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Abstract

Recent work in the areas of nonparametric regression and spatial smoothing has focused on mod-

elling functions of inhomogeneous smoothness. In the regression literature, important progress has

been made in fitting free-knot spline models in a Bayesian context, with knots automatically being

placed more densely in regions of the covariate space in which the function varies more quickly. In

the spatial statistics literature, attention has focused on using nonstationary covariance structures

to account for inhomogeneity of the spatial field.

In this dissertation, I use nonstationary covariance functions in Gaussian process (GP) prior

distributions over functions to perform both nonparametric regression and spatial smoothing in a

Bayesian fashion. I extend the kernel convolution method of Higdon et al. (1999) to create a

class of nonstationary covariance functions. I prove that the nonstationary covariance functions re-

tain the differentiability properties of the stationary correlation functions on which they are based,

provided there is sufficient smoothness in the underlying kernel structure used to generate the non-

stationarity. The stationary Matérn covariance function has desirable differentiability properties;

the generalized kernel convolution method developed here provides a Matérn-based nonstationary

covariance function.

I develop a generalized nonparametric regression model and assess difficulties in identifiability

and in fitting of the model using Markov Chain Monte Carlo (MCMC) algorithms. Of particular

note, I show how to improve MCMC performance for non-Gaussian data based on an approximate

conditional posterior mean. The modelling approach produces a flexible response surface that

responds to inhomogeneity while naturally controlling overfitting. For Gaussian errors, on test

datasets in one dimension, the GP model performs well, but not as well as the free-knot spline

method. However, in two and three dimensions, the nonstationary GP model seems to outperform
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both free-knot spline models and a stationary GP model. Unfortunately, as implemented the method

is not feasible for datasets with more than a few hundred observations because of the computational

difficulties involved in fitting the model.

The nonstationary covariance model can also be embedded in a spatial model. In particular, I

analyze spatiotemporal climate data, using a nonstationary covariance matrix to model the spatial

structure of the residuals. I demonstrate that the nonstationary model fits the covariance structure

of the data better than a stationary model, but any improvement in point predictions relative to a

stationary model or to the maximum likelihood estimates is minimal, presumably because the data

are very smooth to begin with. My comparison of various correlation models for the residuals

highlights the difficulty in fitting high-dimensional covariance structures.
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