METHOD OF MOMENTS

A simple three step procedure. Let's cover a few examples.

Example Y_1, \ldots, Y_n are iid $U(0, \theta)$

- 1. Moment: $E(Y_1) =$
- 2. Solve for $\theta =$
- 3. Substitute: $\hat{\theta} =$

Example Z_1, \ldots, Z_n are iid $N(\mu, \sigma^2)$

- 1. Moment: $E(Z_1) =$
- 2. Solve for $\mu =$
- 3. Substitute: $\hat{\mu} =$

Example U_1, \ldots, U_n are iid $Gamma(2, \lambda)$

- 1. Moment: $E(U_1) =$
- 2. Solve for $\lambda =$
- 3. Substitute: $\hat{\lambda} =$

Example X_1, \ldots, X_n are iid $Gamma(\alpha, \lambda)$

1. 2 Moments: $E(X_1) =$

$$E(X_1^2) =$$

2. Solve for $\alpha =$ and

 $\lambda =$

3. Substitute: $\hat{\alpha} =$

```
\hat{\lambda} =
```

Alternative MOM for the case where X_1, \ldots, X_n are iid $Poisson(\lambda)$

- 1. 2^{nd} Moment: $E(X_1^2) =$
- 2. Solve for $\lambda =$
- 3. Substitute: $\hat{\lambda} =$