Stat 135

Stratified Sampling

Stratum	Stratum ID	Unit ID	value
Hennepin	1	1	2
Hennepin	1	2	2
Hennepin	1	3	4
Hennepin	1	4	4
Ramsey	2	1	4
Ramsey	2	2	8

- N = population size.
- $\mu =$ population average.
- $\sigma^2 =$ population variance.
- n = 4 sample size.

• $M =$	number of strata		
• $N_1 =$	units in stratum 1		

- $N_2 =$ units in stratum 2
- $\mu_1 =$ stratum 1 average.
- $\mu_2 =$ stratum 2 average.
- $\sigma_1^2 =$ stratum 1 variance.
- $\sigma_2^2 =$ stratum 2 variance.
- $n_1 = 3$ stratum 1 sample size.
- $n_2 = 1$ stratum 2 sample size.

Probability Model

Take a simple random sample from each stratum. Take the strata samples independently of each other.

- $x_{i,j}$, i = 1, ..., M, $j = 1, ..., N_i$. Each unit in the population has a value, we use double subscripts to denote the unit, $x_{1,1}$ is the value for the first unit in the first stratum, $x_{2,1}$ is the value for the first unit in the second stratum, etc.
- $I_{i,j}$ = This is the index of the *j*th unit sampled from the *i*th stratum, $i = 1, \ldots$ and $j = 1, \ldots$.
- $\bar{x}_1 = \text{sample average from stratum 1.}$
- \bar{x}_2 = sample average from stratum 2.
- $E\bar{x}_1$ = expected value of sample average from stratum 1.
- $E\bar{x}_2$ = expected value of sample average from stratum 2.
- $\hat{\mu}$ = estimate of the population average.
- $E\hat{\mu} =$ expected value of estimator for population average.
- $SE\bar{x}_1 =$ standard error of sample average from stratum 1.
- $E\bar{x}_2 = \text{standard error of sample average from stratum } 2$.
- $SE\hat{\mu} = \text{standard error of estimator for population average.}$