
Chapter 6

Conclusions and Future Work

6.1 Summary and Contributions

This thesis makes several original contributions. The first contribution is my extension of the Hig-

don et al. (1999) (HSK hereafter) kernel convolution nonstationary covariance function. The HSK

covariance is a straightforward way to construct a flexible nonstationary covariance function, albeit

with some restrictions, such as non-negativity. The HSK covariance function is a generalization

of the well-known squared exponential stationary correlation function. When used in Gaussian

process (GP) distributions, both produce sample functions that are infinitely differentiable in both

a mean square and sample path sense. This high degree of smoothness is generally undesirable.

In Chapter 2, I generalize the HSK covariance function to produce a class of nonstationary cor-

relation functions, one of which is a nonstationary version of the Matérn correlation, which has a

parameter that controls the degree of differentiability. I prove that the smoothness properties of the

new nonstationary correlation functions follow from those of the stationary correlation functions

on which they are based, under certain smoothness conditions on the kernels used to construct the

nonstationarity. In Chapters 4 and 5, I show that the Matérn nonstationary correlation can be used

within a Gaussian process prior in nonparametric regression and spatial smoothing models.

Given the class of nonstationary covariance functions, we need a way to parameterize kernels

that vary smoothly in space. In Chapter 3, I describe one parameterization based on the eigen-

decomposition of the kernel matrices and an overparameterized model for the eigenvectors. This
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parameterization seems to be feasible for two- and three-dimensional covariate spaces, but the

number of parameters, and presumably the difficulty in fitting the model, increases with the di-

mension of the covariate space. In higher dimensions, simpler alternatives may be required and

even abandoning nonstationarity may be a reasonable approach. When GPs are embedded in a

hierarchical model, or used in any nonconjugate fashion, the process cannot be integrated out of

the model. This nullifies the general approach taken to fitting GP models via Markov chain Monte

Carlo (MCMC) and causes major problems in MCMC convergence. I introduce a sampling scheme,

which I call posterior mean centering, that can be used in some cases in which the process cannot

be integrated out of the model. The scheme greatly improves mixing of the GP hyperparameters,

although mixing is still quite slow. Hyperparameter mixing is important because the covariance

hyperparameters control the flexibility of the function; they perform the same role that the number

of knots does in a spline model. The sampling scheme can be applied successfully to generalized

nonparametric regression models with non-Gaussian response using an analogue to the familiar

iteratively-reweighted least squares algorithm, as I describe in Chapter 3 and demonstrate in Chap-

ter 4. Unfortunately, when Gaussian processes are used to construct the kernel matrices of the

nonstationary kernel covariance, there is no way to make use of the PMC scheme, and we are left

with a naive, slowly-mixing scheme for sampling the processes controlling the kernel structure.

The nonparametric GP regression model that I define based on the generalized kernel convo-

lution covariance successfully models a number of experimental datasets, when the dimension of

the covariate is between one and three. In one dimension, the method is successful provided the

function does not change too sharply, but the BARS method of DiMatteo et al. (2002) is more suc-

cessful under all conditions examined. In two and three dimensions, the nonstationary GP model

outperforms free-knot spline methods generalized to higher-dimensional covariate spaces, as well

as a stationary GP model, although the improvement is relatively limited in some cases. While

these results are encouraging, successful comparison with standard nonparametric regression meth-

ods such as kernel smoothing, wavelet regression, and neural network models, would strengthen

my conclusions, and I hope to perform additional comparisons. Based on the current results, for

datasets in which a high degree of inhomogeneity is expected, use of a nonstationary GP model

may be advantageous, such as in two- and three-dimensional geophysical datasets. However, in
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many regression settings, the inhomogeneity may not be drastic and the spline methods (which

are nonstationary in nature) and stationary GP model may perform well, with the advantage of

being faster computationally and having less complicated parameterizations. The GP model gives

smooth function realizations and allows one to model the degree of differentiability of the func-

tion, as well as allowing one to place a prior on the degree of flexibility of the function using the

trace of the smoothing matrix. In the former aspects, these features of the model are advantageous

relative to some of the spline-based models, which must deal with the difficulty of generalizing one-

dimensional spline basis functions to higher dimensions. The GP model moves smoothly between

functions with varying degrees of flexibility, based on the sizes of the kernels in the nonstationary

case and the correlation scale parameters in the stationary case. These parameters control the im-

plicit model dimension and allow one to embed a range of models in one structure without the need

for reversible jump MCMC, but this comes at the cost of slow mixing and computation. The model

structure implicitly favors smoother functions if these are consistent with the data, because of the

Occam’s razor effect. This aspect of the Bayesian modelling approach is very attractive, since it

encompasses our desire for simpler models, all else being equal. This type of prior information is

an aspect of Bayesian modelling that even diehard frequentists may find appealing, since a subjec-

tive preference for simpler models is widespread and is usually taken into account implicitly in the

choice of likelihood.

I also use the nonstationary correlation function to model correlation in the residual struc-

ture of a spatial model designed to jointly assess trends in time of climatological data at multiple

spatial locations. The nonstationary model better accounts for the residual covariance structure

than do a stationary model and a wavelet-based model. However, probably because the data are

pre-smoothed by a deterministic climatological model, the nonstationary model does not predict

held-out time points any better than simply using the maximum likelihood estimates. The full

Bayesian model does allow one to jointly assess trend significance and compare the results to the

frequentist False Discovery Rate (FDR) approach to multiple testing. The Bayesian model shrinks

both the point estimates and the estimated uncertainty in those estimates by borrowing strength

across space. For one index of storm activity, the Bayesian model indicates the existence of more

real trends than does the FDR approach, while for a second index, the Bayesian model indicates
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that few locations have strong trends, somewhat fewer than the FDR results. The nonstationary

GP method also allows one to perform inference at unobserved locations, unlike some methods for

smoothing the empirical correlation structure. Perhaps the most important result from the spatial

model analysis is that the comparison of covariance models indicates the difficulty in flexibly fitting

residual covariance without overfitting, as I discuss further in Section 6.3. Accounting for residual

spatial structure is important in assessing trends in spatial variables and is an area in need of more

research.

6.2 Shortcomings and Potential Improvements

Here I describe a number of drawbacks to the nonstationary Gaussian process approach to non-

parametric regression and spatial modelling.

The first obvious shortcoming of the model is computational speed. Fitting the model via

MCMC involves computing the Cholesky factor of n by n covariance matrices within every itera-

tion of the Markov chain. This is the case even in the regression model in which the function can be

integrated out of the model because of the use of GPs to model the eigenstructures of the kernels.

Ongoing work in the machine learning community on reduced rank approximations to the covari-

ance may introduce techniques for improving the speed of the models. Another possibility is to use

simpler functional forms for processes high in the model hierarchy where the full flexibility of a

GP prior may not be needed. The difficulty with GP models is that even though the implicit kernel

smoothing that is being performed is essentially local, the computations involve the full covariance

matrices and do not make use of sparsity in any sense.

The difficulties involving computational speed are compounded by the slow mixing of GP

models. The PMC method introduced here improves the mixing of the hyperparameters in general-

ized nonparametric regression models, while Langevin updates improve the mixing of the process

values. If it can be extended to work with numerically singular covariance matrices, the adaptive

reparameterization of Christensen et al. (2003), possibly in conjunction with PMC, may greatly im-

prove mixing, although I suspect that datasets with thousands of observations will still be difficult

to fit. However, neither the adaptive reparameterization nor the PMC scheme will work with the

GPs used for the kernel covariance structure. This suggests that a parameterization of the kernel
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structure that is easier to fit may be worth pursuing.

In Chapter 4, I demonstrate that the nonstationary GP model is unable to capture a sharp jump

in the regression function without undersmoothing in the neighborhood of the jump. This is inher-

ent in the smooth parameterization of the kernels used to construct the nonstationary covariance

function. One possibility that may help somewhat in capturing jumps is the use of asymmetric

kernels. This would allow a point to have high correlation with points to one side where the func-

tion is smooth and low correlation with points on the other side where the jump occurs. In higher

dimensions, this might involve asymmetry across a hyperplane; such non-Gaussian kernels would

seem to be difficult to model. Ultimately, the use of a standard kernel shape restricts the types of

functions that can be approximated by the GP model. Models that can adaptively add and delete

basis functions, such as the spline models and neural network models, may perform better in some

cases, although fitting such models and assessing convergence can be difficult, just as in the GP

case.

The eigendecomposition model for the kernel structure seems feasible in two and three dimen-

sions, but the number of parameters increases quickly with covariate dimension, even with the

simplified scheme of sharing a single correlation structure across the eigenprocesses. However,

simpler parameterizations carry the danger of not being as flexible in modelling features of the

data. It may be that there are other parameterizations that do a better job of capturing features of

the data without having too many parameters or causing mixing problems.

In addition to being faithful to the real features of the data, a regression model should also

ignore covariates that appear to be independent of the response. In some initial experimentation,

it appeared that my parameterization of the nonstationary GP model did a poor job of ignoring

unimportant covariates, in part because this requires that the relevant correlation scale parameter (in

the nonstationary model, this is the size of the kernel in the direction of the covariate) become very

large, so that the response is highly correlated in the direction of the unimportant covariate. This is

difficult to model without causing mixing problems, since as the parameter increases, the likelihood

becomes quite flat. One possibility for addressing this shortcoming would be to reparameterize the

model so that once that parameter becomes sufficiently large, one enters a discrete part of the

parameter space in which the covariate is completely ignored. Such an approach would have the



214 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

benefits of ignoring unimportant covariates, allowing one to assess which covariates are relevant,

and improving mixing by removing a troublesome part of the covariate space, but would require

moving between models of different dimension during the MCMC.

Examination of the empirical correlations in Chapter 5 suggests that the covariance structure

of the storm data is complicated; such complicated structure is likely to be present in many spatial

datasets. The basis kernel construction of the nonstationary covariance seems to capture only a por-

tion of the local non-negative nonstationary structure apparent in the empirical correlations. This

may be because the apparent structure is noise that the nonstationary model is correctly ignoring.

However, it seems plausible that there is structure present that the model is unable to capture for

some reason. There are structural reasons that the nonstationary model may not be able to capture

the true underlying correlation patterns, including its inability, as parameterized here, to account

for the long-distance and negative correlations, and the constraints on the correlation structure in-

duced by using the particular kernel form of simple Gaussian kernels. Application of the model

in this thesis requires the assumption that these limitations have little effect on the resulting pos-

terior distribution. While this may be reasonable in many applications, methods for dealing with

complicated nonstationarity would be desirable.

However, flexibly modelling covariance structure appears to be a difficult task, much more

difficult than modelling mean structure. Wikle et al. (1998) build hierarchical models in which

the modelling focuses on the mean structure at each stage in the hierarchy in an attempt to avoid

joint covariance modelling for a large number of locations. The difficulties in joint covariance

modelling are apparent in the model comparison results here. The wavelet model that closely fol-

lows the empirical correlation drastically overfits, with very poor generalizability. The smoothed

wavelet model does a poor job of predicting test data, both in terms of point predictions and covari-

ance structure, presumably because it is fit without reference to the likelihood or rigorous fitting

criteria. This poor predictive ability occurs even though the speed at which the correlations in the

wavelet model decay appears to more closely mirror the empirical correlations than does the speed

at which the correlations decay in the nonstationary model. While the kernel-based nonstationary

model has its problems, as discussed above, the stationary model suffers in comparison. In the

stationary model, many of the residual variance estimates are much larger than the ML estimates.
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The variances seem to be accommodating the inability of the stationary model to fit the correlation

structure. One difficulty that may play an important role in these results is that when modelling

many locations simultaneously, the response at some locations can be nearly a linear combination

of the response at other locations. When this constraint is part of a covariance structure and is vio-

lated, the fit can be very poor, even if the covariances look reasonable to the eye and on an element

by element basis. It is possible that the quicker decay with distance in the correlations in the GP

models relative to the wavelet models serves to minimize the inclusion of such linear combinations

in the covariance matrix, at the cost of modelling other features of the covariance structure less

closely. A possible alternative to the methods used here is to employ the wavelet approach with

a specific criteria for fitting, such as making use of the likelihood and performing the threshold-

ing in a Bayesian context. This might produce a flexible covariance model that does a better job

of prediction and gets around the difficulty in choosing the thresholding in the current approach,

although it would seemingly obviate many of the computational advantages of the method.

6.3 Future Work

In addition to the ideas mentioned in the previous section, there are some general areas of potential

future work involving GP models that may be fruitful. My discussion here focuses first on general-

izing the Gaussian process approach in two ways and then comments on including nonlinear time

structure in the spatial model.

Previous approaches to modeling non-normal data using Gaussian processes have generally

assumed independence of the observations conditional on a Gaussian process prior for a function

determining location (Diggle et al. 1998). In many spatial datasets with replicated data, including

the discrete-valued storm count index of Paciorek et al. (2002), residual correlation suggests this

assumption of independence is violated. Here I suggest a generalized Gaussian process distribution

for non-normal data with a single observation per location. To describe the distribution of the data, I

show how to generate a single sample at each of n covariate values. Let Z(·) be a Gaussian process

with covariance function C(·, ·). For each covariate, xi, let p(xi) = Φ(Z(xi)), the standard

normal CDF transformation of the Gaussian process at each covariate; p(·) might be called the

quantile process. Next let Hµ(·) be an appropriate parametric distribution function indexed by a
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mean/location process, µ(·), which could be a function of additional covariates or have a Gaussian

process prior itself. For count data, one would likely chooseH to be Poisson, while for binary data,

it would be Bernoulli. Then the data are generated such that Yi = H−1
µ(xi)

(p(xi)), i.e. the p(xi)

quantile of Hµ(xi). If the variance terms in the covariance function of Z(·) are equal to one, then

the marginal distribution of Z(·) at each covariate is standard normal and therefore p(·) is U(0, 1),

which means that Yi ∼ Hµ(xi). If the variance at a covariate is less (greater) than one, then the

distribution of the observation is under(over)-dispersed with median equal to that of Hµ(xi). This

approach mimics the inherent separation of mean and covariance in a Gaussian distribution by

modelling the mean/location separately from the correlation structure.

The storm indices of Paciorek et al. (2002) are closely related to each other, measuring different

aspects of the same phenomenon, yet I have modelled them independently, in part because I do not

have a reasonable model for the joint distribution of the indices as a function of spatial location.

To my knowledge little work has been done to define models for regression problems involving

multiple responses. As one approach to defining a covariance structure for two responses, consider

the kernel convolution of Higdon et al. (1999), but introduce a cross-covariance matrix process,

C ′
a,b(·), that relates the responses, a and b, at any location. Now if we have two separate kernel

matrix processes, one for each response, we can do the convolution,

Ca,b(x, y) =

∫

u
Ka

x(u)Kb
y(u)C

′
a,b(u)du,

to produce the covariance between the two responses at any pair of locations (x, y). The param-

eterizations for smoothly spatially-varying covariance matrices in Chapter 3 allow one to model

the kernel matrix processes as before, as well as the newly-introduced cross-covariance matrix

processes. Note that the covariance between the responses at the same location, Ca,b(x, x) is not

determined solely by the cross-covariance at x; this makes the underlying cross-covariance ma-

trices, C ′
a,b(·), somewhat difficult to interpret. In principle, this approach extends simply to more

than two response variables. Other parameterizations may also be useful.

A final area for future research, which I discuss in more detail in Section 5.8.2, involves mod-

elling nonlinear trends at multiple locations while accounting for spatial structure. The goal is to

be able to understand the broad-scale time trends while allowing for nonlinearities that are likely to

be present. Even if a reasonable temporal model can be constructed and fit, presenting the results
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in an easily accessible manner will be a challenge because one is working with high-dimensional

quantities in addition to the two-dimensional covariate space. Of course as the temporal modelling

becomes more complicated and additional parameters are introduced, accounting for spatial struc-

ture also becomes more of a challenge, and I have found that doing this even in the linear trend

case is difficult.
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