
Appendices

A Spatial Model Prior Distributions and Starting Values

A.1 Prior distributions

I chose prior distributions to be diffuse but proper, based on the mean values of temperature vari-

ance and Eady growth over 1949-1999 for the Northern hemisphere, 20◦ − 70◦ N, using Paciorek

et al. (2002, Fig. 1). These climatological mean fields gave me a sense for the reasonable range of

values for the parameters. In particular, for temperature variance, I take

µα ∼ N(1.2, 0.72)

σ2
α ∼ IG(0.1, 0.1)

µβ ∼ N(0, 0.012)

σ2
β ∼ IG(0.1, 1 × 10−7)

µη ∼ N(−4.0, 3.02)

σ2
η ∼ IG(0.1, 0.1)

log κφ ∼ N(−5.4, 1.22)

log δ ∼ U(−23.0, 2.3)

νY ∼ U(0.5, 15.0),

where κφ indicates that I use the same prior for φ ∈ {α, β, η}. For the inverse gamma distributions,

these are parameterized such that the mean is β
α−1 . For the stationary model, I take log κY ∼

N(−5.4, 1.22). For the nonstationary model, k = 1, . . . , 9, I take log λk ∼ U(−5.6, 7.8) for each

of the two eigenvalues in the kth basis kernel matrix. I take the kth basis kernel matrix Givens
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angle, γk ∼ U(0, π). Finally, I take the weight decay parameter, log κY ∼ U(−2.3, 1.6). The

priors for parameters that affect various correlation scales are informed by the fact that I do not

want the scale less than the smallest distance between grid points or much larger than the largest

distance between grid points.

For Eady growth rate, I use the same parameters, with the following exceptions:

µα ∼ N(0.5, 0.52)

σ2
α ∼ IG(0.1, 0.001)

µβ ∼ N(0.0, 0.0052)

σ2
β ∼ IG(0.1, 1 × 10−8)

µη ∼ N(−7.0, 6.02).

For the wavelet models, RY is fixed, so I only have priors for the remaining parameters, which I

take to be the same as for the kernel nonstationary model.

A.2 Starting values

For starting values for the hyperparameters of the α(·), β(·) and log η(·)2 processes, I calculated

approximate maximum likelihood estimates (MLEs) based on α̂, β̂, and η̂2, namely the MLEs for

the process values based on assuming independent locations, and used these approximate MLEs

for the hyperparameters to come up with reasonable starting values. For temperature variance I

use µα = 1.2, log σα = −1.2, log κα = −1.3, µβ = 0.0, log σβ = −6.9, log κβ = −1.3,

µη = −4.0, log ση = 0.0, log κη = −1.3, log δ = −9.2, and νY = 4.0. For the stationary

model, I use log κY = −2.2 and for the nonstationary model, I take log κY = −1.2 and started the

basis kernel matrix eigenvalues at 1.0 and the Givens angles at π
2 . I construct the process values,

φ = µφ + σφLφωφ, using ωφ ∼ N(0, I).

For the Eady growth models, I used the same initial values, with the following exceptions. I

took µα = 0.72, log σα = −1.8, log κα = −1.1, µβ = 0.00012, log σβ = −6.6, log κβ = −1.3,

µη = −5.2, log ση = −0.7, and log κη = −1.5. For the stationary model, I used log κY = −2.38.

For the wavelet models, I again used the same values, except for the parameters involved in

RY , which are not used.
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B Notation

I have attempted to be consistent in my notation, both in my use of alphabets and cases, as well

as my use of individual letters and symbols. However, in a work as large as this, I have needed in

some situations to use the same symbol in different contexts, and there are also undoubtedly places

where I have not been entirely consistent.

In general, I have indicated functions with both lower and upper case Arabic letters, matrices

with upper case Arabic and Greek letters, vectors with bold Arabic and Greek letters, and parame-

ters with lower-case Greek letters. For indices, I have used lower case Arabic letters.

For random variables that are parameters, I have been lax and used lower case Greek letters to

indicate the random variable itself and realizations of the random variable.

In various places in the thesis, I need a vector-valued mean for a vector-valued random variable;

as necessary I take µ = µ1.

Next I list the notation and meanings, broadly grouped.

B.1 Parameters, stochastic processes, matrices, data, and covariates

f(·),f , fi, f(xi): a regression function/process, a vector of values of the function evaluated at a

finite set of covariates, the value of the function at the ith covariate value, the value of the

function at xi

φ(·),φ, φi, φ(xi): a stochastic process, a vector of values of the process evaluated at a finite set of

covariates, the value of the process at the ith covariate value, the value of the process at xi

Z(·), Z(xi): a stochastic process, the value of the process at xi

α(·), β(·), η(·)2 : intercept, slope, and residual variance processes in the spatial model

η2: error (noise) variance in the regression model

Y ,y: vector of data values as a random variable, as a realization

xi,xj : two different covariate values, xi ∈ <P

Σi : positive definite kernel matrix
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R : correlation matrix

C : covariance matrix

Γ: eigenvector matrix

Λ: eigenvalue matrix

Q: quadratic form in nonstationary correlation function

τ : Euclidean distance

κ : correlation scale parameter, in units of distance

ν : smoothness parameter in Matérn correlation function

µ : mean of a stochastic process

σ2 : variance of a stochastic process

ρ : angle or angular distance

θ,θ : a parameter or vector of parameters

ω : a vector of values with a standard normal prior or drawn from a standard normal, or white noise

values in general

ψ,ψ : value(s) used in generating an MCMC proposal

v : proposal standard deviation in an MCMC

ε : tolerance in numerical calculations

u : spatial location

S, s : scale parameter

W,w : spectral random variable

λ : eigenvalue

γ : parameter used in constructing eigenvectors

c: a constant
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B.2 Indices

i : indexes training set values (1, . . . , n)

j : indexes test set values (1, . . . ,m)

k : indexes MCMC draws or number of components in a model (1,. . . ,K)

m : indexes derivatives (1, . . . ,M )

p : indexes dimension of the covariate space (1, . . . , P )

t : indexes time in the spatial model (1, . . . , T )

xi,xj : two different covariate values, xi ∈ <P

f1,f2 : training set values of f , test set values of f

B.3 Symbols, superscripts, and subscripts

f (m) : the mth derivative of the function, f

f(k): kth MCMC draw

φ̂: maximum likelihood estimate

f̌ : the true value of a parameter

f̃ : posterior mean

f̃ |µ: conditional posterior mean

B.4 Functions

R(·), R(·, ·) : stationary correlation function, nonstationary correlation function

C(·), C(·, ·) : stationary covariance function, nonstationary covariance function

g(·): used to indicate functions in various contexts

h(·), H(·): density function, distribution function
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