics Carnegie Mellon University Pittsburgh Pennsylvania 15213

May 2003

©Copyright 2003 by Christopher Joseph Paciorek All Rights Reserved

Abstract

Recent work in the areas of nonparametric regression and spatial smoothing has focused on modelling functions of inhomogeneous smoothness. In the regression literature, important progress has been made in fitting free-knot spline models in a Bayesian context, with knots automatically being placed more densely in regions of the covariate space in which the function varies more quickly. In the spatial statistics literature, attention has focused on using nonstationary covariance structures to account for inhomogeneity of the spatial field.

In this dissertation, I use nonstationary covariance functions in Gaussian process (GP) prior distributions over functions to perform both nonparametric regression and spatial smoothing in a Bayesian fashion. I extend the kernel convolution method of Higdon et al. (1999) to create a class of nonstationary covariance functions. I prove that the nonstationary covariance functions retain the differentiability properties of the stationary correlation functions on which they are based, provided there is sufficient smoothness in the underlying kernel structure used to generate the nonstationarity. The stationary Matérn covariance function has desirable differentiability properties; the generalized kernel convolution method developed here provides a Matérn-based nonstationary covariance function.

I develop a generalized nonparametric regression model and assess difficulties in identifiability and in fitting of the model using Markov Chain Monte Carlo (MCMC) algorithms. Of particular note, I show how to improve MCMC performance for non-Gaussian data based on an approximate conditional posterior mean. The modelling approach produces a flexible response surface that responds to inhomogeneity while naturally controlling overfitting. For Gaussian errors, on test datasets in one dimension, the GP model performs well, but not as well as the free-knot spline method. However, in two and three dimensions, the nonstationary GP model seems to outperform both free-knot spline models and a stationary GP model. Unfortunately, as implemented the method is not feasible for datasets with more than a few hundred observations because of the computational difficulties involved in fitting the model.

The nonstationary covariance model can also be embedded in a spatial model. In particular, I analyze spatiotemporal climate data, using a nonstationary covariance matrix to model the spatial structure of the residuals. I demonstrate that the nonstationary model fits the covariance structure of the data better than a stationary model, but any improvement in point predictions relative to a stationary model or to the maximum likelihood estimates is minimal, presumably because the data are very smooth to begin with. My comparison of various correlation models for the residuals highlights the difficulty in fitting high-dimensional covariance structures.

Acknowledgements

I would like to acknowledge the advice, suggestions, support, and friendship of a number of people who helped me during the writing of this thesis and the rest of my time as a graduate student in the Department of Statistics. First, I would like to thank my advisor, Mark Schervish, for his ongoing involvement in this work. In his understated way, Mark offered hands-on advice without hands-on management, giving suggestions that often guided me in a better direction. He has always been willing to delve into the details of the work and talk through issues, sometimes long past a reasonable meeting length. I would also like to thank the other members of my committee. James Risbey got me started on the Advanced Data Analysis project that led to this thesis. I thank him for his collaboration, advice, and friendship. I thank Doug Nychka for an enjoyable and productive visit to NCAR as well as for his various suggestions and his assistance with the wavelet model. I thank Valérie Ventura for her support and for her collaboration on two related projects. Larry Wasserman offered an open door, of which I did not take as much advantage as I would have liked toward the close of my graduate work. The statistics department staff and the rest of the faculty in the department have helped me in various ways, and I thank them for making the department a great place to do graduate work. I'd also like to thank Chris Holmes for the Matlab code on his website.

I want to thank the graduate students in the department. In particular, Fang Chen, my longtime officemate, has tolerated with good humor my often foul moods during the writing of this thesis.

Seven years is a long time to be in graduate school; I'm glad Susan Davidson was there for many of them. I'd also like to thank old friends who do not need to be named to know their importance to me. Little did we know in grade school and high school that I would be 31 when I finally finished school. John, how many seconds have I been in school?

Finally, but most importantly, I thank my parents for setting me on the road with what I would need to get to this point.

Contents

Acknowledgements

Abstract

iii

v

Intro	oduction	1
1.1	Problem Definition	1
1.2	Gaussian Processes and Covariance Functions	2
1.3	Spatial Smoothing Methods	5
1.4	Nonparametric Regression Methods	11
	1.4.1 Gaussian process methods	11
	1.4.2 Other methods	13
	1.4.3 Smoothing as local linear averaging	19
	1.4.4 Modelling non-Gaussian data	21
1.5	Thesis Outline	21
1.6	Contributions	22
Theo	oretical Development	25
2.1	Introduction	25
2.2	Nonstationary Covariance Functions Using Convolutions of Kernels	25
2.3	Generalized Kernel Convolution Covariance Functions	28
2.4	Nonstationary Covariance on the Sphere	32
2.5	Smoothness Properties of Covariance Functions	33
	Intr 1.1 1.2 1.3 1.4 1.5 1.6 The 2.1 2.2 2.3 2.4 2.5	Introduction 1.1 Problem Definition 1.2 Gaussian Processes and Covariance Functions 1.3 Spatial Smoothing Methods 1.4 Nonparametric Regression Methods 1.4.1 Gaussian process methods 1.4.2 Other methods 1.4.3 Smoothing as local linear averaging 1.4.4 Modelling non-Gaussian data 1.5 Thesis Outline 1.6 Contributions 1.7 Introduction 1.8 Nonstationary Covariance Functions Using Convolutions of Kernels 1.3 Generalized Kernel Convolution Covariance Functions 2.4 Nonstationary Covariance on the Sphere 2.5 Smoothness Properties of Covariance Functions

CONTENTS

		2.5.1	Overview	۷	33
		2.5.2	Theoretic	cal framework	34
		2.5.3	Lemmas	for proofs	39
		2.5.4	Smoothn	ess properties of isotropic correlation functions	43
			2.5.4.1	Mean square differentiability and scale mixtures	43
			2.5.4.2	Sample path differentiability and scale mixtures	45
			2.5.4.3	Application of results to specific correlation functions	46
			2.5.4.4	Mean square analyticity	47
		2.5.5	Smoothn	ess properties of kernel convolution covariance functions	48
			2.5.5.1	Mean square differentiability	48
			2.5.5.2	Sample path differentiability	50
			2.5.5.3	Implications for nonstationary modelling	53
	2.6	Discus	sion		53
3	Mot	hadalaa	rical Daval	lonment	57
5	3 1	Introdu	action	opment	57
	2.1	Dorom	torizing th	a Kornala for Nonstationary Covariance Modela	50
	5.2				50
		3.2.1	Iwo-dim		58
		3.2.2	Cholesky	decomposition	59
		3.2.3	Eigendec	composition	60
			3.2.3.1	Givens angles	60
			3.2.3.2	Overparameterized eigenvectors	62
			3.2.3.3	Simplified eigendecomposition model	63
		3.2.4	Basis ker	mel model	64
	3.3	Numer	ical Sensit	ivity of GP Models	65
	3.4	GP Par	rameteriza	tions	70
		3.4.1	Centered	vs. noncentered parameterizations	70
		3.4.2	Discretiz	ed parameterization	76
	3.5	Model	Dimensio	nality and Parameter Identifiability	79
		251	Smoothir	og and dimensionality in the GP model	79
		5.5.1	Smootim		, ,

			3.5.1.1 Occam's razor
			3.5.1.2 Model dimension
			3.5.1.3 Covariate selection
		3.5.2	Parameter identifiability and interpretability
			3.5.2.1 Uncentered parameterization
			3.5.2.2 Centered parameterization
	3.6	MCM	C Sampling Schemes for GP Models
		3.6.1	Integrating the process out of the model
		3.6.2	Methods for sampling the process values
			3.6.2.1 Derivative-based methods
			3.6.2.2 Posterior mean centering
			3.6.2.3 Application of posterior mean centering to non-Gaussian data 96
	3.7	Comp	utational Challenges of GP Models
		3.7.1	Local methods
		3.7.2	Sparse methods
		3.7.3	Approximate matrix calculations
		3.7.4	Parallel processing
		3.7.5	Non-Bayesian approaches
		3.7.6	Fast Fourier transform 109
		3.7.7	Overview
4	Dog	roccion	Model Popults 111
-	A 1	Introdu	internet int
	4.1	Model	Structure 111
	4.2	MCM	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
	4.5	Evolue	tion Procedures
	4.4		
		4.4.1	Dradiotive density
		4.4.2	Predictive density 119 Keilbach Leibler disconnege 120
	4 -	4.4.5	Kullback-Leibler divergence
	4.5	Test D	atasets and Competing Methods

CONTENTS

	4.6	Result	s	
		4.6.1	One-dim	ensional assessment
		4.6.2	Higher-c	limensional assessment
		4.6.3	Converg	ence
		4.6.4	Example	e using non-Gaussian data
	4.7	Discus	sion	
5	Spat	tial Mo	del Result	s 151
	5.1	Introdu	uction	
	5.2	Scient	ific Proble	m
	5.3	Basic	Spatial Mo	odel
	5.4	Covari	ance Mod	elling
		5.4.1	Correlati	on models used in this work
			5.4.1.1	Independence model
			5.4.1.2	Stationary Matérn correlation
			5.4.1.3	Nonstationary smoothed empirical correlation
			5.4.1.4	Kernel-based Matérn nonstationary correlation
		5.4.2	Alternate	e approaches not used in this work
			5.4.2.1	Smoothing the MLE fields
			5.4.2.2	Smoothing the empirical covariance toward a stationary covari-
				ance
			5.4.2.3	Fitting an unconstrained data covariance
			5.4.2.4	Covariances modelled indirectly through basis function regression 166
	5.5	Fitting	the Mode	el
		5.5.1	Data and	data-dependent model specifications
		5.5.2	MCMC	sampling procedure
			5.5.2.1	Posterior mean centering
			5.5.2.2	Sampling steps
			5.5.2.3	Running the chain
	5.6	Model	Comparis	son Criteria

	5.7	Results		
		5.7.1	Convergence	175
		5.7.2	Model estimates	180
		5.7.3	Model comparison	196
		5.7.4	Trend significance	199
	5.8	Discus	sion	204
		5.8.1	Covariance modelling assessment	204
		5.8.2	Other approaches	207
	a			••••
6	Con	clusions	s and Future Work	209
	6.1	Summa	ary and Contributions	209
	6.2	Shortco	omings and Potential Improvements	212
	6.3	Future	Work	215
Ar	nend	ices		218
лŀ	, penu	Current in 1		210
	A	Spatial	Model Prior Distributions and Starting values	219
		A.1	Prior distributions	219
		A.2	Starting values	220
	В	Notatio	on	221
		B.1	Parameters, stochastic processes, matrices, data, and covariates	221
		B.2	Indices	223
		B.3	Symbols, superscripts, and subscripts	223
		B.4	Functions	223

References

224

CONTENTS

List of Tables

2.1	Smoothness properties of Gaussian processes parameterized by various correlation
	functions. The asterisk indicates that the sample path part of this statement is a
	conjecture. In Section 2.5.4.2 I prove only that the Matérn is $\lfloor \frac{\nu}{2} - 1 \rfloor$ times sample
	path differentiable
3.1	Number of iterations that can be completed in the same time as a single iteration of
	the uncentered scheme
3.2	Effective sample size (ESS) by sampling scheme for key model parameters. \bar{f} is
	the mean ESS for the function values, averaging over $f(\boldsymbol{x})$ for all 100 values of $\boldsymbol{x}.$. 101
3.3	ESS by sampling scheme for key parameters, adjusted for computational speed. \bar{f}
	is the mean ESS for the function values, averaging over $f(x)$ at all 100 values of x. 103
4.1	MSE for training and test sets for the four methods on a portion of the Wood dataset. 139
4.2	LPD for training and test sets for the four methods on a portion of the Wood dataset,
	averaged across observations
4.3	MSE for training and test sets for the four methods, as well as linear regression and
	a generalized additive model (GAM) on the ozone dataset
4.4	LPD for training and test sets for the four methods on the ozone data, averaged
	across observations
4.5	Effective sample size (ESS) by sampling scheme for key model parameters for the
	Tokyo rainfall dataset. \bar{f} is the mean ESS for the function values, averaged over 10
	randomly sampled calendar days, and $\bar{\lambda}$ is the mean ESS for the log of the kernel
	eigenvalues, averaged over 10 randomly sampled calendar days

5.1	Log predictive density comparisons of the six models on test data for the two
	datasets. Values in parentheses are ranges based on blocked values from the poste-
	rior simulations
5.2	MSE comparisons of the six models on test data for the two datasets. Values in
	parentheses are ranges based on blocked values from the posterior simulation 198

List of Figures

- 2.1 (a) Correlation of f(-0.5) with the function at all other points. (b) Correlation of f(0.5) with the function at all other points. (c) Kernel variance as a function of x. (d) Five sample functions drawn from the Gaussian process distribution; notice that the functions are least smooth at the location of the sharp change in the kernel size.
 29

3.3	Sample function values from an MCMC in a Bernoulli data example with two
	different values of κ : (a) Sample function (solid line) and conditional posterior
	mean (dashed line) with $\kappa = 0.70$. (b) Proposing $\kappa^* = 0.30$ and f^* conditional on
	κ^* using the PMC proposal induces the PMC sample function proposal (solid line)
	and conditional posterior mean (dashed line). The dotted line is the sample function
	that would be proposed based on a joint proposal for (κ, f) without posterior mean
	centering. Notice that the function proposed without PMC is more extreme than
	the PMC proposal. Also notice that the conditional posterior mean and sample
	function proposal are less smooth in (b), but the deviations of the sample function
	in (a) and the PMC sample function proposal in (b) about their conditional means
	have similar structure
3.4	Time series plots of μ , σ , and κ for the five basic sampling schemes
4.1	Directed acyclic graph for the normal likelihood nonstationary Gaussian process
	regression model. Bold letters indicate vectors
4.2	Boxplots of (a) MSE and (b) KL divergence for the three methods over 50 simu-
	lated datasets of example 1: Bayesian adaptive regression splines (BARS), nonsta-
	tionary GP (NSGP), and stationary GP (SGP)
4.3	(a) BARS and (b) NSGP fit to one data sample in which NSGP has lower MSE than
	BARS. (c) BARS and (d) NSGP fit to a second data sample in which BARS has
	lower MSE. The thick dashed line is the true function, the solid line is the posterior
	mean estimate, and the thin dashed lines are 95% pointwise credible intervals 126
4.4	95% confidence intervals for the mean MSE over simulated datasets of example 1.
	SARS, M-D (Modified-DMS) and B10 (BARS) are based on 10 sample datasets
	as calculated in DiMatteo et al. (2002), while B50 (BARS), NSGP (nonstationary
	GP) and SGP (stationary GP) are based on 50 sample datasets as calculated here. $% A_{\rm e}$. 127
4.5	Boxplots of (a) MSE and (b) KL divergence for the three methods over 50 sim-
	ulated datasets of example 2: Bayesian adaptive regression splines (BARS), non-
	stationary GP (NSGP), and stationary GP (SGP). For SGP, one outlier with KL
	divergence of 0.58 is not plotted

- 4.7 95% confidence intervals for the mean MSE over simulated datasets of example 2.
 SARS, M-D (Modified-DMS) and B10 (BARS) are based on 10 sample datasets as calculated in DiMatteo et al. (2002), while B50 (BARS), NSGP (nonstationary GP) and SGP (stationary GP) are based on 50 sample datasets as calculated here. 130
- 4.9 (a) BARS and (b) nonstationary GP fit to one data sample of example 3. The thick dashed line is the true function, the solid line is the posterior mean estimate, and the thin dashed lines are 95% pointwise credible intervals.
- 4.10 95% confidence intervals for the mean MSE over simulated datasets of example 3.
 SARS, M-D (Modified-DMS) and B10 (BARS) are based on 10 sample datasets as calculated in DiMatteo et al. (2002), while B50 (BARS), NSGP (nonstationary GP) and SGP (stationary GP) are based on 50 sample datasets as calculated here. 133

4.13	(a) Sample posterior regression function from one data sample (solid line) and
	true function (dashed line) for example 2. (b) Kernel size (standard deviation of
	kernel) as a function of the covariate for the sample shown in (a). Notice the lack
	of smoothness in the function for $-2 < x < -0.5$, where the kernel sizes are
	large but variable. (c) Sample posterior regression function for a different data
	sample of example 2 (solid line) and true function (dashed line). (d) Kernel size
	(standard deviation of kernel) as a function of the covariate for the sample shown
	in (c). Notice that the nonintuitive sharp increase in the kernel size is what allows
	the model to capture the function jump at $x = 0136$
4.14	Sample posterior regression function from example 2 using a stationary GP model;
	here $\nu_f = 0.69$ and $\kappa_f = 4.0.$
4.15	Perspective plots of (left) true Hwang function and (right) posterior mean function
	using the nonstationary GP model. Note that these plots involve interpolation by
	the interp and persp functions in the R statistical package; the interp function is
	found in the akima library
4.16	Contour plots of (a) true Hwang function, (b) posterior mean function using the
	nonstationary GP model, and (c) difference between the true function and the esti-
	mated function. Note that these plots involve interpolation by the interp and con-
	tour functions in the R statistical package; the interp function is found in the akima
	library
4.17	Boxplots of FVU for (a) training covariates and (b) test covariates over 50 simu-
	lated datasets of the Hwang function for the four methods
4.18	Boxplots of KL divergence for (a) training covariates and (b) test covariates over
	50 simulated datasets of the Hwang function for the four methods
4.19	Time series plots for the Tokyo rainfall dataset for model log likelihood, log prior
	density, degrees of freedom of the conditional posterior mean function, and hyper-
	parameters
4.20	Time series plots for the Tokyo rainfall dataset for function values, $f(\cdot)$ (first row),
	and log of kernel eigenvalues, $\log \lambda(\cdot)$ (second row), at four covariate values 146

4.21	Posterior mean estimate of $p(\cdot)$, the probability of rainfall as a function of calendar
	day, with 95% pointwise credible intervals. Dots are empirical probabilities of
	rainfall based on the two binomial trials
4.22	Posterior geometric mean kernel size as a function of calendar day. The kernel sizes
	are plotted as the square roots of the geometric means of the kernel eigenvalues,
	and hence can be thought of as correlation scale parameters, with units of days 147
5.1	Plots of residual correlation of storm activity between all locations and each of
	two focal locations, each marked with an 'F': (left) 50° N, 330° E (in the North
	Atlantic) and (right) 30° N, 30° E (in Egypt). The residual correlation is calculated
	after removing location-specific linear trends. Gray shading indicates the value of
	the correlation coefficient, with darker colors indicating values large in magnitude.
	Negative values are indicated by horizontal hatching. The high topography of the
	Himalayas is blacked out
5.2	Directed acyclic graph of nonstationary spatial model. Bold letters indicate vectors. 157
5.3	Map of the Northern hemisphere, $20^{\circ} - 75^{\circ}$ N, with $5^{\circ} \times 5^{\circ}$ grid overlaid as dotted
	lines and Pacific (P) and Atlantic (A) region boundaries indicated by the thick dark
	lines of longitude
5.4	Time series plots of the log posterior density for temperature variance for the four
	Bayesian models: (a) stationary, (b) kernel nonstationary, (c) wavelet-empirical,
	and (d) wavelet-smooth
5.5	Time series plots of the hyperparameters, μ (first column), σ (second column), and
	κ (third column) for α (first row), β (second row), and η^2 (third row) from the
	kernel nonstationary model fit to the temperature variance data by MCMC 178
5.6	Time series plots of three process values of α (first row), β (second row) and η^2
	(third row) for the kernel nonstationary model fit to the temperature variance by
	MCMC
5.7	Maps of estimated β values for temperature variance for (a) MLE model, and
	posterior means from (b) stationary model, (c) kernel nonstationary model, (d)

wavelet-smoothed covariance model, and (e) wavelet-empirical covariance model. . 181

- 5.8 Maps of estimated η² values for temperature variance for (a) MLE model, and posterior means from (b) stationary model, (c) kernel-based nonstationary model, (d) wavelet-smoothed covariance model, and (e) wavelet-empirical covariance model.182
- 5.9 Scatterplots of model estimates (posterior means) of intercept (column 1), slope (column 2), and residual variance (column 3) fields compared to the MLE values for the four models: stationary (row 1), kernel nonstationary (row 2), wavelet-smoothed (row 3) and wavelet-empirical (row 4) for temperature variance. 184
- 5.10 (a) Plot of standardized residuals (defined in text) as a function of location for temperature variance; these residuals are calculated based on the posterior mean parameters, but using the MLEs for the residual variances. (b) Plot of the ratio of the posterior mean residual variance estimates to the MLE variance estimates. . . . 185
- 5.11 Scatterplots of model estimates (posterior means) of intercept (column 1), slope (column 2), and residual variance (column 3) fields compared to the MLE values for the models for Eady growth rate: stationary (row 1) and kernel nonstationary (row 2).
- 5.13 Plot of posterior mean correlation structure from the kernel nonstationary model for temperature variance between each of nine focal locations and all 288 locations. Correlation structures at the nine focal locations are overlaid on the same plot because correlations are less than 0.20 except in the bullseye areas. The nine focal locations are at the centers of the bullseyes and are the same locations as the centers of the basis kernels, as listed in the text.

- 5.15 Plot of posterior mean correlation structure from the stationary model for temperature variance between each of nine focal locations and all 288 locations. Correlation structure appears different at different latitudes because of the distortion induced by the latitude-longitude grid. Other details are as in Figure 5.13. 191
- 5.17 Plots of empirical correlations for temperature variance between each of the nine focal locations and all 288 locations. Each subplot displays the correlation structure for one focal location (marked by 'X') with latitude and longitude increasing from bottom to top and left to right respectively: (a) 150° E, 60° N, (b) 190° E, 60° N, (c) 230° E, 60° N, (d) 150° E, 45° N, (e) 190° E, 45° N, (f) 230° E, 45° N, (g) 150° E, 30° N, (h) 190° E, 30° N, (i) 230° E, 30° N.
- 5.18 Plots of empirical correlations for Eady growth between each of the nine focal locations and all 288 locations. Each subplot displays the correlation structure for one focal location (marked by 'X') with latitude and longitude increasing from bottom to top and left to right respectively: (a) 150° E, 60° N, (b) 190° E, 60° N, (c) 230° E, 60° N, (d) 150° E, 45° N, (e) 190° E, 45° N, (f) 230° E, 45° N, (g) 150° E, 30° N, (h) 190° E, 30° N, (i) 230° E, 30° N.
- 5.19 Plots of wavelet-empirical model correlations between each of nine focal locationsand all 288 locations for temperature variance. Details are as in Figure 5.17. . . . 194
- 5.20 Plots of wavelet-smooth model correlations between each of nine focal locations and all 288 locations for temperature variance. Details are as in Figure 5.17. . . . 195

- 5.21 Scatterplot of standard error estimates as a function of the point estimates for the linear trends in both the MLE and Bayesian nonstationary models for the 288 locations of temperature variance in the Pacific. Points in the areas toward the outer sides of the plot relative to the nearly vertical lines are individually significant based on the point estimates being at least two standard errors away from zero. 200
- 5.22 Scatterplot of standard error estimates as a function of the point estimates for the linear trends in both the MLE and Bayesian nonstationary models for the 288 locations of Eady growth rate in the Atlantic. Points in the areas toward the outer sides of the plot relative to the nearly vertical lines are individually significant based on the point estimates being at least two standard errors away from zero. 202