Function Style Computations

- Interactive language for expressing statistically-oriented computations
- Mathematics
- Data cleaning and processing
- Exploratory data analysis
- Statistical methodology
- Simulation
- Graphics
- Language for creating new functionality

What is a computation?

Transformation from one or more inputs to an output.
Transition from old state to new state
Algorithm set of directions for carrying out a computation in terms of other simpler computations.

Examples

- Find the average annual rainfall at a weather station
- Crop a digital photo
- Sort the mail by sender in your mail program
- R uses both infix style computations and function style computations
- The format for calling a function to perform a computation:
functionName(argument, ..., argument)
- For example,
rnorm(10)
generates 10 random values from a standard normal distribution (i.e. Normal with mean 0 and standard deviation 1).
- Arguments can also be identified by name
rnorm(10, sd = 5)
generates 10 random values from a normal distribution with mean 0 and standard deviation 5 .

Operations

- Invoke a computation with an expression
- Pass the expression off to the computer to evaluate
- Return a value or output of the expression

Identify the inputs and output of the following expression.

$$
2+3^{2}
$$

Infix: In R we would write $2+3^{\wedge} 2$, where ^ represents exponentiation.
The + and $^{\wedge}$ are infix computations

Parsing

Break down an expression into parts, which we call tokens.
How to separate out the pieces?
-White Space: 222 vs 222

- Atomic Tokens:
$22+2$ same as $22+2$ but not the same as $22+2$
- Digits: $2 x$ vs $\mathbf{2}^{*} \mathbf{x}$
- Naming Conventions: x22 vs 22x
- Quotation Marks:
"Hi" and 'Bye' are valid character values, but "My' is not
- New Line:

What does the computer return for each of these expressions? $2+34$
2+3
4
(2 + 3
4)

- Typeset by Foiltex -

Examples

- Single Expression:

$$
\operatorname{rnorm}(10, \text { sd = 5) }
$$

- Compound Expression:
mean(rnorm(10, sd = 5))
- III-formed Expression:
rnorm(10; sd = 5)
Error: syntax error

When we evaluate a command, R prints the results to the screen as output

- How do we get to use it again, e.g. as input to other commands? $\mathrm{x}=\operatorname{rnorm}(10)$
- The above assignment statement puts the result from the command rnorm(10) into a variable named x .
- We can see the value of x via the simple expression
$\mathrm{x}=$ rnorm(10)
- This is the sames as
"Evaluate x and print the result"
i.e. provide the current ocntents of the variable x.
- In R we can also use the left arrow to assign a value to a variable:
$x<-\operatorname{rnorm}(10)$

To Do

- Write the following expression in infix notation
power(divide(10, divide(15, 3)), minus(12, power(2, 3)))
- Evaluate the following expression using the traditional order of operations.

$$
3-5+\frac{4}{6}-2 \times 3^{2}
$$

- Circle the tokens in the following expression. How many are there?

$$
c a t=(1+x 11)^{\wedge} 24
$$

- What is the difference between $e 1,1 e$, and $1 e 1$?

Variable Names

Variable Names must follow some rules:

- May not start with a digit or underscore
- May contain numbers, characters (upper and lower case), and some punctuation, period. and underscore _ are okay,
but most other other are not, e.g. commas, quotation marks, and \# are not.
- Case-sensitive, so \mathbf{x} and \mathbf{X} are different.
- Use meaningful names.
- Avoid names that have a meaning in R, e.g. function names such as $\mathbf{c}, \mathbf{t}, \mathbf{s}, . \mathrm{C}$

Variables

Variables have a name and a value.

To access the value we use the name. Variables allow us to

- Store state on the computer
- Store a value without needing to recompute it
- Write a general expression, e.g. sqrt(a^2+b^2)
- Reduce redundancy (and mistakes)
$\mathrm{n}=10$
$\mathrm{x}=\mathrm{rnorm}(\mathrm{n})$
$\operatorname{sum}(x) / n$

Managing Variables

We can manage our variables with R functions

- List all variables
objects()
- Remove one or more variables rm(x, y)
- Save variables for future use save($\mathbf{x}, \mathrm{y}, \mathrm{z}$, file = "myfile.rda")
- Restore variables
load("myfile.rda")
- Alternatively, an entire workspace may also be saved, and it will be automatically loaded when you start R up again.
¿ $q()$
Save workspace image? $[\mathrm{y} / \mathrm{n} / \mathrm{c}]$:

