
Chapter 1

Introduction to XML

In this chapter we explore a variety of different ways in which we as scientists
can deploy XML, the eXtensible Markup Language. We start by considering
its use as a way to store structured information and exchange it between
different applications, either on the same machine or over the network. We
introduce facilities in the S language for reading and writing XML quite
easily and allowing people to create their own languages or dialects for stor-
ing and exchanging information. We also consider serialization of objects
within different systems, e.g. S, SAS, Omegahat, Matlab in a common for-
mat which allows them to be easily shared by others. And finally, we look at
how we can use the XML facilities in R to implement SOAP (Simple Object
Access Protocol) clients and servers.

Statisticians often need to use different software tools in their data anal-
ysis, and by far and away the most common solution to sharing data between
applications has been to exchange data via ASCII or text files. One applica-
tion will write out its view of some data; the other application will then read
this file and construct its internal version of this dataset and go about its
business. If we want to make the results of computations in this application
available to the original application or any other, we write the results to
another ASCII file and they are there to be picked up by any other applica-
tion. We don’t reserve this style of communication for dynamic interaction
between two applications running simultaneously. We exchange datasets in
the same way, using agreed upon formats such as white-space delimited or
comma-separated data files. Since most of the datasets over the years are
rectangular tables or arrays, the ASCII format is relatively natural. Each
line corresponds to a record, and each element within a line corresponds to
a variable and is the value for that variable.

1

2 CHAPTER 1. INTRODUCTION TO XML

The benefits of using tabular ASCII files are easy to see.

• We can edit them in simple text editors.

• There is a natural connection between the visual layout in the file and
the way we think about the dataset when computing on it.

• It is quite simple to both write and read data in this format.

But what happens as data become more complex? How do we represent
missing values in our data? A common approach is to choose a number that
is not in any of our datasets and to have our software treat such a value in
a special way. And so we see datasets with numbers like ‘999’. Of course,
the software cannot be used to read datasets that actually have ‘999’ as an
actual value since it will mark these as missing.

Another problem arises if we have repeated measurements within records
and there are a different number of measurements for each record. The
data are no longer rectangular and we will have to modify our software to
be able to read and write these files. Not only that, how will we tell the
software that there are 6 consecutive values for this record that are to be
collected together into a single array, but for the next record there are only
3? In other words, how do we separate the different values within a record
and associate them with a given variable. In the simple table version, each
variable in each record had only a single value. If we have an arbitrary
number of values per variable, a simple way to indicate this in the file is to
put in another variable that tells the software how many values to expect.
Suddenly, the simplicity of the tabular ASCII file is disappearing and the
software in all the different applications has to be changed.

Repeated measurements are a simple example of a general problem. Even
within the context of a rectangular array, what if some of the entries are
objects rather than simple values? The least we should be able to do with
good data analysis software is to write out a dataset and read it back in
without losing information. This is often called round-tripping. If we want
to be able to read these objects, just as for the repeated measurements, we
have to be able to identify that the next k values go to make up the object.
So, again, we are seeing that we have to add meta-information to the dataset
so that our software can be certain to read it back unambiguously.

In the past, people have distributed a dataset as a collection of files. One
file contains the actual values and the others contain information such as the
variable names, descriptions of the variables, information about the origins
of the data and how they were collected, and so on. These additional files are

3

sometimes called the codebook. XGobi, an interactive graphical visualization
system, used a format that consisted of several files to represent the data
(records and variables), variable names, the color of the records, the glyph
for the record, and so on. One of the major problems with these multiple
file approaches is that it is very easy to edit one file and forget to update
the others. For example, if we remove a record in the dataset and not in the
color specification, the two files no longer match. At best, we would get an
error message about this. Alternatively, we just get the wrong values for the
different records. Essentially, having the data in different files reduces the
advantage of being able to edit it in a natural fashion. The visual similarity
of the data and the conceptual model is no longer there.

Not only does the multiple-file approach make editing harder, but it also
makes it harder to distribute. Nowadays we use HTTP or FTP from within
applications to download files. There syntax for specifying a collection of
files is less natural than giving a single URL. And this becomes an issue as
we combine datasets together.

We have focussed on rectangular data arrays since these are probably
the most common form of data that statisticians experience. Many of the
same problems arise with other formats, and indeed can be worse. A popular
format for name-value pairs is the properties file format given either as

name: value

or

name=value

With this format, one has to be careful about how white space at the be-
ginning and end of the value is handled. And long values that extend onto
second and third lines can be tricky. Obviously this format is limited to
specific types of data. Like many other formats, it is hard to extend it to
include different types of information. Again, if we want to do something as
easy as combine multiple sets of name-value pairs, there is no easy way to
separate the sets within the file.

There is a theme inherent in this list of problems associated with rep-
resenting ASCII data in simple files. The basic impediment is that there
is no way to add meta-information to the data. Ideally, we would like to
be able to include information such as what the missing value identifier is;
identify objects as a collection of (potentially named) values; include multi-
ple separate but related datasets in a single file. We would like the software
to be able to read the meta-information if it is there, and yet not require it

4 CHAPTER 1. INTRODUCTION TO XML

to be there and ignore it if the software doesn’t understand it. The ability
to add meta-information to representations of data would make us more ex-
pressive. We could differentiate between a real number that has an integer
value and an integer, i.e. the different between 1 and 1.0 that often gets lost
when software reads ASCII data. We could refer to one piece of the data
in another part of the data, i.e. cross-reference the elements, to indicate
that if one piece is updated, the other pieces should reflect this. Without
meta-information or markup for ASCII data, we are quite limited in what
we can express.

The general markup language, XML – the eXtensible Markup Language,
allows us to mark up ASCII data with meta-information. Just being able to
add meta-information via markup allows us to solve several of the problems
mentioned above. But we have two other issues to face when looking for a
markup mechanism. Firstly, if we are the only people using it, aren’t we
going to restrict our ability to exchange data with other communities? Since
this exchange is becoming increasingly important, that would be a very bad
thing. But again, we are fortunate because XML is quickly emerging as
an extremely popular and widespread general data format. It is used to
represent genetic information, geographical maps, output from databases,
protocol for remote procedure calls (RPC), authoring technical articles and
books, and so on. Word processors, spreadsheets, and relational databases
now provide options to save their contents as XML.

XML’s popularity answers the second question that we should ask when
considering using XML to represent data: What is the cost of switching to
XML? A new format requires us to rewrite software. This involves retesting
our software, etc. which is a very time consuming task. So if we don’t get
any tools to help us write this new software, the cost of switching to XML
may well be excessive. And again, the good news is that since all these
other communities are actively using XML, they are also providing extensive
collections of tools for working with XML. And we can incorporate those
into our environments and get the benefits of XML relatively transparently.

So what are the drawbacks to XML? It does solve all of the problems we
have identified in the previous paragraphs. But, like all pieces of software,
it is not a silver bullet that solves all problems and introduces no new ones.
Rather it gives us more options (since we can always use non-marked up
data, even as parts within XML documents), and is a step in our evolution.
It raises higher-level problems which we will then have to try to solve while
people use XML. One of the strengths of XML is that it is structured to make
it easy for a computer to read. However, it leads to very verbose content
and it is quite hard for us humans to read. And that means it is hard to

1.1. WHAT IS XML? 5

edit directly. And so we lose the simplicity afforded by raw ASCII data,
which means we need tools that allow us to visualize and manipulate XML
content to create inputs. Or in other words, we need software that reads
and writes the XML and insulates us from the details. As we will see, this
is not a simple problem in general because XML is itself extremely general.
However, each community will gradually develop tools for viewing its own
types of data and hopefully these will be shared when possible. Even now,
some general tools for editing XML are emerging and can be customized to
our needs.

Now that we have motivated the value of XML, we will go into a little
more detail. We will first give a more precise description of XML and its
parts. Next, we will discuss the XML package for R and S-Plus which allow
us to both read and write XML directly from within the S language. We will
illustrate this package by looking at some real examples of XML for reading
and writing data from other applications. Finally we will also discuss some
advanced uses of XML for communicating with other applications via SOAP
(Simple Object Access Protocol).

1.1 What is XML?

The eXtensible Markup Language provides a standard for the semantic man-
agement of data. It is a formal meta-language facility for defining a markup
language. The basic unit in an XML file is an entity or chunk that contains
content and markup. The content is the actual information such as 6. The
markup describes the content, in this case the markup is the name CYL
for the cylinders variable in the dataset (see the example in Section 0.2.1).
More generally, markup consists of tags, attributes, comments, and process-
ing instructions for the content. The tag marks the beginning and end of a
piece of content. That is, content must be surrounded by a start tag and a
corresponding end tag.

A tag has a name and possibly other pieces of information describing the
element’s content. In a start tag, the name and any additional information
are surrounded by the < and > characters. Similarly, an end tag consists of
the tag name (it must match the tag name in the start tag) surrounded by
< / and >. For example, the following XML entity

<CYL> 6 </CYL>

is a CYL element with content 6. It is possible to have empty tags, i.e. tags
with no content,

6 CHAPTER 1. INTRODUCTION TO XML

<CYL></CYL>

In this case the start and end tags can be combined into one tag as follows,
<CYL/>.

Attributes provide additional information about the content. For exam-
ple, the dim tag below has a size attribute which has a value of 2. (See
Section 0.2.2 for the related example).

<dim size="2">

Attributes are specified via name-value pairs. The syntax rules are provided
below.

1.1.1 XML syntax

For XML to be well-formed it must obey the following syntax rules.

• XML is case sensitive so start and end tag names must match exactly.
For example, the following start and end tags have a mismatch in case
and so are not well-formed,

<CARS>
</Cars>

The end-tag name needs to have all capital letters, i.e. </CARS>, in
order for it to match the start tag.

• No spaces are allowed between the < and the tag name.

• Tag names must begin with an alpha character, and contain only al-
phanumeric characters.

• An element must have an open and closing tag unless it is empty.

• An empty element that does not have a closing tag must be of the
form < . . . / >. For example, <nan/>.

• Tags must nest properly. That is, when one element contains another
element then the start and end tags of the inner element must be
between the start and end tags of the parent element. For example,

<CARS>
<CYL> 6 </CYL>

</CARS>

1.1. WHAT IS XML? 7

Here the CYL tag is nested within the CARS tag. Note the use of
indentation makes it easier to see the nesting.

• All attribute values must appear in quotes in a name = "value" for-
mat.

<dim size="2"/>

This example shows an empty tag with a size attribute of “2”.

• Isolated markup characters are not allowed in text. However, they
may be specified via entity references. For example, the < is specified
by the entity reference < and the > symbol is >.

In addition to element tags, XML has markup for comments, which is
information not shown to the user; processing instructions, which is simi-
lar to code meant for the processor; and character data that is not to be
processed but simply passed straight through to the user. Comments must
appear between <!−− and −− >. For example,

<!-- This is a comment which is so long
that it apears on three lines of the
document before it ends with two - followed by >. -->

It is possible to include in a document character data that is not pro-
cessed and so the > is ignored. The character data must appear between
<![CDATA[and]]>.

<![CDATA[This is character data that can have any special
character in it such as < or > or & and not have to worry
about it being interpreted as a special character by the
processor.]]>

Finally, processing instructions must appear between <? and ?>. For ex-
ample, an XML document must start with the processing instruction that
identifies it as an xml document and provides the XML version number as
an attribute,

<?xml version = "1.0" ?>

8 CHAPTER 1. INTRODUCTION TO XML

1.1.2 Valid XML

The rules provided in the previous section are just syntax rules for insuring
that an XML document is well-formed. But we typically want to have
documents that are more than well-formed; we want to include application
specific structure in the markup. For example, with geographic data we may
want tags for locations, x and y coordinates, city names, etc. Tags for these
entities are specified through a set of Document Type Definitions (DTD for
short) or schema. With a DTD we can: provide the name of a valid element;
limit the content of an element to character data, specific other elements, or
to be empty; and specify the attributes that are required or allowed in the
tag.

Well-formed XML obeys XML syntax rules described in the previous
section, but valid XML, in addition to being well-formed, obeys a specified
DTD. The DTD may appear within the document itself or be provided via
reference,

<!DOCTYPE dataset SYSTEM "../DataSetByRecord.dtd">

Here we specify a DTD to use via a document type declaration. The dataset
gives the root element name that the DTD will be applied to in the verifi-
cation process.

At times we may want to use more than one DTD. We can do this
through name spaces. That is, each DTD is given a name and the DTD
name is prepended to the appropriate tag names and attribute names. For
example, the object element below lists three name spaces, r, c, and bioc,
and the URL’s where their respective DTDs can be found.

<object xmlns:r="http://www.r-project.org"
xmlns:c="http://www.c.org"
xmlns:bioc="http://www.bioconductor.org"
type="R-pop-environment" hidden="true">

We specify which name space a tag uses within the object element as fol-
lows:

<r:code>
x <- rep(23, 2)
</r:code>
<c:code>
x+
</c:code>

1.1. WHAT IS XML? 9

A parser has the job of reading the XML, checking it for errors, and
passing it on to the intended application. If no DTD or schema is provided,
the parser simply checks that the XML is well-formed. If a DTD is provided
then the parser also determines whether the XML is valid, i.e. that the tags,
attributes, and content meet the specifications found in the DTD, before
passing it on to the application. Models for parsing XML are described in
greater detail in sections ??.

1.1.3 XHTML

Some readers will have thought of HTML when we mentioned markup and
meta-information. After all, what is the difference between HTML and
XML? We can add meta information to HTML documents using the META
tag, but this is not exactly what we mean by meta-information. A lit-
tle thought and familiarity with HTML will quickly bring us to problems.
HTML has a fixed set of markup elements, e.g. H1, H2, a, img, B, and so
on. It doesn’t even have a NUMBER or REAL markup for representing real
numbers.

Hopefully it is evident at this point that an important role of XML is
to separate out information (content) from the structure and format. The
markup provides the structure of the content, and the the format determines
how the content is to be rendered for viewing by the user. As a simple
example, an array of numbers that corresponds to the miles per gallon of
various makes of cars may be provided via XML as follows:

<array name="MPG" size="7" type="numeric">
<e>21.0</e> <e>21.0</e> <e>22.8</e> <e>21.4</e>
<e>18.7</e> <e>18.1</e> <e>14.3</e>

</array>

The content consists of the set of values 21.0, 21.0, 22.8, 21.4, 18.7, 18.1,
and 14.3. The structure provided via the markup tells us that the content
forms an array of numbers of length 7, and the array is named MPG.

HTML does not make the same division between content, structure,
and format. Many tags describe how to format content, but provide no
information about the type of content. For example, the HTML tags B for
bold face, br for line break, and hr for horizontal rule are all instructions
for the visual rendering of content.

HTML has been extended to XHTML by requiring all tags to be lower
case, all elements to be properly closed with end tags, and attribute values
to appear between quotes. Although these rules mean that we can require

10 CHAPTER 1. INTRODUCTION TO XML

XHTML documents to be well-formed and valid, XHTML is not up to the
job of describing complex structures such as factors, data frames, S objects,
and so on. Clearly XHTML is lacking in this regard. With XML we can
define much richer application-specific markup.

To drive home the difference between format and content, consider the
numbers in the above example: 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, and 14.3.
They can be represented as a text list, (21.0, 21.0, 22.8, 21.4, 18.7, 18.1,
14.3), as a summary statistic: 19.6, as a stem-and-leaf plot,

14 | 3
16 |
18 | 17
20 | 004
22 | 8

or in a graphic such as a histogram. The conversion of the content into one of
these formats occurs when the XML is processed for viewing. The eXtensible
Stylesheet Language (XSL) contains instructions for formatting the XML.
(XSL is itself an XML document that provides a template describing how to
view the document.) The XML document together with the XSL stylesheet
are processed by an XSLT processor to create the data display. The content
remains the same as shown in the XML document, but with a processor
the format is changed for the data view. For further references on XSLT
processors XML display see ...

1.2 XML examples

Data exchange between different software tools typically poses a problem
because different applications use their own, proprietary, undocumented for-
mats for data storage. The use of a well-defined, common exchange format
can help solve this problem. We explore here two proposals for XML-based
data exchange formats. The first is supported by SAS, and the second by
R, Matlab, and Octave.

1.2.1 SAS

The SAS XML library allows you to export an XML document from a SAS
dataset and to import an XML document into a SAS dataset. The XML
document below gives an example of XML data that can be read into SAS.

<?xml version="1.0"?>

1.2. XML EXAMPLES 11

<LIBRARY>
<CARS>

<ID> Mazda RX4 </ID>
<MPG> 21.0 </MPG>
<CYL> 6 </CYL>
<HP> 110 </HP>
<AM> 1 </AM>

</CARS>
<CARS>

<ID> Datsun 710 </ID>
<MPG> 22.8 </MPG>
<CYL> 4 </CYL>
<HP> 93 </HP>
<AM> 1 </AM>

</CARS>
<CARS>

<ID> Valiant </ID>
<MPG> 18.1 </MPG>
<CYL> 6 </CYL>
<HP> 105 </HP>
<AM> 0 </AM>

</CARS>
</LIBRARY>

The root element in the XML document is denoted by the LIBRARY
tag. The tag name for the second-level element represents the SAS dataset
name, in this case CARS. Each CARS element translates into a record in
the SAS dataset. We see from the figure that this dataset has 3 records, one
for each of the 3 occurrences of the CARS elements.

The variables in the dataset correspond to the elements nested within
the CARS element. The tag names for these elements translate into the
variable names. That is, ID, MPG, HP, and AM, are the names for the
variables pertaining to the identification, miles per gallon, horse power, and
automatic/manual transmission information for the cars. The content of
these elements gives us the value for the variables in that record. The first
record has the value “Mazda RX4” for ID, 21.0 for MPG, etc., the second
record has the value “Datsun 710” for ID, 22.8 for MPG, etc.

Note that this input format handles only rectangular datasets and that
type information, units, and missing values are not specified. The XML
data are read in to SAS and shown below

12 CHAPTER 1. INTRODUCTION TO XML

libname test xml ’C:\My Documents\test\cars.xml’;
proc print data = test.cars;
run;

ID MPG CYL HP AM

Mazda RX4 21.0 6 110 1
Datsun 710 22.8 4 93 1
Valiant 18.1 6 105 0

SAS 9.1.3 provides alternatives via XMLMap to include type information
for variables, handle ragged arrays, and to specify a translation of other XML
formats into the one provided here (see fttp://support.sas.com).

1.2.2 StatDataML

Meyer, Leisch, Hothorn, and Hornik, propose a data exchange format for
statistical data, called StatDataML. The R package StatDataML provides
an implementation of this data exchange format.

An example of XML that obeys the StatDataML requirements for im-
porting data from XML into R, Matlab, Octave appears below. The content
is the same as that shown in the example in Section 0.2.1:

ID MPG CYL HP AM
Mazda RX4 21.0 6 110 1
Datsun 710 22.8 4 93 1
Valiant 18.1 6 105 0

However, the XML document is much more verbose as it includes more
structure. For example, the variables are typed. We specify in the XML
elements type, categorical, and level that the variable AM is categorical
with the level 0 indicating automatic and level 1 manual transmission. The
StatDataML format is general enough to describe complex S objects such
as lists of arbitrary content, which means that it must be more verbose
than a data exchange format that assumes a rectangular array. The data
in this example have the simple rectangular shape, and so can be stored
in a data frame in R. The data frame is a special case of the list which
forms a rectangular shape where the columns can be arbitrary types. Here,
our columns are a mixture of character, numeric and categorical data types.
If we had relied on the inherent structure of the data frame in describing
the strucutre of the data then the XML would be made more compact by
eliminating the dimension and dim tags within each Array tag would not
be necessary.

1.2. XML EXAMPLES 13

<?xml version="1.0"?>
<!DOCTYPE StatDataML PUBLIC "StatDataML.dtd">
<StatDataML xmlns="http://www.ci.tuwein.ac.at/StatDataML">
<description>

<title> Cars </title>
<comment> A subset of the mtcars data from R </title>

</description>

<dataset>
<list>
<dimension>
<dim size = "5">
<e>ID</e> <e>MPG</e> <e>CYL</e> <e>HP</e> <e>AM</e>

</dim>
</dimension>
<listdata>
<array>

<dimension> <dim size="3"/> </dimension>
<type> <character/> </type>

<data>
<e> Mazda RX4 </e> <e> Datsun 710 </e> <e> Valiant </e>

</data>
</array>
<array>

<dimension> <dim size="3"/> </dimension>
<type> <numeric/> </type>

<data>
<e> 21.0 </e> <e> 22.8 </e> <e> 18.1 </e>

</data>
</array>
<array>

<dimension> <dim size="3"/> </dimension>
<type> <integer/> </type>

<data>
<e> 6 </e> <e> 4 </e> <e> 6 </e>

</data>
</array>
<array>

<dimension> <dim size="3"/> </dimension>
<type> <numeric/> </type>

<data>
<e> 110 </e> <e> 93 </e> <e> 105 </e>

</data>
</array>
<array>

14 CHAPTER 1. INTRODUCTION TO XML

<dimension> <dim size="3"/> </dimension>
<type>
<categorical mode="unordered">

<label code="0">Automatic</label>
<label code="1">Manual</label>

</categorical>
</type>
<data>

<e> 1 </e> <e> 1 </e> <e> 0 </e>
</data>

</array>
</listdata>

</list>
</dataset>

</StatDataML>

We provide a brief description of the elements of this StatDataML document.

• The name of the document containing the DTD is provided in the DOCU-
MENTTYPE element.

• The root element of the document is StatDataML. It contains two elements,
the description element and the dataset element.

• The description element contains information pertaining to the source of
the data.

• The dataset element contains the data along with all the markup describing
it.

• The data may be a simple array or a list. In our case, we have a list object
and so use the list element. Notice that it contains 5 array elements, one
for each column of the data frame.

• The first dimension tag provides information about the number and names
of arrays in the dataframe. We see that there are 5 columns, and their names
are provided via the e tag.

• The other dimension tags appear inside the array elements and provide
information about the length of the array.

• Information about the data type is provided in the array element via the
type entity. Notice that this tag has no content, i.e. it is empty in all cases
because the data type is provided via a numeric, character, or categorical
tag.

• Finally, the data entity provides the values of the variables. Rather than
prividing this information one record at a time, it is provided one variable at
a time. This approach is more condusive to the list data structure.

