One-way Analysis of Variance

We consider a simple example that is a study of the use of a semiautomated method for measuring the amount of chlorpheniramine mealeate in tablets (Rice). We start by comparing measurements from two labs:

Lab 1 4.13, 4.07, 4.04, 4.07, 4.05, 4.04, 4.02, 4.06, 4.1, 4.04
Lab 2 3.86, 3.85, 4.08, 4.11, 4.08, 4.01, 4.02, 4.04, 3.97, 3.95
To study the consistency between labs of the measurement process, we could examine several statistics.

Boxplots

A visual comparison could be made with box plots. For the first lab, the quartiles are: 4.04, 4.055, and 4.07. For the second lab, the quartiles are: $3.955,4.015,4.07$. Make side-by-side boxplots for these two labs.

Two-sample test

A two-sample test of the hypothesis that these labs have the same mean would be conducted as follows:

Lab1: mean $=4.062$, sd $=0.03$
Lab2: mean $=3.997, \mathrm{sd}=0.09$

If the SDs are assumed to be different, then we would use the following test statistic:

$$
\frac{4.062-3.997}{\sqrt{0.03^{2} / 10+0.09^{2} / 10}}=2.17
$$

The p-value for a t-distribution with 9 degrees of freedom (two-sided) is 0.06 . (Based on the assumption that the observations follow a normal distribution).

If the SDs are assumed to be the same then we would compute a pooled estimate of the SD: 0.067

$$
\frac{4.062-3.997}{0.067 \sqrt{1 / 10+1 / 10}}=2.17
$$

The p-value for a t-distribution with 18 degrees of freedom (two-sided) is 0.04 .

Multiple comparisons

We consider the case where we have 7 labs.

Notation

$Y_{i, j}=j$ th measurement taken at the i th lab. Here $j=1, \ldots, n_{i}$, and $i=1, \ldots, I$.
$\bar{Y}_{i}=$ the mean of the n_{i} measurements taken at the i th lab.

Boxplots

We can still make boxplots and compare them side-by-side.

Pairs-wise comparisons

We can still compare two means at a time. There are 21 pairs to compare.
The statistic for the i_{1}, i_{2} comparison would be:

$$
\frac{\bar{Y}_{i_{1}}-\bar{Y}_{i_{2}}}{s_{p} \sqrt{1 / 10+1 / 10}}
$$

where $s_{p}^{2}=\sum_{i}\left(n_{i}-1\right) s_{i}^{2} /\left(\sum_{i} n_{i}-I\right)$. We would then use a t-distribution with $\sum_{i} n_{i}-I$ degrees of freedom as our test statistic.

To compensate for making 21 tests at once, our α-level would be $0.05 / 21$.

