
1 Accessing a Database from R

We have noted already that SQL has limited numerical and statistical fea-

tures. For example, it has no least squares fitting procedures, and to find

quantiles requires a sophisticated query. (Celko discusses the pros and cons

of more than eight different advanced queries to find a median [?].) Not

only are basic statistical functions missing from SQL, but in many cases the

numerical algorithms used in the basic aggregate functions are not imple-

mented to safeguard numerical accuracy. Also, the wide range of data types

may have drawbacks when it comes to performing arithmetic calculations

across a row, as some of the conversions from one numeric type to another

may produce unexpected truncation and rounding. For these reasons, it

may be desireable or even necessary to perform a statistical analysis in a

statistical package rather than in the database. One way to do this, is to

extract the data from the database and import it into statistical software.

The statistical software may either reside on the server-side, i.e. on

the machine which hosts the database, or it may reside on the client-side,

i.e. the user’s machine. The DBI package in R provides a uniform, client-

side interface to different database management systems, such as MySQL,

PostgreSQL, and Oracle. The basic model breaks the interface between the

client and the server into three main elements: the driver facilitates the

communication between the R session and a particular type of database

management system (e.g. MySQL); the connection encapsulates the actual

connection (with the aid of the driver) to a particular database management

system and carries out the requested queries; and the result which tracks

the status of a query, such as the number of rows that have been fetched

and whether or not the query has completed.

The DBI package provides a general interface to a database manage-

ment system. Additional packages that handle the specifics for particular

database management systems are required. For example, the RMySQL

1



package extends the DBI package to provide a MySQL driver and the de-

tailed inner workings for the generic functions to connect, disconnect, and

submit and track queries. The RMySQL package uses client-side software

provided by the database vendor to manage the connection, send queries,

and fetch results. The R code the user writes to establish a MySQL driver,

connect to a MySQL database, and request results is the same code for all

SQL-standard database managers.

We provide a simple example here of how to extract data from a MySQL

database in an R session. The first step: load a driver for a MySQL-type

database:

drv = dbDriver("MySQL")

The next step is to make a connection to the database management server

of interest. This connection stays alive for as long as you want it. For

some types of database management systems, such as MySQL, the user can

establish multiple connections: each one to a different database or different

server. Below, the user s133cs establishes a connection, called con, to the

database named BaseballDataBank on the host statdocs.berkeley.edu. Since

the database is not password protected, the user need not provide a password

to gain access to it.

con = dbConnect(drv, user="s133cs", dbname="BaseballDataBank",

host="statdocs.berkeley.edu")

Once the connection is established, queries can be sent to the database.

Some queries are sent via R functions. For example, the following call to the

dbListTables function submits a SHOW TABLES query that gets remotely

executed on the database server. It returns the names of the tables in the

BaseballDataBank database.

dbListTables(con)

2



As another example, the dbReadTable function performs simple SE-

LECT queries that mimics the R counterpart ’get.’ That is, dbReadTable

imports the Allstar table from the database into R as a data frame, using

the attribute PlayerID as the row.names for the data frame.

dbReadTable(con, "Allstar", row.names = "PlayerID")

Other RMySQL functions are dbWriteTable, dbExistsTable, and dbRe-

moveTable, which are equivalent to the R functions ’assign’, ’exists’, and

’remove’, respectively.

Other queries can be executed by supplying the SQL statement. For

example, to perform a simple aggregate query, there is no need to pull a

database table into R and apply an R function to the data frame. Instead,

we issue a select statement and retrieve the results table as a data frame.

Below is an example where we obtain the number of tuples in the Allstar

table of BaseballDataBank.

dbGetQuery(con,"SELECT COUNT(*) FROM Allstar;")

When the result table is huge, we may not want to bring it into R in

its entirety, but instead fetch the tuples in batches, possibly reducing the

batches to simple summaries before requesting the next batch. We provide

a detailed example of this approach in Section ??. Instead of dbGetQuery,

we use dbSendQuery to fetch results in batches. The DBI package provides

functions to keep track of whether the statement produces output, how many

rows were affected by the operation, how many rows have been fetched (if

statement is a query), and whether there are more rows to fetch.

In the example below, rather than using dbReadTable to pull over the

entire TCPConnections table, the dbSendQuery function is used to send

the query to the database without retrieving the results. Then, the fetch

function pulls over tuples in blocks. In this example, the first 500 tuples

are retrieved, then the next 200, after which we determine that there are

3



more results to be fetched (dbHasCompleted) and clear the results object

(dbClearResult) without bringing over any more tuples from the SQL server.

rs = dbSendQuery(con2, "SELECT * FROM TCPConnections;")

firstBatch = fetch(rs, n = 500)

secondBatch = fetch(rs, n = 200)

dbHasCompleted(rs)

dbClearResult(rs)

In addition, the n = −1 assignment for the parameter specifies that all

remaining tuples are to fetched. The fetch function converts each attribute in

the result set to the corresponding type in R. In addition, dbListResults(con)

gives a list of all currently active result set objects for the connection con, and

dbGetRowCount(rs) provides a status of the number of rows that have been

fetched in the query. When finished, we free up resources by disconnecting

and unloading the driver:

dbDisconnect(con)

dbUnloadDriver(drv)

4


