
Vectors, Matrices, Arrays, Lists, and Data Frames

Vector – a collection of ordered homogeneous elements.

We can think of matrices, arrays, lists and data frames as deviations from a vector. The
deviaitions are related to the two characteristics order and homogeneity.

Matrix - a vector with two-dimensional shape information.

> xx = matrix(1:6, nrow=3, ncol =2)
> xx

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

> class(xx) [1] "matrix"
> is.vector(xx) [1] FALSE
> is.matrix(xx) [1] TRUE
> length(xx) [1] 6
> dim(xx) [1] 3 2

– Typeset by FoilTEX – 1

Also, matrices can have row and column names, which can be determined and/or assigned
by rownames and colnames. Other functions nrow, ncol, dimnames.

– Typeset by FoilTEX – 2

> yy = array(1:12, c(2,3,2))
> yy
, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

> length(yy) [1] 12
> dim(yy) [1] 2 3 2
> is.matrix(yy) [1] FALSE
> is.array(yy) [1] TRUE

– Typeset by FoilTEX – 3

Lists

A vector with possible heterogeneous elements. The elements of a list can be numeric
vectors, character vectors, matrices, arrays, and lists.

myList = list(a = 1:10, b = ”def”, c(TRUE, FALSE, TRUE))

$a
[1] 1 2 3 4 5 6 7 8 9 10
$b
[1] "def"
[[3]]
[1] TRUE FALSE TRUE

• length(myList) – there are 3 elements in the list
• class(myList) – the class is a “list”
• names(myList) – are “a”, “b” and the empty character “”
• myList[1:2] – returns a list with two elements
• myList[1] – returns a list with one element. What is length(myList[1]) ?
• myList[[1]] – returns a vector with ten elements, the numbers 1, 2, ..., 10 What is

length(myList[[1]]) ?

– Typeset by FoilTEX – 4

Data Frames

A list with possible heterogeneous vector elements of the same length. The elements of a
data frame can be numeric vectors, factor vectors, and logical vectors, but they must all be of
the same length.

> intel
Date Transistors Microns Clock speed Data MIPS

8080 1974 6000 6.00 2.0 MHz 8 0.64
8088 1979 29000 3.00 5.0 MHz 16 0.33
80286 1982 134000 1.50 6.0 MHz 16 1.00
80386 1985 275000 1.50 16.0 MHz 32 5.00
80486 1989 1200000 1.00 25.0 MHz 32 20.00
Pentium 1993 3100000 0.80 60.0 MHz 32 100.00
PentiumII 1997 7500000 0.35 233.0 MHz 32 300.00
PentiumIII 1999 9500000 0.25 450.0 MHz 32 510.00
Pentium4 2000 42000000 0.18 1.5 GHz 32 1700.00
Pentium4x 2004 125000000 0.09 3.6 GHz 32 7000.00

– Typeset by FoilTEX – 5

• names(intel) – returns the element names of the list, which are the names of each of the
vectors: ”Date”, ”Transistors”, ”Microns” etc.

• class(intel) – a ”data.frame”

• dim(intel) – as a rectangular list, the data frame supports some matrix features: 10 7

• length(intel) – the length is the number of elements in the list, NOT the combined number
of elements in the vectors, i.e. it is ?

• class of intel[”Date”] versus intel[[”Date”]] – recall the [] returns an object of the same
type, i.e. a list but [[]] returns the element in the list.

• What is the class of the speed element in intel?

> intel[["speed"]]
[1] MHz MHz MHz MHz MHz MHz MHz MHz GHz GHz
Levels: GHz MHz

– Typeset by FoilTEX – 6

Subsetting a Data Frame

Using the fact that a data frame is a list which also support some matrix features, fill in the
table specifying the class (data.frame or integer) and the length and dim of the subset of the
data frame. Note that some responses will be NULL.

Subset class length dim
intel

intel[1]

intel[[1]]

intel[,1]

intel[“Date”]

intel[, “Date”]

intel$Date

– Typeset by FoilTEX – 7

Computations involving Vectors and Lists

• Write code using vectorized function calls
e.g. nchar(y), x[] = 0, z + w

• Use the apply mechanism

– lapply and sapply for lists
– apply for matrices and arrays
– tapply for ragged arrays as vectors

• With these functions we can avoid looping, and write code that is meaningful in a
statistical setting, e.g. if we have a list of rainfall data where each element represents
the measurements taken at a different weather station, when we think about studying the
average rainfall at each station we don’t think in terms of loops.

– Typeset by FoilTEX – 8

Apply

apply(xx, 1, sum) for the matrix xx, the sum function is applied across the columns so that
the row dimension (i.e. dim 1) is preserved.

> xx
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

> apply(xx, 1, sum)
[1] 9 12

– Typeset by FoilTEX – 9

apply(aa, c(1,2), sum) for the array aa, the sum function is applied across the pages so that
the row and column dimensions (i.e. dim 1 and 2) are preserved.

> aa
, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2
[,1] [,2] [,3]

[1,] 7 9 11
[2,] 8 10 12

> apply(aa,c(1,2),sum)
[,1] [,2] [,3]

[1,] 8 12 16
[2,] 10 14 18

apply(aa, 2, sum) apply(aa, c(2, 3), sum) apply(aa, c(3, 2), sum)

– Typeset by FoilTEX – 10

> apply(aa,c(2),sum)
[1] 18 26 34

> apply(aa,c(2,3),sum)
[,1] [,2]

[1,] 3 15
[2,] 7 19
[3,] 11 23

> class(apply(aa,c(2,3),sum))
[1] "matrix"

> apply(aa,c(3,2),sum)
[,1] [,2] [,3]

[1,] 3 7 11
[2,] 15 19 23

– Typeset by FoilTEX – 11

Applying functions to list elements

The lapply and sapply both apply a specified function to each element of a list. The former
returns a list object and the latter a vector when possible.

> ll
[[1]]
[1] 1 2 3 4 5

[[2]]
[1] 2 2 2

[[3]]
[1] 0.0546 0.6851 0.8388 -0.1199 0.7995 -0.2518
[7] -0.0585 -0.1581 0.6912 0.3957

> lapply(ll, sum)

– Typeset by FoilTEX – 12

[[1]]
[1] 15

[[2]]
[1] 6

[[3]]
[1] 2.87678

> sapply(ll, sum)
[1] 15.00000 6.00000 2.87678

– Typeset by FoilTEX – 13

tapply

This function is useful to apply a function to subsets of a vector.

> x
[1] 1 2 3 4 5 6 7 8 9 10
> v
[1] 1 1 1 0 0 0 1 1 1 0

> tapply(x, v, mean)
0 1
6.25 5.00

> tapply(x, v, median)
0 1
5.5 5.0

– Typeset by FoilTEX – 14

