Also, matrices can have row and column names, which can be determined and/or assigned by rownames and colnames. Other functions nrow, ncol, dimnames.	Lists A vector with possible heterogeneous elements. The elements of a list can be numeric vectors, character vectors, matrices, arrays, and lists. myList = list(a = 1:10, b = "def", c(TRUE, FALSE, TRUE)) \$a [1] 1 2 3 4 5 6 7 8 9 10 \$b [1] "def" [[3]] [1] TRUE FALSE TRUE • length(myList) – there are 3 elements in the list • class(myList) – there are 3 elements in the list • class(myList) – the class is a "list" • names(myList) – are "a", "b" and the empty character "" • myList[1:2] – returns a list with two elements • myList[1] – returns a list with one element. What is length(myList[1]) ? • myList[[1]] – returns a vector with ten elements, the numbers 1, 2,, 10 What is length(myList[[1]]) ?
– Typeset by FoilT _E X – 2	– Typeset by FoilT _E X – 4
Vectors, Matrices, Arrays, Lists, and Data Frames Vector – a collection of ordered homogeneous elements.	> $yy = array(1:12, c(2,3,2))$
We can think of matrices, arrays, lists and data frames as deviations from a vector. The deviaitions are related to the two characteristics order and homogeneity.	> yy , , 1 [,1] [,2] [,3]
<pre>Matrix - a vector with two-dimensional shape information. > xx = matrix(1:6, nrow=3, ncol =2)</pre>	$ \begin{bmatrix} 1, \\ 1 \\ 2, \\ 1 \end{bmatrix} $ $ \begin{bmatrix} 1, \\ 1 \\ 2 \\ 4 \\ 6 \end{bmatrix} $
<pre>> xx = matrix(1.6, mrow-3, mcor -2) > xx [,1] [,2] [1,] 1 4 [2,] 2 5 [3,] 3 6</pre>	, , 2 [,1] [,2] [,3] [1,] 7 9 11 [2,] 8 10 12
<pre>> class(xx) [1] "matrix" > is.vector(xx) [1] FALSE > is.matrix(xx) [1] TRUE > length(xx) [1] 6 > dim(xx) [1] 3 2</pre>	<pre>> length(yy) [1] 12 > dim(yy) [1] 2 3 2 > is.matrix(yy) [1] FALSE > is.array(yy) [1] TRUE</pre>
– Typeset by FoilT _E X – 1	– Typeset by FoilT _E X – 3

	Computations involving Vectors and Lists
 names(intel) - returns the element names of the list, which are the names of each of the vectors: "Date", "Transistors", "Microns" etc. class(intel) - a "data.frame" dim(intel) - as a rectangular list, the data frame supports some matrix features: 10 7 length(intel) - the length is the number of elements in the list, NOT the combined number of elements in the vectors, i.e. it is ? class of intel["Date"] versus intel[["Date"]] - recall the [] returns an object of the same type, i.e. a list but [[]] returns the element in the list. What is the class of the speed element in intel? intel[["speed"]] [1] MHz MHz MHz MHz MHz MHz MHz MHz GHz GHz Levels: GHz MHz 	 Write code using vectorized function calls e.g. nchar(y), x[] = 0, z + w Use the apply mechanism lapply and sapply for lists apply for matrices and arrays tapply for ragged arrays as vectors With these functions we can avoid looping, and write code that is meaningful in a statistical setting, e.g. if we have a list of rainfall data where each element represents the measurements taken at a different weather station, when we think about studying the average rainfall at each station we don't think in terms of loops.
– Typeset by FoilT _E X – 6	– Typeset by FoilTi _E X – 8

Data Frames

A list with possible **heterogeneous** vector elements of the **same length**. The elements of a data frame can be numeric vectors, factor vectors, and logical vectors, but they must all be of the same length.

> intel

	Date	Transistors	Microns	Clock	speed	Data	MIPS	
8080	1974	6000	6.00	2.0	MHz	8	0.64	
8088	1979	29000	3.00	5.0	MHz	16	0.33	
80286	1982	134000	1.50	6.0	MHz	16	1.00	
80386	1985	275000	1.50	16.0	MHz	32	5.00	
80486	1989	1200000	1.00	25.0	MHz	32	20.00	
Pentium	1993	3100000	0.80	60.0	MHz	32	100.00	
PentiumII	1997	7500000	0.35	233.0	MHz	32	300.00	
PentiumIII	1999	9500000	0.25	450.0	MHz	32	510.00	
Pentium4	2000	42000000	0.18	1.5	GHz	32	1700.00	
Pentium4x	2004	125000000	0.09	3.6	GHz	32	7000.00	

Subsetting a Data Frame

Using the fact that a data frame is a list which also support some matrix features, fill in the table specifying the **class** (data.frame or integer) and the **length** and **dim** of the subset of the data frame. Note that some responses will be NULL.

Subset	class	length	dim
intel			
intel[1]			
intel[[1]]			
intel[,1]			
intel["Date"]			
intel[, "Date"]			
intel\$Date			

5

<pre>apply(aa, c(1,2), sum) for the array aa, the sum function is applied across the pages so that the row and column dimensions (i.e. dim 1 and 2) are preserved. > aa , , 1 [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 , , 2 [,1] [,2] [,3] [1,] 7 9 11 [2,] 8 10 12 > apply(aa, c(1,2), sum) [,1] [,2] [,3] [1,] 8 12 16 [2,] 10 14 18 apply(aa, 2, sum) apply(aa, c(2, 3), sum) apply(aa, c(3, 2), sum)</pre>	Applying functions to list elements The lapply and sapply both apply a specified function to each element of a list. The former returns a list object and the latter a vector when possible. > 11 [[1]] [1] 1 2 3 4 5 [[2]] [1] 2 2 2 [[3]] [1] 0.0546 0.6851 0.8388 -0.1199 0.7995 -0.2518 [7] -0.0585 -0.1581 0.6912 0.3957 > lapply(11, sum)
– Typeset by FoilTi _E X – 10	– Typeset by FoilTi _E X – 12
Apply apply(xx, 1, sum) for the matrix xx, the sum function is applied across the columns so that the row dimension (i.e. dim 1) is preserved. > xx [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 > apply(xx, 1, sum) [1] 9 12	<pre>> apply(aa,c(2),sum) [1] 18 26 34 > apply(aa,c(2,3),sum) [,1] [,2] [1,] 3 15 [2,] 7 19 [3,] 11 23 > class(apply(aa,c(2,3),sum)) [1] "matrix" > apply(aa,c(3,2),sum) [,1] [,2] [,3] [1,] 3 7 11 [2,] 15 19 23</pre>
– Typeset by FoilT <u>E</u> X – 9	– Typeset by FoiTr <u>E</u> X – 11

tapply
This function is useful to apply a function to subsets of a vector.
> x [1] 1 2 3 4 5 6 7 8 9 10
> v [1] 1 1 1 0 0 0 1 1 1 0
<pre>> tapply(x, v, mean)</pre>
0 1 6.25 5.00
<pre>> tapply(x, v, median) 0 1</pre>
5.5 5.0
– Typeset by FoilT _E X – 14
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
[[1]] [1] 15
[[2]]
[1] 6
[[3]] [1] 2.87678
> sapply(11, sum) [1] 15.00000 6.00000 2.87678
[1] 15.00000 6.00000 2.87678
– Typeset by FoilTi _E X – 13
- Typeset by PoingA - 13