
Dynamic Web Content:
HTML Forms

CGI
Web Servers and HTTP

Duncan Temple Lang
Dept. of Statistics

UC Davis

1

Dynamic Content
We are all used to fetching pages from a Web server.

Most are prepared by a human and put on the Web site
for others to read. Each reader sees the same page.

The Web browser (client) can perform client-side
computations on the page to present it differently.
And the content can be dynamic via Javascript code in
the page that operates as the page is being rendered
(e.g. layout) and as it is being viewed (e.g. mouse
operations)

We, however, are interested in server-side dynamic
content.

2

Server-side Dynamic Pages
A request to the Web server returns a new, machine-
generated page,
 e.g. google’ search result page,
 travelocity’s flight purchase page, ...

The server receives the request and executes some
code to create a new HTML document (or other type)
and returns that.

What makes this interesting is that the request can
specify inputs that govern how the page is created.

This is very similar to calling an R function with
different inputs and generating output in the form of an
HTML page

3

Client-Server components
We are in a client-server setup, like with relational
databases.
One application acts as a client and connects to the
server and sends a request; the server sends a reply.

Our client is a browser and specifically an HTML form
that provides ways to specify inputs to the server.

Our “server” is an R script on the Web server that gets
the inputs and generates an HTML page based these
inputs.

To provide dynamic access to R functionality via the
Web, you need to create both pieces.

4

Outline

Demo of an HTML form

The elements of HTML form processing

HTML forms,

CGI scripts & CGIwithR package.

Security issues.

Basics of HTTP - how this all works.

Details for project.
accounts, server, Web server directory layout

5

Basic Demo
A basic simulation to illustrate the Central Limit
Theorem.

User specifies inputs for

the sample size,

the distribution from which to sample,

the number of repetitions,

the statistic to compute for each sample,

whether to create numerical and/or graphical
summary.

6

...
<form method="GET"
 action="/cgi-bin/R.cgi/simulation.R">
....
<input type="text" name="n" value="3" size="4">
.....
<select name="distribution" size="1">
 <option value="rnorm">Normal
 <option value="rbinom">Binomial
 <option value="rpois">Poisson
 </select>
.....
Histogram: <input type="checkbox" name="output"
 value="histogram" checked="checked">
Summary: <input type="checkbox" name="output"
 value="summary" checked="checked">
<input type="hidden"
 name="showAttribution" value="TRUE">
.....
<input type="submit"></center>
</form>

7

Basics of HTML Forms

Create a form in an HTML document with
 <form> ...</form>

Specify the action which is the location (URI) of the
script to run when the form is submitted.

Also specify how the requested is to be submitted:
 GET or POST.

Also add enctype attribute if necessary (more later).

8

<INPUT> Tags
The elements of the form are created via
 <INPUT type=””>, <SELECT>/<OPTION> and
<TEXTAREA> tags in the HTML form

Different type values
 TEXT, PASSWORD, CHECKBOX, RADIO,
 SUBMIT, RESET, IMAGE, HIDDEN, FILE.

HTML Form Tutorial (http://www.w3schools.com/html/
html_forms.asp) & another: these describe the different
characteristics of these HTML elements to control their
appearance and behavior.

O’Reilly books: HTML - The Definitive Guide (chap. 8),
and CGI Programming.

9

Key Aspects of <INPUT>...
Each form element has a name attribute.

This is the name of the parameter that is sent in the
HTTP request.

The selected value(s) for the element is sent as the
value(s) for that parameter.

In our example, get
 n = “3”, output = c(“histogram”, “summary”),
 distribution = “rnorm”, statistic = “median”.

The method attribute of <form> tag specifies how these
name-values are sent to the Web server in the request.

10

The CGI script
When a FORM is submitted, a request is sent to the
Web server which identifies the URI as a script to run.

The Web server calls that script passing it the inputs.

This mechanism is called the Common Gateway Interface
- CGI

Typically, CGI scripts are located in the a cgi-bin area
of the Web server’s file system.
Only these can be run via a Web request.

The cgi-bin directory is not directly accessible via a
Web browser, but in a directory parallel to the Web
documents.

11

Script Programming Languages
The scripts can be written in any language, e.g. C, Perl,
Python, shell or R.

Each language has utilities that make it easier to
process the inputs into usable `arguments’.

In R, there is a package called CGIwithR that makes
using R scripts via CGI significantly easier.

In the cgi-bin/ directory, we place the R.cgi
and .Rprofile from that package.

Then, we write our R script, say myCGI.R and put that
into the cgi-bin/ directory.

12

Accessing the script
To make use of this script (myCGI.R) in the HTML form,
specify the script as in
 <form ... action=”/cgi-bin/R.cgi/myCGI.R”>

This runs myCGI.R via the shell script R.cgi.

Note R.cgi is an existing file, not a directory.
You don’t need to do anything to use it.

All printed output (to the console/screen) generated in
the R script is treated as HTML and displayed in the
resulting document in the client Web browser,
i.e. all output from cat() and print().

13

source("simulate.S") # Load work function for simulation.
ans = simulate(as.integer(formData$n), as.integer(formData$NumRep),
 formData$statistic, formData$distribution)

cat("<h2>Sample distribution of", formData$statistic,
 " for n =", formData$n, "from ", formData$distribution, "</h2>")

Generate numerical summary if requested.
if("summary" %in% formData$output) {
 invisible(capture.output(library(R2HTML)))
 HTML(summary(ans), file = stdout())
}

Generate density plot if requested.
if("histogram" %in% formData$output) {
 webPNG("hist.png", type = "jpeg", graphDir = "../htdocs/tmp/")
 dens = density(ans)
 hist(ans, prob = TRUE, ylim = c(0, max(dens$y)), main = "Density of
sample values")
 points(dens, col = "red")
 img(src = "hist.png", graphURLroot = "/tmp/")
}

14

Accessing the form inputs
How does the R CGI script get the inputs from the
form?

When the script is run, there is already an R object -
formData - that is a named list containing the elements
of the form.

formData$n yields “3” - convert it to a number with
as.integer(formData$n)

For the output, there may be multiple entries (e.g.
“output” and “summary”) so formData$output would be a
character vector of length 2 if both are selected.

15

R2HTML Package

The R2HTML can convert many types of R objects into
HTML text.

Load it in the R script via the command
 invisible(capture.output(library(R2HTML)))
This hides any messages the package annoyingly
produces when it is loaded.

Then, to output an R object as HTML, use
 HTML(obj, file = stdout())
e.g. HTML(summary(x), file = stdout())

16

R2HTML

If you don’t like what it produces, look at the
documentation to customize it

Or, generate the HTML content yourself from the R
object.

The CGIwithR package provides some basic functions to
do this: img(), tag() & untag(), br(), lf(), mailto(), linkto().

Also, the XML package has facilities for creating HTML/
XML.

17

R Graphics in CGI
Can’t display graphics in a regular R window.
Want to create JPEG, PNG, GIF, TIFF files and insert
them inline into the HTML document via the

element.

2 issues: graphics device, file system.

Might use jpeg() or png() graphics devices in R, as usual,
but unfortunately, these typically require a connection
to an X11 server. So can’t use these.

Instead, use other approaches. GDD or external program
ghostscript.

18

Image Directories
When the R script is running, the current working
directory is the cgi-bin/ directory.

We don’t want to create the graphics file there,
especially since that is not part of the document tree
for the Web server and so cannot be seen by clients.

So we create a directory, say Rimages/, under the
htdocs/ directory and arrange to write the files there.

When we write the element in HTML, we
need to specify

But when creating the graphical display, we are in a
different directory and so must write to ../htdocs/
Rimages

19

CGIwithR - webPNG(), img()

Using CGIwithR, you can create graphics using
 webPNG(“filename”) and insert the image into the
HTML content using img(“filename”).

There are two global variables that control where the
image is created and the URI in which it can be
referenced: graphDir and graphURLroot.

These are set in your cgi-bin/.Rprofile, so you don’t have
to worry about them.

20

2 Additional Examples
2 similar examples that share the same script and can
even use the same form (with redundant elements).

Illustrate techniques for getting dataset via HTML form.

Perform a 1-variable bootstrap.

User specifies the sample values, the statistic, the
number of boostrap samples to generate and what
output to create (histogram and/or numerical summary).

In this case, the user provides data - 2 approaches.

insert into a <textarea name=”values”> element

upload a file via <input type=”file” name=”dataFile”>

21

Bootstrap Example

In the <textarea> example, the formData$values contains
the text from that element. We get the values via
 data = scan(textConnection(formData$values))

In the case of the file upload, we have
 <input type=”file” name=”dataFile”>

formData$dataFile then contains the contents of that
file, and we can use scan(textConnection()) again.

22

Differences
While the two examples are very similar, and the same
R script can be used which “gets” the data from
different HTML elements, the underlying CGI mechanism
is very different.

The <textarea> version can be done with
 <form action=”GET”...
The <input type=”file”> must be done with
 <form action=”POST” enctype=”multipart/form-data”...

In the first case, the data come as
 URI?name=value&name=value&....

distribution=rnorm&n=3&statistic=mean&NumRep=1000&output=histogram&outp
ut=summary&R%3A%3Ascript=simulate.S&showAttribution=TRUE

23

In the second case,
they arrive as

-----------------------------823378840143542612896544303
Content-Disposition: form-data; name="values"

-----------------------------823378840143542612896544303
Content-Disposition: form-data; name="dataFile";
filename="bootData"
Content-Type: application/octet-stream

102
104
106
108

-----------------------------823378840143542612896544303
Content-Disposition: form-data; name="statistic"

median
-----------------------------823378840143542612896544303
Content-Disposition: form-data; name="NumRep"

1000
-----------------------------823378840143542612896544303
Content-Disposition: form-data; name="output"

histogram
-----------------------------823378840143542612896544303
Content-Disposition: form-data; name="output"

summary
-----------------------------823378840143542612896544303
Content-Disposition: form-data; name="R::script"

simulate.S
-----------------------------823378840143542612896544303--

24

In addition to the different formats, where the data are
located is different for GET and POST forms.

For action = GET, the data are given in an environment
variable named QUERY_STRING.

For action = POST, they are available from standard
input.

CGIwithR hides these details and just presents
formData.

25

Debugging CGI scripts
Difficult since not running interactively.

Get the script running within a regular R session,
 e.g. as a call to a function first

Print diagnostic information to standard output so it
goes into the resulting document.

Or cat(“some message”, file = stderr()) which sends it to
the Web server’s log file.

Run
 tail -f logs/error_log
in a separate window when submitting the request.

26

HTTP Error Log
[Mon Nov 28 06:02:02 2005] [error] [client 127.0.0.1] Error in cat(list(...), file, sep,

fill, labels, append) : , referer: http://localhost:9764/s141group1/htdocs/

bootstrapFile.html

[Mon Nov 28 06:02:02 2005] [error] [client 127.0.0.1] \targument 3 not yet handled by

cat, referer: http://localhost:9764/s141group1/htdocs/bootstrapFile.html

[Mon Nov 28 06:02:02 2005] [error] [client 127.0.0.1] Execution halted, referer: http://

localhost:9764/s141group1/htdocs/bootstrapFile.html

[Mon Nov 28 06:02:03 2005] [error] [client 127.0.0.1] File does not exist: /Users/

s141http/httpd/htdocs/favicon.ico

[Mon Nov 28 06:03:08 2005] [error] [client 127.0.0.1] Error: object "verbose" not found,

referer: http://localhost:9764/s141group1/htdocs/bootstrapFile.html

[Mon Nov 28 06:03:08 2005] [error] [client 127.0.0.1] Execution halted, referer: http://

localhost:9764/s141group1/htdocs/bootstrapFile.html

[Mon Nov 28 06:03:08 2005] [error] [client 127.0.0.1] File does not exist: /Users/

s141http/httpd/htdocs/favicon.ico

[Mon Nov 28 06:16:13 2005] [error] [client 127.0.0.1] File does not exist: /Users/

s141http/httpd/htdocs/favicon.ico

[Mon Nov 28 06:16:43 2005] [error] [client 127.0.0.1] File does not exist: /Users/

s141http/httpd/htdocs/favicon.ico

[Mon Nov 28 06:19:03 2005] [error] [client 127.0.0.1] Error: object "verbose" not found,

referer: http://localhost:9764/s141group1/htdocs/bootstrapFile.html

[Mon Nov 28 06:19:04 2005] [error] [client 127.0.0.1] File does not exist: /Users/

s141http/httpd/htdocs/favicon.ico

27

Debugging
Post-mortem debugging via dump.frames() and debugger
() functions.

In the script, arrange to have the state dumped when
there is an error
 options(error = quote({dump.frames("/tmp/group1/
last.dump", to.file = TRUE); q()}))

If there is an error, load the rda file and debug:
 load(“/tmp/group1/last.dump.rda”)
 debugger(get(“/tmp/group1/last.dump.rda”)

May give more information.

28

Debugging

You can save the formData object (e.g. save(formData,
file = “/tmp/group1/formData.rda”) and then source() the
R script into an interactive R session.

Not everything will be the same (.Rprofile, directory,...),
but it will probably make things easier.

But only for that particular data.

29

Debugging
Avoid going through the Web browser in either of 2
ways

set environment variable FORM_DATA to text of
query (POST or GET) and run
 R --vanilla < myScript.R

Use programmatic query, e.g. library(RCurl) and
getForm() or postForm()
 getForm(“http://localhost:9764/cgi-bin/simulation.R”,
 n = “3”, NumRep = “1000”,
 statistic = “mean”, distribution = “rnorm”,
 output = “summary”)

30

Security

CGI scripts run on the server, not the user’s client
machine. So if a computation does something bad, it is
on the server.

A script can consume the computational resources of
the machine, denying them to others - (DOS attack).
So put limits on the computations, inputs, etc.

If you allow arbitrary R commands to be run, the client
can send highly destructive ones, intentionally or not.

31

Example

E.g. in our simulation example, we allow the form writer
to specify an R expressions for the statistic to simulate.

I can hijack the HTML page and add my own R
expression:
 function(x) {
 print(list.files(“.”))
 1
 }
and now I can see the names of files that were
supposed to be hidden from clients, or I can display
their contents, or REMOVE them!

32

Basics of HTTP

WWW and the Internet is based on many layers,
each one is quite simple.

HTTP - Hyper Text Transfer Protocol is the mechanism
by which an application can communicate with a Web
server to request a page.

HTTP is a relatively primitive language for exchanging
for conducting conversations about specific topics.

Client is typically a Web browser, but can be any
program that can talk HTTP.

33

Example HTTP session

The following mimics what your Web browser does when
you request a Web page.

telnet www.omegahat.org 80
 connecting to host (omegahat) on port 80 which is where the Web server is by default

GET /index.html HTTP/1.1
Host: www.omegahat.org

 GET is the command, /index.html is the name of the file being requested.

 HTTP/1.1 is the particular dialect of HTTP being spoken and so the Web server knows

to use that form.

 Specify Host again because a server can masquerade as many virtual hosts.

 Note the last line is a blank line that tells the Web server the request is complete.

34

The Server Reply

HTTP/1.1 200 OK
Date: Sun, 27 Nov 2005 14:26:46 GMT
Server: Apache/2.0.52 (Unix)
Last-Modified: Tue, 08 Nov 2005 17:59:29 GMT
ETag: "165f8b-447c-88782240"
Accept-Ranges: bytes
Content-Length: 17532
Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML//EN\">
<html> <head>
<title>The Omega Project for Statistical
Computing</title>
.............

35

Header Information
There are lots of fields both the client and server can
specify in the header to control the conversation.

Keep-alive allows the client to ask the server to keep
the connection open for period of time.
This makes subsequent requests to that server faster.

This improves efficiency when we, e.g., download a page
and then go back to the server to fetch several images
referenced in that page.

Header information can also specify what type of file,
character set encoding, version, part of a file, etc. we
want.

36

Advanced HTTP

GET is the simplest command.
Specifies the resource we want.

Forms posted with GET put the name=value parameters
from the form into the filename in the GET command
e.g. GET /cgi-bin/script?x=1&y=abc HTTP/1.1

POST is another when we specify a request.

POST puts the query into the BODY of the HTTP
request.

37

Details for Project

Each group has its own Web server on
statdocs.berkeley.edu.

Each server listens on a different port
 http://localhost:9876

Can only access the server from a machine running on
the Statistical Computing Facility, i.e. not from home.

38

Accounts

Can login from your SCF account to
statdocs.berkeley.edu.

Password is in a file named .orig.password.
Read this and use passwd command to change the
password.

The port on which your server listens is in the file
named .HTTPPort.

Do not write scripts that accept and run arbitrary R
code.

39

Web Server Directories
The Web server for your group is in ~s133group1,
~s133group2, ...

Under each of these is a directory named httpd/
This contains the entire web server along with R.cgi
and .Rprofile in the cgi-bin/ directory.

Put your HTML files under htdocs/

Put your R CGI scripts under cgi-bin/ and refer to them
via action=/cgi-bin/R.cgi/myScript.R

The log files are in logs: all accesses to pages in
access_log and errors in error_log

40

