
DCOM, R and Excel

Duncan Temple Lang
Department of Statistics

UC Davis

1

Outline

An example

The DCOM model

RDCOM - facilities in R.

Excel model.

Events

Reflection in R.

Mention R-DCOM Servers

2

Example
Bootstrap example that we looked at for CGI but this
time in Excel.

Take inputs from the user for the statistic to be
computed for each bootstrap sample, and the number of
bootstrap samples to create.

Outputs will be

Numerical summary of the bootstrap distribution.

Density plot of the distribution

All the samples and the associated statistic.

Displayed on a new worksheet.

3

General comments
Excel is very popular tool, familiar to many, and
relatively easy to use.

Covenient workflow model for arranging computations in
visual manner.

However, computational engine is poor for statistics
 incomplete and poor accuracy and precision in statistical
methods (See McCullagh, The American Statistician)

Programming languages not very good
 Visual Basic - poor language
 C++ - too low level when we have R.

Very beneficial to merge R’s functionality and language
with Excel’s interface and visual programming metaphor.

4

R GUI
Excel

Event from

command button

Create Excel instance

add form elements.

Add worksheet with bootstrap results.

5

DCOM
R and Excel are two separate applications, yet we need
to be able to control Excel from within R.
And we need Excel to be able to signal to R to do
something.

So we need some sort of inter-application
communication.

Need to be able to pass data from R to Excel and to be
able to call R functions from within Excel.

This is bi-directional communication.
Exchanging data files won’t work.

6

DCOM stands for Distributed Component Object Model.

R and Excel act as Components of a bigger application
that we are building.

Both R and Excel provide Objects within this
“application”.

We can think of Excel as being an Object that is made
up of lots of other sub-objects (e.g. workbook,
worksheet, cells, buttons, etc.)

We will focus on the pair R and Excel, but COM means
that we can connect any number of components
together.

7

DCOM
The D in DCOM stands for Distributed.

It allows for R and Excel to be running on different
machines and still communicate.

So we might have R on a high performance compute
server and Excel on the user’s laptop.

Distributed means security and permissions are issues.
DCOM provides facilities for specifying these.

DCOM is Windows-specific. It is very similar to CORBA -
the Common Object Request Broker Architecture which
is platform-neutral.

8

RDCOMClient package

From within R, we want to create a new instance of
Excel and a worksheet with form elements.

The RDCOMClient package provides functionality in R

to create DCOM objects,

get and set their data fields, called PROPERTIES

and call their methods, like R functions but specific
to a COM class and instances of that class.

9

RDCOM Basics
COMCreate() creates a new instance of a COM object.

ex = COMCreate(“Excel.Application”)
word = COMCreate(“Word.Application”)
ie = COMCreate(“InternetExplorer.Application”)
or any other registered COM object.

This gives us a reference or handle to an object that
represents that DCOM server.
It has class “COMIDispatch”.

We can also connect to existing instance -
getCOMInstance(“Excel.Application”)

10

DCOM Basics

Each DCOM server provides methods/functions and
properties/data that can be accessed by a client.

These can return other DCOM objects, each with their
own methods and functions.

We can access all of these from within R
but we have to know which functions and methods are
of interest.

How do we find out what properties and methods are
available ?

11

Discovering properties and methods

Read books and tutorials on the Web
 Excel 2003 VBA Programmer’s Reference
 MSDN website - msdn.microsoft.com/library/

For Microsoft Applications (and others) use the Object
Browser in the Visual Basic Editor.
Tools -> Macro -> Visual Basic Editor
 followed by View -> Object Browser
(or Alt + F11 followed by F2 keys)

Use R commands to query the Type Library of the
DCOM object.

12

13

SWinTypeLibs
The SWinTypeLibs package for R allows us to explore
information about DCOM classes.

LoadTypeLib() and getFuncs() are the two main functions
for our purposes.

lib = LoadTypeLib(ex)
names(lib) # to get the names of the classes in the library
lib[[“Application”]]
els = getFuncs(lib[[“Worksheet”]])
names(els)
els[[‘Range’] # PropertyGetDescription with 2 arguments

14

Application Basics
The different Microsoft Application DCOM objects
(Word, Excel) share a similar object model.

For example, one can make them visible by setting the
Visible property to TRUE, and invisible by setting to
FALSE.

In R, we can get the value of a DCOM property in an
object via the [[]] operator, obj[[“propertyName”]], e.g.
 ex[[“Visible”]]

And we can set the value via
 ex[[“Visible”]] = TRUE

Note that values are returned as R objects and R values
can be assigned to DCOM properties.

15

Excel
The Excel.Application object has a hierarchical structure
and the application object is at the top. We navigate
through the hierarchy to get at the objects and values
we want.

The application provides its own functions and
properties.

Properties: Visible, Interactive, Height, Memory,
ActiveSheet, ...

Methods: Calculate, Quit, Run, ...
 utility functions such as CheckSpelling, InchesToPoints

16

General Hierarchy Elements

Application has a collection of Workbooks

Within each workbook, there is a collection of
Worksheet objects in a Worksheets list.
These are accessed via the tabs below the sheets.

Within each Worksheet, we have a rectangular array of
cells.

Collections of cells are described by Range objects.

17

Workbooks

The Application has lists of workbook objects that can
be accessed via the Workbooks property.
 books = ex[[“Workbooks”]]
or
 books = ex$Workbooks()

books is an RDCOM object with its own methods...

It is an ordered collection, like a list in R.

books$Count() gives the number of elements,
books$Item(i) gets the i-th element (starting at 1)

18

Workbook
We can add a new workbook via
 book = books$Add()

The result (in book) is a new Workbook object.

While you may think this is the thing we want to work
with, we are not there yet...

A Workbook has a list of Worksheet objects.

sheets = book$Worksheets()

This has similar methods as Workbooks,
 i.e. Count(), Item()

19

COMList

Since the concept of an ordered container of elements
arises often in DCOM, the RDCOMClient package
provides a type - COMList - to simplify working with
these.

Create a COMList in R using the constructor function
 books = COMList(ex[[“Workbooks”]])

Then, length(books) is an easier version of books$Count()

books[[i]] gives the ith element of books, equivalent to
books$Item(1)

20

Worksheet & Range
The Worksheet object is much closer to where we want
to be to work with data and forms.

A Worksheet is made up of cells, and groups of cells are
accessed via Range objects.

Range objects allow us to read and write the values in
the spreadsheet, make cells active, editable/uneditable,
format values and color regions.

Can get/set the name of a worksheet via the Name
property
 sheet[[“Name”]] = “My Data”

21

Ranges
Can get the Range for the entire worksheet via
 r = sheet$Cells()

Can get the rectangular range that covers all the cells
actually in use via sheet$UsedRange()

Can get the rows and columns via sheet[[“Rows”]] and
sheet[[“Columns”]]

Can get a sub-range using the Range() “method”
 sheet$Range(“A10”, “C20”) - columns A, B, C between
rows 10 and 20 inclusive.

Or sheet$Range(sheet$Cell(10, 1), sheet$Cell(20, 3))

22

Cell value

There is no Cell object - everything is done via Ranges.

To get the value(s) in a range, use the Value property
 range[[“Value”]]

This returns a list in R with as many elements as there
are columns in the range.
Each element is itself a list and contains the values for
the cells in that column of the range.

These are lists in R since each cell may have a different
type of data, e.g. string in one, number in another.

23

To make use of the values in the cell as numbers, often
convenient to use unlist()

E.g. x = unlist(range[[“Value”]])
 or m = matrix(unlist(range[[“Value”]]), , 3) for a range
with 3 columns.

Empty cells come across as NULL, so will get dropped in
an unlist() call.

24

Modifying the Range
We can write Excel spreadsheets by assigning R objects
to the Value property of a Range object.

 r = sheet$Range(“A2”, “D2”)
 r[[“Value”]] = 1:4

For columns, need use asCOMArray() (!)
 r = sheet$Range(“A2”, “A5”)
 r[[“Value”]] = asCOMArray(1:4)

Format cells with different types (dates, currency, etc.)
via the NumberFormat property;
Font and color via the Font property;
background colors via the Style property;
Cell borders via the Borders property.

25

Forms on a Worksheet

We want to be able to put buttons, pull down menus
(combo boxes), spin boxes, check boxes, radio buttons,
etc. on the form.

Two types of forms in Excel - ActiveX objects and
internal Excel forms. The latter are slightly simpler, but
old and not very general.

Use ActiveX forms.

These too are regular DCOM objects, separate from
Excel but can be used with Excel.

26

Adding form elements
Two approaches to adding form elements
 interactively on the worksheet,
 or programmatically in R.

Quite easy in R and you will have to do some
programming to connect them anyway.

To work interactively, bring up the “Control Toolbox”
toolbar in Excel (Views -> Toolbar -> Control Toolbox)

Click the button for the desired element type and drag
out a region on the worksheet to place it.

Edit its properties in the Properties window.

27

Form elements from R
Can create the elements directly in R.

Each worksheet keeps a list of these OLE (Object
Linking & Embedding) objects via its “OleObjects”
property. This is again an ordered collection, so we can
use COMList to navigate it.

The OleObjects value has an Add method to create and
add form elements.

ole = sheet[[“OleObjects”]]
btn = ole$Add(ClassType = “Forms.CommandButton.1”,
 Top =20, Left = 30, Width = 70, Height=10)

A button will magically appear on the sheet at those
coordinates (in “points”)

28

The different types of form elements and their names
are
 CheckBox, ListBox, ComboBox, CommandButton, Frame,
Image, Label, MultiPage, OptionButton, ScrollBar,
SpinButton, TabStrip, TextBox, ToggleButton

The name for the ClassType argument is
 “Forms.<element name above>.1”,
e.g. Forms.ComboBox.1

29

ActiveX objects
The object created by ole$Add() is an OLE object, but
we talked about ActiveX objects.

The ActiveX object is inside the OLE object, and we
access it via btn[[“Object”]] or ole$Item(1)[[“Object”]]

We can now set its properties:
 Caption, Top, Left, Width, Height, LinkedCell, etc.
Same as on the Properties window in the interactive
setting. (And you can use both approaches together.)

You can now create the interactive form on the
worksheet.
It just won’t do anything when you click on the button.

30

Events
Some DCOM objects give rise to events,
e.g. a button and clicking or mouse over
 a worksheet’s cell changing, or a worksheet becoming
active, or a row being selected.

These DCOM objects can notify us of their events if we
connect an event handler object to them.

The event handler object must be a DCOM server
object which has a particular set of methods that can
be called in response to different events
e.g. Click and MouseDown methods for a button event,
Change, Activate, FollowHyperlink for Worksheet.

31

Creating Event Handlers

To set an R event handler on a DCOM object, we need
to implement the event methods of interest,
e.g. provide a function for the Click method for button.

We also need to create a valid DCOM object which uses
those R functions when the corresponding method is
called by the event source (e.g. the button).

The RDCOMEvents package in R does this for us, with a
few lines of code from us to make it specific to an
event source.

32

RDCOMEvents

The package dynamically creates a DCOM object from
the description of the DCOM class expected by the
event source.

It uses the SWinTypeLibs package to get the
description of the expected DCOM object and creates
empty functions for the methods we don’t supply
(and also determines information about the names so
that the event source and itself can communicate
properly).

33

RDCOMEvents steps

Get the type library associated with the event source
object
lib = LoadTypeLib(btn[[“Object”]])

Generate a template server or server description in R
 desc = createCOMEventServerInfo(lib[[“CommandButtonEvents”]])

Add our own handler to the methods
 desc@methods$Click = function(...) { cat(“Button’s been clicked\n”)}

Create an actual DCOM server object from this
description
 server = createCOMEventServer(desc)

34

Connecting the handler to the events.

Get the connection source of interest via
findConnectionPoint() function
pt = findConnectionPoint(btn[[“Object”]],
 lib[[“CommandButtonEvents”]])

Connect our event handler object to the connection
point via Advise()
 Advise(pt, server)

At this point, you are set to go.
Generate the events and R will respond.

35

Code for our Demo-
Boostrap computations

uniBootstrap =
function(data, statistic = median, B = 999)
{
 n = length(data)
 samples = matrix(sample(data, n * B, replace = TRUE), n, B)
 results = apply(samples, 2, statistic)

 list(samples = samples, results = results)
}

36

Output Results to Excel
showBootstrapResults = function(bootData, book) {
 n = nrow(bootData$samples)
 B = ncol(bootData$samples)
 # Create a new worksheet in the book.
 sheet = book$Worksheets()$Add()
 # Put the summary of the results vector in the first row.
 sumy = summary(bootData$results)
 r = sheet$Range("A1:F1")
 r[["Value"]] = names(sumy)
 r = sheet$Range("A2:F2")
 r[["Value"]] = as.numeric(sumy)
 # Put the results vector in the 4th row.
 r = sheet$Range(sheet$Cells(4, 1), sheet$Cells(4, B))
 r[["Value"]] = bootData$results
 #
 for(i in 1:B) {
 r = sheet$Range(sheet$Cells(6, i), sheet$Cells(6 + n - 1, i))
 r[["Value"]] = asCOMArray(bootData$samples[, i])
 }

 sheet
}

37

Form Event Handler
statistics =
list(Mean = mean,
 Median = median,
 Minimum = min,
 Maximum = max)

runBootstrapHandler =
function(...)
{
 B = repetitions[["Object"]][["Value"]]
 stat = statistic[["Object"]][["Value"]]
 data = sheet$UsedRange()[["Value"]]

 results = uniBootstrap(unlist(data[[1]]), statistics[[stat]], B)
 showBootstrapResults(results, book = sheet[["Parent"]])
}

38

Creating the form and Handler
library(RDCOMClient)
library(RDCOMEvents)!

ex = COMCreate("Excel.Application")
book = ex$Workbooks()$Open("C:/bootstrapTemplate.xls")
ex[["Visible"]] = TRUE
sheet = book$Worksheets()$Item(1)

ole = COMList(sheet[["OleObjects"]])
statistic = ole[[1]] ; repetitions = ole[[2]]
sapply(c("Mean", "Median", "Minimum", "Maximum"),
 function(x) statistic[["Object"]]$AddItem(x))
statistic[["Object"]][["Value"]] = "Mean"

btn = ole[[3]][["Object"]]
lib = LoadTypeLib(btn)
typeInfo = lib[["CommandButtonEvents"]]

connectionPoint = findConnectionPoint(btn, typeInfo)

s = createCOMEventServerInfo(typeInfo, complete = TRUE,
 methods = list(Click = runBootstrapHandler))

handler = createCOMEventServer(s)
Advise(connectionPoint, handler)

39

Package Information
R packages available at www.omegahat.org

Use the Packages menu bar to install packages
(or use install.packages).

Ruuid from BioConductor repository

RDCOMClient, RDCOMEvents, SWinTypeLibs,
RDCOMServer, SWinRegistry from Omegahat repository
(www.omegahat.org/R)

Additional package ExcelUtils (Chris Neff, David James
and I) available from Omegahat repository which is less
tested but attempts to provide high-level access to some
of the ideas we discussed today.

40

Documentation
These notes and a paper describing in much more detail
what we discussed today are available from
 www.omegahat.org/RDCOMClient

Examples at www.omegahat.org/RDCOMClient and for
events at www.omegahat.org/RDCOMEvents.

Discuss Gtk, CGI and DCOM in lectures next week and
via Blackboard.

Please send me comments if you find something wrong in
any of the documents, code, etc. or to blackboard if it is
not clear.

41

