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Abstract

We consider the performance of the bootstrap in high-dimensions for the setting of linear
regression, where p < n but p/n is not close to zero. We consider ordinary least-squares as
well as robust regression methods and adopt a minimalist performance requirement: can the
bootstrap give us good confidence intervals for a single coordinate of β? (where β is the true
regression vector).

We show through a mix of numerical and theoretical work that the bootstrap is fraught
with problems. Both of the most commonly used methods of bootstrapping for regression –
residual bootstrap and pairs bootstrap – give very poor inference on β as the ratio p/n grows.
We find that the residuals bootstrap tend to give anti-conservative estimates (inflated Type I
error), while the pairs bootstrap gives very conservative estimates (severe loss of power) as
the ratio p/n grows. We also show that the jackknife resampling technique for estimating the
variance of β̂ severely overestimates the variance in high dimensions.

We contribute alternative bootstrap procedures based on our theoretical results that miti-
gate these problems. However, the corrections depend on assumptions regarding the under-
lying data-generation model, suggesting that in high-dimensions it may be difficult to have
universal, robust bootstrapping techniques.
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1 Introduction

The bootstrap [10] is a ubiquitous tool in applied statistics, allowing for inference when very

little is known about the properties of the data-generating distribution. The bootstrap is a powerful

tool in applied settings because it does not make the strong assumptions common to classical

statistical theory regarding this data-generating distribution. Instead, the bootstrap resamples the

observed data to create an estimate, F̂ , of the unknown data-generating distribution, F . F̂ then

forms the basis of further inference.

Since its introduction, a large amount of research has explored the theoretical properties of

the bootstrap, improvements for estimating F under different scenarios, and how to most effec-

tively estimate different quantities from F̂ (see the pioneering [5] for instance and many many

more references in the book-length review of [7], as well as [42] for a short summary of the

modern point of view on these questions). Other resampling techniques exist of course, such as

subsampling, m-out-of-n bootstrap, and jackknifing, and have been studied and much discussed

(see [11], [21], [35], [4], and [13] for a practical introduction).

An important limitation for the bootstrap is the quality of F̂ . The standard bootstrap estimate

of F based on the empirical distribution of the data may be a poor estimate when the data has

a non-trivial dependency structure, when the quantity being estimated, such as a quantile, is

sensitive to the discreteness of F̂ , or when the functionals of interest are not smooth (see e.g [5]

for a classic reference, as well as [2] or [9] in the context of multivariate statistics).

An area that has received less attention is the performance of the bootstrap in high dimensions

and this is the focus of our work – in particular in the setting of standard linear models where

data yi are drawn from the linear model

∀i, yi = β′Xi + εi , 1 ≤ i ≤ n , where Xi ∈ Rp .

We are interested in the bootstrap or resampling properties of the estimator defined as

β̂ρ = argminb∈Rp

n∑
i=1

ρ(yi −X ′ib) , where ρ is a convex function.

We consider the two standard methods for resampling to create a bootstrap distribution in
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this setting. The first is pairs resampling, where bootstrap samples are drawn from the empirical

distribution of the pairs (yi, Xi). The second resampling method is residual resampling, where

the bootstrapped data consists of y∗i = β̂′Xi+ε̂
∗
i , where ε̂∗i is drawn from the empirical distribution

of the estimated residuals, ei. We also consider the jackknife, a resampling method focused

specifically on estimating the variance of functionals of β̂. These three methods are extremely

flexible for linear models regardless of the method of fitting β or the error distribution of the εi.

The high dimensional setting: p/n → κ ∈ (0,1) In this work we call a high-dimensional

setting one where the number of predictors, p, is of the same order of magnitude as the number

of observations, n, formalized mathematically by assuming that p/n → κ ∈ (0, 1). Several

reasons motivate our theoretical study in this regime. The asymptotic behavior of the estimate

β̂ρ is known to depend heavily on whether one makes the classical theoretical assumption that

p/n → 0 or instead assumes p/n → κ ∈ (0, 1) (see Section 1.2 and Supplementary Text, S3

and references therein). But from the standpoint of practical usage on moderate-sized datasets

(i.e n and p both moderately sized with p < n), it is not always obvious which assumption is

justified. We think that working in the high-dimensional regime of p/n → κ ∈ (0, 1) captures

better the complexity encountered even in reasonably low-dimensional practice than using the

classical assumption p/n → 0. In fact, asymptotic predictions based on the high-dimensional

assumption can work surprisingly well in very low-dimension (see [26]). Furthermore, in these

high-dimensional settings – where much is still unknown theoretically – the bootstrap is a natural

and compelling alternative to asymptotic analysis.

Defining success: accurate inference on β1 The common theoretical definition of whether the

bootstrap “works” is that the bootstrap distribution of the entire bootstrap estimate β̂∗ converges

conditionally almost surely to the sampling distribution of the estimator β̂ (see [42] for instance).

The work of [3] on the residual bootstrap for least squares regression, which we discuss in the

background section 1.2, shows that this theoretical requirement is not fulfilled even for the simple

problem of least squares regression.

In this paper, we choose to focus only on accurate inference for the projection of our pa-

rameter on a pre-specified direction υ. More specifically, we concentrate only on whether the

bootstrap gives accurate confidence intervals for υ′β. We think that this is the absolute minimal

3



requirement we can ask of a bootstrap inferential method, as well as one that is meaningful from

an applied statistics standpoint. This is of course a much less stringent requirement than doing

well on complicated functionals of the whole parameter vector, which is the implicit demand of

standard definitions of bootstrap success. For this reason, we focus throughout the exposition

on inference for β1 (the first element of β) as an example of a pre-defined direction of interest

(where β1 corresponds to choosing υ = e1, the first canonical basis vector).

We note that considering the asymptotic behavior of υ′β as p/n → κ ∈ (0, 1) implies that

υ = υ(p) changes with p. By “pre-defined” we will mean simply a deterministic sequence of

directions υ(p). We will continue to suppress the dependence on p in writing υ in what follows

for the sake of clarity.

1.1 Organization and main results of the paper

In Section 2 we demonstrate that in high dimensions residual-bootstrap resampling results in

extremely poor inference on the coordinates of βρ with error rates much higher than the reported

Type I error. We show that the error in inference based on residual bootstrap resampling is due

to the fact that the distribution of the residuals ei are a poor estimate of the distribution of εi;

we further illustrate that common methods of standardizing the ei do not resolve the problem for

general ρ. We propose two new methods of residual resampling, including one based on scaled

leave-one-out predicted errors that seems to perform better than the other one in our simulations.

We also provide some theoretical results for the behavior of this method as p/n→ 1.

In Section 3 we examine pairs-bootstrap resampling and show that confidence intervals based

on bootstrapping the pairs also perform very poorly. Unlike in the residual-bootstrap case dis-

cussed in Section 2, the confidence intervals obtained from the pairs-bootstrap are instead conser-

vative to the point of being non-informative. This results in a dramatic loss of power. We prove in

the case of L2 loss, i.e ρ(x) = x2, that the variance of the bootstrapped v′β̂∗ is greater than that of

v′β̂, leading to the overly conservative performance we see in simulations. We demonstrate that

a different resampling scheme we propose can alleviate the problems to a certain extent, but we

also highlight the practical limitations in such a strategy, since it relies heavily on having strong

knowledge about the data-generating model.

In Section 4, we discuss another resampling scheme, the jackknife. We focus on the jackknife
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estimate of variance and show that it has similarly poor behavior in high dimensions. In the case

of L2 loss with Gaussian design matrices, we further prove that the jackknife estimator over

estimates the variance of our estimator by a factor of 1/(1−p/n); we briefly mention corrections

for other losses.

We rely on simulation results to demonstrate the practical impact of the failure of the boot-

strap. The settings for our simulations and corresponding theoretical analyses are idealized,

without many of the common problems of heteroskedasticity, dependency, outliers and so forth

that are known to be a problem for robust bootstrapping. This is intentional, since even these

idealized settings are sufficient to demonstrate that the standard bootstrap methods have poor

performance. For brevity, we give only brief descriptions of the simulations in what follows;

detailed descriptions can be found in Supplementary Text, Section S2.

Similarly, we focus on the basic implementations of the bootstrap for linear models. While

there are many proposed alternatives – often for specific loss functions or types of data – the

standard methods we study are most commonly used and recommended in practice. Furthermore,

to our knowledge none of the alternative bootstrap methods we have seen specifically address

the underlying theoretical problems that appear in high dimensions and therefore are likely to

suffer from the same fate as standard methods. We have also tried more complicated ways to

build confidence intervals (e.g. bias correction methods), but have found their performance to be

erratic in high-dimension.

We first give some background regarding the bootstrap and estimation of linear models in

high dimensions before presenting our new results.

1.2 Background: Inference using the Bootstrap

We consider the setting yi = β′Xi + εi, where E(εi) = 0 and var (εi) = σ2
ε . β is estimated as

minimizing the average loss,

β̂ρ = argminb∈Rp

n∑
i=1

ρ(yi −X ′ib), (1)

where ρ defines the loss function for a single observation. ρ is assumed to be convex in all

the paper. Common choices are ρ(x) = x2, i.e least-squares, ρ(x) = |x|, which defines L1
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regression, or Huberk loss where ρ(x) = (x2/2)1|x|<k + (k|x| − k2/2)1|x|≥k.

Bootstrap methods are used in order to estimate the distribution of the estimate β̂ρ under the

true data-generating distribution, F . The bootstrap estimates this distribution with the distribu-

tion obtained when the data is drawn from an estimate F̂ of F . Following standard convention,

we designate this bootstrapped estimator β̂∗ρ to note that this is an estimate of β using loss func-

tion ρ when the data-generating distribution is known to be exactly equal to F̂ . Since F̂ is

completely specified, we can in principle exactly calculate the distribution of β̂∗ρ and use it as an

approximation of the distribution of β̂ρ under F . In practice, we simulate B independent draws

of size n from the distribution F̂ and perform inference based on the empirical distribution of

β̂∗bρ , b = 1, . . . , B.

In bootstrap inference for the linear model, there are two common methods for resampling,

which results in different estimates F̂ . In the first method, called the residual bootstrap, F̂ is

an estimate of the conditional distribution of yi given β and Xi. In this case, the corresponding

resampling method consists of resampling ε∗i from an estimate of the distribution of ε and forming

data y∗i = X ′iβ̂ + ε∗i , from which β̂∗ρ is computed. This method of bootstrapping assumes that

the linear model is correct for the mean of y (i.e. that E (yi) = X ′iβ); it is also assuming fixed

Xi design vectors because the sampling is conditional on the Xi. In the second method, called

pairs bootstrap, F̂ is an estimate of the joint distribution of the vector (yi, Xi) ∈ Rp+1 given by

the empirical joint distribution of {(yi, Xi)}ni=1; the corresponding resampling method resamples

the pairs (yi, Xi). This method makes no assumption about the mean structure of y and, by

resampling the Xi, also does not condition on the values of Xi. For this reason, pairs resampling

is often considered to be more generally applicable than residuals resampling - see e.g [7].

1.3 Background: High-dimensional inference of linear models

Recent research shows that β̂ρ has very different asymptotic properties when p/n has a limit

κ that is bounded away from zero than it does in the classical setting where p/n → 0 (see

e.g [24, 25, 36, 37, 38, 39, 28] for κ = 0; [17] for κ ∈ (0, 1)). A simple example is that

the vector β̂ρ is no longer consistent in Euclidean norm when κ > 0. We should be clear,

however, that projections on fixed non-random directions such as we consider, i.e υ′β̂ρ, are
√
n

consistent for υ′β, even when κ > 0. In particular, the coordinates of β̂ρ are
√
n−consistent for
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the coordinates of β. Hence, in practice the estimator β̂ρ is still a reasonable quantity to consider

(see Supplementary Text, S3 for much more detail).

Bootstrap in high-dimensional linear models Very interesting work exists already in the lit-

erature about bootstrapping regression estimators when p is allowed to grow with n ([40, 46, 28,

29, 30, 34], Section 3.9 of [27]). With a few exceptions, this work has been in the classical,

low-dimensional setting where either p is held fixed or p grows slowly relative to n (i.e κ = 0 in

our notation). For instance, in [30], it is shown that under mild technical conditions and assum-

ing that p1+δ/n → 0, δ > 0, the pairs bootstrap distribution of linear contrasts v′(β̂∗ − β̂) is in

fact very close to the sampling distribution of v′(β̂ − β) with high-probability, when using least-

squares. Other results such as [40] and [28], also allow for increasing dimensions, for example in

the case of linear contrasts in robust regression, by making assumptions on the diagonal entries

of the hat matrix. In our context, these assumptions would be satisfied only if p/n → 0. Hence

those interesting results do not apply to the present study. We also note that [21] contains on p.

167 cautionary notes about using the bootstrap in high-dimension.

While there has not been much theoretical work on the bootstrap in the setting where p/n→

κ ∈ (0, 1), one early work of [3] considered bootstrapping scaled residuals for least-squares re-

gression when κ > 0. They show (Theorem 3.1 p.39 in [3]) that when p/n → κ ∈ (0, 1), there

exists a data-dependent direction c, such that c′β̂∗ does not have the correct asymptotic distribu-

tion, i.e its distribution is not conditionally in probability close to the sampling distribution of c′β̂.

Furthermore, they show that when the errors in the model are Gaussian, under the assumption that

the diagonal entries of the hat matrix are not all close to a constant, the empirical distribution of

the residuals is a scaled-mixture of Gaussian, which is not close to the original error distribution.

As we previously explained, in this work we instead only consider inference for predefined

contrasts υ′β. The important and interesting problems pointed out in [3] disappear if we focus on

fixed, non-data-dependent projection directions. Hence, our work complements the work of [3]

and is not redundant with it.

The role of the distribution of X An important consideration in interpreting theoretical work

on linear models in high dimensions is the role of the design matrix X . In classical asymptotic

theory, the analysis is conditional on X so that the assumptions in most theoretical results are
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stated in terms of conditions that can be evaluated on a specific design matrix X . In the high

dimensional setting, the available theoretical tools do not yet allow for an asymptotic analysis

conditional on X; instead the results make assumptions about the distribution of X . Theoretical

work in the nascent literature for the high dimensional setting usually allows for a fairly general

class of distributions for the individual elements of Xi and can handle covariance between the

predictor variables. However, the Xi’s are generally considered i.i.d., which limits the ability of

any Xi to be too influential in the fit of the model (see Supplementary Text, S3 for more detail).

For discussion of limitations of the corresponding models for statistical purposes, see [8, 22, 14].

1.4 Notations and default conventions

When referring to the Huber loss in a numerical context, we refer (unless otherwise noted) to

the default implementation in the rlm package in R, where the transition from quadratic to linear

behavior is at k = 1.345. We call X the design matrix and {Xi}ni=1 its rows. We have Xi ∈ Rp.

β denotes the true regression vector, i.e the population parameter. β̂ρ refers to the estimate of

β using loss ρ; from this point on, however, we will often drop the ρ and refer to simply β̂. ei

denotes the i-th residual, i.e ei = yi − X ′iβ̂. Throughout the paper, we assume that the linear

model holds, i.e yi = X ′iβ + εi for some fixed β ∈ Rp and that εi’s are i.i.d with mean 0 and

var (εi) = σ2
ε . We call G the distribution of ε. When we need to stress the impact of the error

distribution on the distribution of β̂ρ, we will write β̂ρ(G) or β̂ρ(ε) to denote our estimate of β

obtained assuming that εi’s are i.i.d G.

We denote generically by κ = limn→∞ p/n. We restrict ourselves to κ ∈ (0, 1). The standard

notation β̂(i) refers to the leave-one-out estimate of β̂ where the i-th pair (yi, Xi) is excluded from

the regression. ẽi(i) , yi−X ′iβ̂(i) is the i-th predicted error (based on the leave-one-out estimate of

β̂). We also use the notation ẽj(i) , yj −X ′jβ̂(i). The hat matrix is of course H = X(X ′X)−1X ′.

oP denotes a “little-oh” in probability, a standard notation (see [42]). When we say that we work

with a Gaussian design with covariance Σ, we mean that Xi
iid
v N (0,Σ). Throughout the paper,

the loss function ρ is assumed to be convex, R 7→ R+. We use the standard notation ψ = ρ′. We

finally assume that ρ is such that there is a unique solution to the robust regression problem - an

assumption that applies to all classical losses in the context of our paper.
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2 Residual Bootstrap

We first focus on the method of bootstrap resampling where F̂ is the conditional distribution

y|β̂, X. In this case the distribution of β̂∗ under F̂ is formed by independent resampling of ε∗i
from an estimate Ĝ of the distribution G that generated εi. Then new data y∗i are formed as

y∗i = X ′iβ̂ + ε∗i and the model is fitted to this new data to get β̂∗. Generally the estimate of the

error distribution, Ĝ, is taken to be empirical distribution of the observed residuals, so that the ε∗i
are found by sampling with replacement from the ei.

Yet, even a cursory evaluation of ei in the simple case of least-squares regression (ρ(x) =

x2) reveals that the empirical distribution of the ei may be a poor approximation to the error

distribution of εi; in particular, it is well known that ei has variance equal to σ2
ε (1 − hi) where

hi is the ith diagonal element of the hat matrix. This problem becomes particularly pronounced

in high dimensions. For instance, if Xi
iid
v N (0,Σ), hi = p/n + oP (1) so that ei has variance

approximately σ2
ε (1− p/n), i.e. generally much smaller than the true variance of ε for lim p/n >

0. This fact is also true in much greater generality for the distribution of the design matrix X

(see e.g [43], [20], [41], [33], [18], where the main results of some of these papers require minor

adjustments to get the approximation of hi we just mentioned).

In Figure 1, we plot the error rate of 95% bootstrap confidence intervals based on resampling

from the residuals for different loss functions, based on a simulation when the entries of X are

i.i.d N (0, 1) and ε ∼ N(0, 1). Even in this idealized situation, as the ratio of p/n increases

the error rate of the confidence intervals in least squares regression increases well beyond the

expected 5%: we observe error rates of 10-15% for p/n = 0.3 and approximately 20% for

p/n = 0.5 (Table S1). We see similar error rates for other robust-regression methods, such as L1

and Huber loss, and also for different error distributions and distributions of X (Supplementary

Figures S1 and S2). We explain some of the reasons for these problems in Subsection 2.2 below.

2.1 Bootstrapping from Corrected Residuals

While resampling directly from the uncorrected residuals is widespread and often given as a

standard bootstrap procedure (e.g. [27, 6]), the discrepancy between the distribution of εi and ei

has spurred more refined recommendations in the case of least-squares: form corrected residuals
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Figure 1: Performance of 95% confidence intervals of β1 : Here we show the coverage
error rates for 95% confidence intervals for n = 500 based on applying common resampling-
based methods to simulated data: pairs bootstrap (red), residual bootstrap (blue), and jackknife
estimates of variance (yellow). These bootstrap methods are applied with three different loss
functions shown in the three plots above: (a) L1, (b) Huber, and (c) L2. For L2 and Huber loss,
we also show the performance of methods for standardizing the residuals before bootstrapping
described in the text (blue, dashed line). If accurate, all of these methods should have an error
rate of 0.05 (shown as a horizontal black line). The error rates are based on 1,000 simulations,
see the description in Supplementary Text, Section S2 for more details; exact values are given in
Table S1. Error rates above 5% correspond to anti-conservative methods. Error rates below 5%
correspond to conservative methods.

ri = ei/
√

1− hi and sample the ε∗i from the empirical distribution of the ri − r̄ (see e.g [7]).

This correction is known to exactly align the variance of ri with that of εi regardless of the

design vectors Xi or the true error distribution, using simply the fact that the hat matrix is a rank

min(n, p) orthogonal projection matrix. We see that for L2 loss it corrects the error in bootstrap

inference in our simulations (Figure 1). This is not so surprising, given that with L2 loss, the

error distribution G impacts the inference on β only through σ2
ε , in the case of homoskedastic

errors (see Section 2.4 for much more detail).

However, this adjustment of the residuals is a correction specific to the least-squares problem.

Similar corrections for robust estimation procedures using a loss function ρ are given by [32] with
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standardized residuals ri given by,

ri =
ei√

1− dhi
, where d =

2
∑
e′jψ(e′j)∑
ψ(e′j)

−
∑
ψ(e′j)

2

(
∑
ψ(e′j))

2
, (2)

where hi is the i-th diagonal entry of the hat matrix, e′j = ej/s, s is a estimate of σ, and ψ is the

derivative of ρ, assuming ψ is a bounded and odd function (see [7] for a complete description of

its implementation for the bootstrap and [32] for a full description of regularity conditions).

Unlike the correction for L2 loss mentioned earlier, however, the scaling described in Equa-

tion (2) for the residuals is an approximate variance correction and the approximation depends

on assumptions that do not hold true in higher dimensions. The error rate of confidence intervals

in our simulations based on this rescaling show no improvement in high dimensions over that of

simple bootstrapping of the residuals. This could be explained by the fact that standard perturba-

tion analytic methods used for the analysis of M-estimators in low-dimension - which are at the

heart of the correction in Equation (2) - fail in high-dimension.

2.2 Understanding the behavior of residual bootstrap

At a high-level, this misbehavior of the residual bootstrap can be explained by the fact that in

high-dimension, the residuals tend to have a very different distribution from that of the true errors.

This is in general true both in terms of simple properties such as variance and in terms of more

general aspects, such as the whole marginal distribution. To make these statements precise, we

make use of the previous work of [17, 16]. These papers do not discuss bootstrap or resampling

issues, but rather are entirely focused on providing asymptotic theory for the behavior of β̂ρ as

p/n → κ ∈ (0, 1); in the course of doing so, they characterize the asymptotic relationship of

ei to εi in high-dimensions. We make use of this relationship to characterize the behavior of the

residual bootstrap and to suggest an alternative estimates of Ĝ for bootstrap resampling.

Behavior of residuals in high-dimensional regression We now summarize the asymptotic re-

lationship between ei and εi in high-dimensions given in the above cited work (see Supplementary

Text, Section S3 for a more detailed and technical summary). Let β̂(i) be the estimate of β based

on fitting the linear model of Equation (1) without using observation i, and ẽj(i) be the error of
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observation j from this model (the leave-one-out or predicted error), i.e ẽj(i) = yj − X ′jβ̂(i) For

simplicity of exposition, Xi is assumed to have an elliptical distribution, i.e Xi = λiΓi, where

Γi ∼ N(0,Σ), and λi is a scalar random variable independent of Γi with E (λ2i ) = 1. For sim-

plicity in restating their results, we will assume Σ = Idp, but equivalent statements can be made

for arbitrary Σ; similar results also apply when Γi = Σ1/2ξi, with ξi having i.i.d non-Gaussian

entries, satisfying a few technical requirements (see Supplementary Text, Section S3).

With this assumption on Xi, for any sufficiently smooth loss function ρ and any size dimen-

sion where p/n → κ < 1, the relationship between the i-th residual ei and the true error εi can

be summarized as,

ẽi(i) = εi + |λi|‖β̂ρ(i) − β‖2Zi + oP (un) (3)

ei + ciλ
2
iψ(ei) = ẽi(i) + oP (un) (4)

where Zi is a random variable distributed N(0, 1) and independent of εi. un is a sequence of

numbers tending to 0. ci, λi and ‖β̂ρ(i) − β‖2 are all of order 1, i.e they are not close to 0 in

general in the high-dimensional setting. The scalar ci is given as 1
n

trace
(
S−1i

)
, where Si =

1
n

∑
j 6=i ψ

′(ẽj(i))XjX
′
j . For p, n large the ci’s are approximately equal and ‖β̂ρ(i) − β‖2 ' ‖β̂ρ −

β‖2 ' E
(
‖β̂ρ − β‖2

)
; furthermore ciλ2i can be approximated by X ′iS

−1
i Xi/n. Note that when

ρ is either non-differentiable at all points (L1) or not twice differentiable (Huber), arguments can

be made that make these expressions valid, using for instance the notion of sub-differential for ψ

[23].

Interpretation of Equations (3) and (4) Equation (3) means that the marginal distribution of

the leave-i-th-out predicted error, ẽi(i), is asymptotically a convolution of the true error, εi, and an

independent scale mixture of Normals. Furthermore, Equation (4) means that the i-th residual ei

can be understood as a non-linear transformation of ẽi(i). As we discuss below, these relationships

are qualitatively very different from the classical case p/n→ 0.

2.2.1 Consequence for the residual bootstrap

We apply these results to the question of the residual bootstrap to give an understanding of

why bootstrap resampling of the residuals can perform so badly in high-dimension. The distri-
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bution of the ei is far removed from that of the εi, and hence bootstrapping from the residuals

effectively amounts to sampling errors from a distribution that is very different from the original

error distribution, ε.

The impact of these discrepancies for bootstrapping is not equivalent for all dimensions, error

distributions, or loss functions. It depends on the constant ci and the risk, ‖β̂ρ(i) − β‖2, both of

which are highly dependent on the dimensions of the problem, the distribution of the errors and

the choice of loss function. We now discuss some of these issues.

Least Squares regression In the case of least squares regression, the relationships given in

Equation (3) are exact, i.e un = 0. Further, ψ(x) = x, and ci = hi/(1 − hi), giving the well

known linear relationship ei = (1 − hi)ẽi(i) [45]. This linear relationship is exact regardless of

dimension, though the dimensionality aspects are captured by hi. This expression can be used to

show that asymptotically E (
∑n

i=1 e
2
i ) = σ2

ε (n − p), when εi’s have the same variance. Hence,

sampling at random from the residuals results in a distribution that underestimates the variance

of the errors by a factor 1 − p/n. The corresponding bootstrap confidence intervals are then

naturally too small, and hence the error rate increases far from the nominal 5% - as we observed

in Figure 1c.

More general robust regression The situation is much more complicated for general robust

regression estimators. One clear implication of Equations (3) and (4) is that simply rescaling the

residuals ei should not in general result in an estimated error distribution Ĝ that will have similar

properties to those of G. The relationship between the residuals and the errors is very non-linear

in high-dimensions. This is why in what follows we will propose to work with leave-one-out

predicted errors ẽi(i) instead of the residuals ei.

The classical case of p/n→ 0: In this setting, ci → 0 and therefore Equation (3) shows that

the residuals ei are approximately equal in distribution to the predicted errors, ẽi(i). Similarly,

β̂ρ is L2 consistent when p/n → 0, so ‖β̂ρ(i) − β‖22 → 0 and Equation (4) gives ẽi(i) ' εi.

Hence, the residuals should be fairly close to the true errors in the model when p/n is small. This

dimensionality assumption is key to many theoretical analyses of robust regression, and underlies

the derivation of corrected residuals ri of [32] given in Equation (2) above.
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2.3 Alternative residual bootstrap procedures

We propose two methods for improving the performance of confidence intervals obtained

through the residual bootstrap. Both do so by providing alternative estimates of Ĝ from which

bootstrap errors ε∗i can be drawn. They estimate a Ĝ appropriate for the setting of high-dimensional

data by accounting for relationship of the distribution of ε and ẽi(i).

Method 1: Deconvolution The relationship in Equation (3) says that the distribution of ẽi(i)

is a convolution of the correct G distribution and a Normal distribution. This suggests applying

techniques for deconvolving a signal from gaussian noise. Specifically, we propose the following

bootstrap procedure: 1) calculate the predicted errors, ẽi(i); 2) estimate the variance of the normal

(i.e. |λi|‖β̂ρ(i) − β‖22); 3) deconvolve in ẽi(i) the error term εi from the normal term; 4) Use the

resulting estimate Ĝ to draw errors ε∗i for residual bootstrapping.

Deconvolution problems are known to be very difficult (see [19], Theorem 1 p. 1260, that

gives 1/ log(n)α rates of convergence when convolving with a Gaussian distribution). The re-

sulting deconvolved errors are likely to be quite noisy estimates of εi. However, it is possible that

while individual estimates are poor, the distribution of the deconvolved errors is estimated well

enough to form a reasonable Ĝ for the bootstrap procedure.

We used the deconvolution algorithm in the decon package in R [44] to estimate the distri-

bution of εi. The deconvolution algorithm requires knowledge of the variance of the Gaussian

that is convolved with the εi, i.e. estimation of |λi|‖β̂ρ(i) − β‖2 term. In what follows, we as-

sume a Gaussian design, i.e. λi = 1, so that we need to estimate only the term ‖β̂ρ(i) − β‖22. An

estimation strategy for the more general setting of |λi| 6= 1 is presented in Supplementary Text,

Section S1.5. We use the fact that ‖β̂ρ(i) − β‖22 ' ‖β̂ρ − β‖22 for all i and estimate ‖β̂ρ(i) − β‖2
as v̂ar(ẽi(i)) − σ̂2

ε , where v̂ar(ẽi(i)) is the empirical variance of the ẽi(i) and σ̂2
ε is an estimate of

the variance of G, which we discuss below. We note that the deconvolution strategy we employ

makes assumptions of homoskedastic errors εi’s, which is true in our simulations but may not be

true in practice. See Supplementary Text, Section S1 for details regarding the implementation of

Method 1.

Method 2: Bootstrapping from standardized ẽi(i) A simpler alternative is bootstrapping

from the predicted error terms, ẽi(i), without deconvolution. Specifically, we propose to bootstrap
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from a scaled version of ẽi(i),

r̃i(i) =
σ̂ε√

v̂ar(ẽi(i))
ẽi(i), (5)

where v̂ar(ẽi(i)) is the standard estimate of the variance of ẽi(i) and σ̂ε is an estimate of σε.

This scaling aligns the first two moments of ẽi(i) with those of εi. On the face of it, resampling

from r̃i(i) seems problematic, since Equation (3) demonstrates that ẽi(i) does not have the same

distribution as εi, even if the first two moments are the same. However, as we demonstrate in

simulations, this distributional mismatch appears to have limited practical effect on our bootstrap

confidence intervals.

Estimation of σ2
ε Both methods described above require an estimator of σε that is consistent

regardless of dimension and error distribution. As we have explained earlier, for general ρ we

cannot rely on the observed residuals ei nor on ẽi(i) for estimating σε (see Equations (3) and (4)).

The exception is the standard estimate of σ2
ε from least-squares regression, i.e ρ(x) = x2,

σ̂2
ε,LS =

1

n− p
∑
i

e2i,L2
.

σ̂2
ε,LS is a consistent estimator of σ2, assuming i.i.d errors and mild moment requirements. In

implementing the two alternative residual-bootstrap methods described above, we use σ̂ε,LS as

our estimate of σε.

Performance in bootstrap inference In Figure 2 we show the error rate of confidence intervals

based on the two residual-bootstrap methods we proposed above. We see that both methods

control the Type I error, unlike bootstrapping directly from the residuals, and that both methods

are conservative. There is little difference between the two methods with this sample size (n =

500), though with n = 100, we observe the deconvolution performance to be worse in L1 (data

not shown).

The deconvolution strategy, however, depends on the distribution of the design matrix, which

in these simulations we assumed was Gaussian (so we did not have to estimate λi’s). For elliptical

designs (λi 6= 1), the error rate of the deconvolution method described above, with no adaptation

for the design, was similar to that of uncorrected residuals in high dimensions (i.e. > 0.25 for
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Figure 2: Bootstrap based on predicted errors: We plotted the error rate of 95% confidence
intervals for the alternative bootstrap methods described in Section 2.3: bootstrapping from
standardized predicted errors (green) and from deconvolution of predicted error (magenta). We
demonstrate its improvement over the standard residual bootstrap (blue) for (a) L1 loss and (b)
Huber loss. The error distribution is double exponential and the design matrix X is Gaussian, but
otherwise the simulations parameters are as in Figure 1. The error rates on confidence intervals
based on bootstrapping from a N(0, σ̂2

ε,LS) (dashed curve) are as a lower bound on the problem.
For the precise error rates see Table S3.

p/n = 0.5). Individual estimates of λi (see Supplementary Text, Section S1.5) might improve

the deconvolution strategy, but this problem points to the general reliance of the deconvolution

method on precise knowledge about the design matrix. The bootstrap using standardized pre-

dicted errors, on the other hand, had a Type I error for an elliptical design only slightly higher

than the target 0.05 (around 0.07, data not shown), suggesting that it might be less sensitive to

the properties of the design matrix.

Given our previous discussion of the behavior of ẽi(i), it is somewhat surprising that resam-

pling from the distribution of r̃i(i) performed well in our simulations. Clearly a few cases exist

where r̃i(i) should work well as an approximation of εi. We have already noted that as p/n→ 0,

the effect of the convolution with the Gaussian disappears since ‖β̂ρ − β‖ → 0; in this case both

ei and r̃i(i) should be good estimates of εi. Similarly, in the case εi ∼ N(0, σ2), Equation (3)

tells us that ẽi(i) are also asymptotically marginally normally distributed, so that correcting the
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variance should result in r̃i(i) having the same distribution as εi, at least when Xi,j are i.i.d.

Surprisingly, for larger p/n we do not see a deterioration of the performance of bootstrapping

from r̃i(i). This is unexpected, since as p/n → 1 the risk ‖β̂ρ − β‖22 grows to be much larger

than σ2
ε (a claim we will make more precise in the next section); together with Equation (3),

this implies that r̃i(i) is essentially distributed N(0, σ̂2
ε,LS) as p/n → 1 regardless of the original

distribution of εi. This is confirmed in Figure 2 where we superimpose the results of bootstrap

confidence intervals from when we simply estimate Ĝ with N(0, σ̂2
ε,LS); we see the Type I error

rate of the confidence intervals based on bootstrapping from r̃i(i) do indeed approach that of

N(0, σ̂2
ε,LS). Putting these two pieces of information together leads to the conclusion that as

p/n→ 1 we can estimate Ĝ simply as N(0, σ̂ε,LS) regardless of the actual distribution of ε.

In the next section we give some theoretical results that seek to understand this phenomenon.

2.4 Behavior of the risk of β̂ when κ→ 1

In the previous section we saw even if the distribution of the bootstrap errors ε∗i given by Ĝ, is

not close to that ofG, we can sometime get accurate bootstrap confidence intervals. For example,

in least squares Equation (3) makes clear that even the standardized residuals, ri, do not have the

same marginal distribution as εi, yet they still provide accurate bootstrap confidence intervals in

our simulations. We would like to understand for what choice of distributions Ĝ will we see the

same performance in our bootstrap confidence intervals of β̂1?

When working conditional onX as in residual resampling, the statistical properties of (β̂∗−β̂)

differ from that of (β̂ − β) only because the errors are drawn from a different distribution – Ĝ

rather than G. Then to understand whether the distribution of β̂∗1 matches that of β̂1 we can ask:

what are the distributions of errors, G, that yield the same distribution for the resulting β̂1(G)?

In this section, we narrow our focus on understanding not the entire distribution of β̂1, but only

its variance. We do so because under assumptions on the design matrix X , β̂1 is asymptotically

normally distributed. This is true for both the classical setting of κ = 0 and the high-dimensional

setting of κ ∈ (0, 1) (see Supplementary Text, Section S3 for a review of these results and a more

technical discussion). Our previous question is then reduced to understanding which distributions

G give the same var
(
β̂1(G)

)
.

In the setting of least squares, it is clear that the only property of εi
iid
v G that matters
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for the variance of β̂1,L2 is σ2
ε , since var

(
β̂1,L2

)
= (X ′X)−1(1, 1)σ2

ε . For general ρ, if we

assume p/n → 0, then var
(
β̂1,ρ

)
will depend on features of G beyond the first two mo-

ments (specifically through E (ψ2(ε)) /[E (ψ′(ε))]2, [24]). If we assume instead p/n → κ ∈

(0, 1), then var
(
β̂1,ρ(G)

)
depends on G via its influence on the squared risk of β̂ρ, given by

E
(
‖β̂ρ(G)− β‖22

)
(see Supplementary Text, Section S3 for a review of these results).

For this reason, in the setting of p/n → κ ∈ (0, 1), we need to characterize the risk of β̂ρ to

understand when different distributions of ε result in the same variance of β̂. In what follows,

we denote by rρ(κ;G) the asymptotic risk of β̂ρ(G) as p and n tend to ∞. The dependence

of r2ρ(κ;G) on ε is characterized by a system of two non-linear equations (given in [17], see

Supplementary Text, S3), and therefore it is difficult to characterize those distributions Γ for

which r2ρ(κ;G) = r2ρ(κ; Γ). In the following theorem, however, we show that when κ → 1, the

asymptotic squared risk r2ρ(κ;G) converges to a constant that depends only on σ2
ε . This implies

that when κ → 1, two different error distributions that have the same variances will result in

estimators β̂1,ρ with the same variance.

We now state the theorem formally; see Supplementary Text, Section S4 for the proof of this

statement.

Theorem 2.1. Suppose we are working with robust regression estimators, and p/n→ κ. Assume

that Xi,j are i.i.d with mean 0 and variance 1, having Gaussian distribution or being bounded.

Then, under the assumptions stated in [16] for ρ and εi’s,

r2ρ(κ;G) ∼κ→1
σ2
ε

1− κ
,

provided ρ is differentiable near 0 and ρ′(x) ∼ x near 0.

Note that log-concave densities such as those corresponding to double exponential or Gaussian

errors used in the current paper fall within the scope of this theorem. ρ is required to be smooth

and not grow too fast at infinity. So the theorem applies to the lest-squares problem, appropriately

smoothed version of the `1 or Huber losses, as well as the less well-known dimension-adaptive

optimal loss functions described in [1]. We refer the reader to the Supplementary Text, Section

S3 and [16] for details.
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Implications for the Bootstrap For the purposes of the residual-bootstrap, Theorem 2.1 and

our discussion in Supplementary Text, Section S3.3 imply that different methods of estimating

the bootstrap distribution Ĝ will result in similar bootstrap confidence intervals as p/n→ 1 if Ĝ

has the same variance. This agrees with our simulations, where both of our proposed bootstrap

strategies set the variance of Ĝ equal to σ̂2
ε,LS and both had similar performance in our simulations

for large p/n. Furthermore, as we noted, for p/n closer to 1, they both had similar performance

to a bootstrap procedure that simply sets Ĝ = N (0, σ̂2
ε,LS) (Figure 2).

We return specifically to the bootstrap based on r̃i(i), the standardized predicted errors. Equa-

tion (3) tells us that the marginal distribution of ẽi(i) is a convolution of the distribution of ẽi(i) and

a normal, with the variance of the normal governed by the term ‖β̂ρ − β‖2. Theorem 2.1 makes

rigorous our previous assertion that as p/n→ 1, the normal term will dominate and the marginal

distribution of ẽi(i) will approach normality, regardless of the distribution of ε. However, Theo-

rem 2.1 also implies that as p/n→ 1, inference for the coordinates of β will be increasingly less

reliant on features of the error distribution beyond the variance, implying that our standardized

predited errors, r̃i(i), will still result in an estimate Ĝ that will give accurate confidence intervals.

Conversely, as p/n → 0 classical theory tells us that the inference of β relies heavily on the

distribution G beyond the first two moments, but in that case the distribution of r̃i(i) approaches

the correct distribution as we explained earlier. So bootstrapping from the marginal distribution

of r̃i(i) also makes sense when p/n is small.

For κ between these two extremes it is difficult to theoretically predict the risk of β̂ρ(Ĝ)

when the distribution Ĝ is given by resampling from the r̃i(i). We turn to numerical simulations

to evaluate this risk. Specifically, for εi ∼ G, we simulated data that is a convolution of G and

a normal with variance equal to r2ρ(κ;G); we then scale this simulated data to have variance σ2
ε .

The scaled data are the ε∗i and we refer to the distribution of ε∗i as the convolution distribution,

denoted Gconv. Gconv is the asymptotic version of the marginal distribution of the standardized

predicted errors, r̃i(i), used in our bootstrap method proposed above.

In Figure 3 we plot for both Huber loss and L1 loss the average risk rρ(κ;Gconv) (i.e errors

given by Gconv) relative to the average risk rρ(κ;G) (i.e errors distributed according to G), where

G has a double exponential distribution. We also plot the relative average risk rρ(κ;Gnorm),

where Gnorm = N(0, σ2
ε ). As predicted by Theorem 2.1, for κ close to 1, rρ(κ;Gconv)/rρ(κ;G)
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and rρ(κ;Gnorm)/rρ(κ;G) converge to 1. Conversely, as κ→ 0, rρ(κ;Gnorm)/rρ(κ;G) diverges

dramatically from 1, while rρ(κ;Gconv)/rρ(κ;G) approaches 1, as expected. For Huber, the

divergence of rρ(κ;Gconv)/rρ(κ;G) from 1 is at most 8%, but the difference is larger for L1

(12%), probably due to the fact that the convolution with a normal error has a larger effect on the

risk for L1.
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Figure 3: Relative Risk of β̂ for scaled predicted errors vs original errors - population ver-
sion: (a) Plotted with a solid lines are the ratios of the average risk of β̂(Gconv) to the average risk
of β̂(G) for Huber and L1 loss. (b) shows the same plot, but with the relative risk of β̂(ρ) when
the errors are distributed Gnorm = N (0, σ2

ε ) added to the plot (dotted lines). For both figures, the
y-axis gives the relative risk, and the x-axis is the ratio p/n, with n fixed at 500. Blue/triangle
plotting symbols indicate L1 loss; red/circle plotting symbols indicate Huber loss. The average
risk is calculated over 500 simulations. The “true” error distribution G is the standard Laplacian
distribution with σ2

ε = 2. Each simulation uses the standard estimate of σ2
ε from the generated

εi’s. rρ(κ;G) was computed using a first run of simulations with εi
iid
v G. The Huber loss in this

plot is Huber1 and not the default Huber1.345 of the rlm function.

3 Pairs Bootstrap

As described above, estimating the distribution F̂ from the empirical distribution of (yi, Xi)

(pairs bootstrapping) is generally considered the most general and widely applicable method of

bootstrapping, allowing for the linear model to be incorrectly specified (i.e E (yi) is not a linear

function of Xi). It is also considered to be slightly more conservative compared to bootstrapping
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from the residuals. In the case of random design, it makes also a lot of intuitive sense to use

the pairs bootstrap, since resampling the predictors might be interpreted as mimicking the data

generating process.

However, as in residual bootstrap, it is clear that the pairs bootstrap will have problems, at

least in quite high dimensions. In fact, when resampling the Xi’s from F̂ , the number of times a

certain vector Xi0 is picked has asymptotically Poisson(1) distribution. So the expected number

of different vectors appearing in the bootstrapped design matrix X∗ is n(1 − 1/e). When p/n

is large, with increasingly high probability the bootstrapped design matrix X∗ will no longer be

of full rank. For example, if p/n > (1 − 1/e) ≈ 0.63 then with probability tending to one as

n→∞, the bootstrapped design matrix X∗ is singular, even when the original design matrix X

is of rank p < n. Bootstrapping the pairs in that situation makes little statistical sense.

For smaller ratios of p/n, we evaluate the performance of pairs bootstrapping on simulated

data. We see that the performance of the bootstrap for inference also declines dramatically as the

dimension increases, becoming increasingly conservative (Figure 1). In pairs bootstrapping, the

error rates of 95%-confidence-intervals drop far below the nominal 5%, and are essentially zero

for the ratio of p/n = 0.5. Like residual bootstrap, this overall trend is seen for all the settings

we simulated under (Supplemental Figures S1, S2). For L1 loss, even ratios as small as 0.1 yield

incredibly conservative bootstrap confidence intervals for β̂1, with the error rate dropping to less

than 0.01. For Huber and L2 losses, the severe loss of power in our simulations starts for ratios

of 0.3 (see Tables S1,S5, S4).

A minimal requirement for the distribution of the bootstrapped data to give reasonable infer-

ences is that the variance of the bootstrap estimator β̂∗1 needs to be a good estimate of the variance

of β̂1. This is not the case in high-dimensions. In Figure 5 we plot the ratio of the variance of β̂∗1
to the variance of β̂1 evaluated over simulations. We see that for p/n = 0.3 and design matrices

X with i.i.d. N (0, 1) entries, the average variance of β̂∗1 roughly overestimates the true variance

of β̂1 by a factor 1.3 in the case of least-squares; for Huber and L1 the bootstrap estimate of

variance is roughly twice as large as it should be (Table S7).

In the case of least-squares, we can further quantify this loss in power by comparing the

size of the bootstrap confidence intervals to the size of the correct confidence interval based

on theoretical results (Figure 4). We see that even for ratios κ as small as 0.1, the confidence
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Figure 4: Comparison of width of 95% con-
fidence intervals of β1 for L2 loss: Here
we demonstrate the increase in the width of
the confidence interval due to pairs bootstrap-
ping. Shown on the y-axis is the percent
increase of the average confidence interval
width based on simulation (n = 500), as com-
pared to the average for the standard confi-
dence interval based on normal theory in L2;
the percent increase is plotted against the ratio
κ = p/n (x-axis). Shown are three different
choices in simulating the entries of the design
matrixX: (1)Xij ∼ N(0, 1) (2) ellipticalXij

with λi ∼ N(0, 1) and (3) elliptical Xij with
λi ∼ Exp(

√
2). The methods of simulation

are the same as described in Figure 1; exact
values are given in Table S2.

intervals for some design matrices X were 15% larger for pairs bootstrap than the correct size

(e.g. the case of elliptical distributions where λi is exponential). For much higher dimensions

of κ = 0.5, the simple case of i.i.d normal entries for the design matrix gives intervals that are

80% larger than needed; for the elliptical distributions we simulated, the width of the bootstrap

confidence interval was as much as 3.5 times larger than that of the correct confidence interval.

Furthermore, as we can see in Figure 1, least-squares regression represents the best case scenario;

L1 and Huber will have even worse loss of power and at smaller values of κ.

3.1 Theoretical analysis for least-squares

In the setting of least-squares, we can for some distributions of the design matrix X theoret-

ically determine the asymptotic expectation of the variance of v′β̂∗ and show that it is a severe

over-estimate of the true variance of v′β̂.

We first setup some notation for the theorem that follows. Define β̂w as the result of regressing

y on X with random weight wi for each observation (yi, Xi). In other words,

β̂w = argminu∈Rp

n∑
i=1

wi(yi −X ′iu)2 .
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We assume that the weights are independent of {yi, Xi}ni=1 and define β̂∗w to be the random

variable with distribution equal to that of β̂w conditional on the data {yi, Xi}ni=1, i.e. β̂∗w
L
=

β̂w|{yi, Xi}ni=1. For the standard pairs bootstrap, the distribution of β̂∗ from resampling from

the pairs (yi, Xi) is equivalent to the distribution of β̂∗w, where w is drawn from a multinomial

distribution with expectation 1/n for each entry. In which case, the variance of v′β̂∗w refers to the

standard bootstrap estimate of variance given by the distribution of v′β̂∗ over repeated resampling

from the pairs (yi, Xi).

We have the following result for the expected value of the bootstrap variance of any contrast

v′β̂∗w where v is deterministic, assuming independent weights with a Gaussian design matrix X

and some mild conditions on the distribution of the w’s.

Theorem 3.1. Let the weights (wi)
n
i=1 be i.i.d. and without loss of generality that E (wi) = 1; we

suppose that the wi’s have 8 moments and for all i, wi > η > 0. Suppose Xi’s are i.i.d N (0,Σ),

Σ is positive definite and the vector v is deterministic with ‖v‖2 = 1.

Suppose β̂ is obtained by solving a least-squares problem and yi = X ′iβ + εi, εi’s being i.i.d

mean 0, with var (εi) = σ2
ε .

If lim p/n = κ < 1 then the expected variance of the bootstrap estimator, asymptotically as

n→∞, is given by

p
E
(

var
(
v′β̂∗w

))
v′Σ−1v

= p
E
(

var
(
v′β̂w|{yi, Xi}ni=1

))
v′Σ−1v

→ σ2
ε

κ 1

1− κ− E
(

1
(1+cwi)2

) − 1

1− κ

 ,

where c is the unique solution of E
(

1
1+cwi

)
= 1− κ.

For a proof of this theorem and a consistent estimator of this limit, see Supplementary Text,

Section S5. We note that E
(

1
(1+cwi)2

)
≥
[
E
(

1
1+cwi

)]2
= (1 − κ)2 - where the first inequality

comes from Jensen’s inequality, and therefore the expression we give for the expected bootstrap

variance is non-negative.

In 3.1.1 below, we discuss possible extensions of this theorem, such as different design ma-

trices. Before doing so, we first will discuss the implications of this result to pairs bootstrapping.

Multinomial Weights In the standard pairs bootstrap, the weights are chosen according to a

Multinomial(n, 1/n) distribution. This violates two conditions in the previous theorem: inde-
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pendence of wi’s and the condition wi > 0. In what follows, we use i.i.d Poisson(1) weights as a

proxy for the Multinomial(n, 1/n) to develop intuition about this latter case (see Supplementary

Text, Section S5.3.2 for technical details addressing these issues).

Implications for Pairs Bootstrap We can use the formula in Theorem 3.1 to explain why

pairs bootstrap confidence intervals perform poorly in high-dimensions, at least for least squares

regression with Gaussian design matrix.

WhenXi
iid
v N (0,Σ), it is well known in the least-squares case that the quantity p var

(
v′β̂
)
/v′Σ−1v

converges asymptotically to κ/(1 − κ)σ2
ε (this can be shown through simple Wishart computa-

tions [20, 31]). If the variance of v′β̂∗w converged to the variance of v′β̂, we should be able to

equate this latter quantity to the limit given in Theorem 3.1, i.e.,κ 1

1− κ− E
(

1
(1+cwi)2

) − 1

1− κ

 =
κ

1− κ
,

and hence should have

E

(
1

(1 + cwi)2

)
=

1− κ
1 + κ

.

However, this relationship does not hold for most weight distributions. In particular for

weights following a Poisson(1) distribution (which asymptotically corresponds to the standard

pairs bootstrap), numerical calculations show that this relationship does not hold, and thus pairs

bootstrap does not correctly estimate the variance of v′β̂. In Figure 5a we calculate the theoretical

predictions of E
(

var
(
β̂∗w

))
given by Theorem 3.1 (using Poisson(1) weights and Σ = Idp), and

we compare them to the asymptotic variance of β̂1 given by κ/(1−κ)σ2
ε/p. We see that Theorem

3.1 predicts that the pairs bootstrap overestimates the variance of the estimator by a factor that

ranges from 1.2 to 3 as κ varies between 0.3 and 0.5. These theoretical predictions correspond to

the level of overestimation of the variance seen in our bootstrap simulations (Figure 5b).

3.1.1 Extensions of Theorem 3.1

Case of elliptical design In light of previous work on model robustness issues in high-dimensional

statistics (see e.g [8, 22, 14, 15]), it is natural to ask whether the central results of Theorem 3.1

still apply when Xi
L
= λiZi, with λi a random variable independent of Zi, and Zi ∼ N (0,Σ).
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Figure 5: Factor by which standard pairs bootstrap over-estimates the variance: (a) plotted
is the ratio of the value of the expected bootstrap variance computed from Theorem 3.1 using
Poisson(1) weights to the asymptotic variance κ/(1 − κ)σ2

ε . (b) boxplots of the ratio of the
bootstrap variance of β̂∗1 to the variance β̂1, as calculated over 1000 simulations (i.e. var

(
β̂
)

is
estimated across simulated design matrices X , and not conditional on X). The theoretical pre-
diction for the mean of the distribution from Theorem 3.1 is marked with a ‘X’ for L2 regression.
Simulations were performed with normal design matrix X and normal error εi with values of
n = 500. For the median values of each boxplot, see Supplementary Table S7.

We require E (λ2i ) = 1 so that cov (Xi) = Σ, as in the assumptions of Theorem 3.1. The short

answer is that the formula in Theorem 3.1 does not apply directly to this case. However, the proof

given in Supplementary Text, Section S5 can be extended to that setting. We refer the interested

reader to the Supplementary Text Section S5.3.1 for more details.

Going beyond the Gaussian design As explained in several papers in random matrix theory,

a number of the quantities appearing in our theorems will converge to the same limit when i.i.d

Gaussian predictors are replaced by i.i.d predictors with mean 0 and variance 1 and enough mo-

ments (an example being bounded random variables). Since our proof relies on random-matrix-

theoretic arguments, the results we present here should be fairly robust to changing normality

assumptions to i.i.d-ness assumptions for the entries of the design matrix X . The technical work

necessary for making this rigorous, however, is beyond the scope of this paper.
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3.2 Alternative weight distributions for resampling

The formula given in Theorem 3.1 suggests that resampling from a distribution F̂ defined us-

ing weights other than i.i.d Poisson(1) (or, equivalently for our asymptotics, Multinominal(n,1/n))

should give us better bootstrap estimators than using the standard pairs bootstrap. In fact, we

should require, at least, that the bootstrap expected variance of these estimators match the correct

variance var
(
v′β̂
)

= κ/(1 − κ)σ2
ε/p (for the Gaussian design, when Σ = Idp). We focus our

discussion on the case Σ = Idp; see Supplementary Text, Section S5.1 for the case Σ 6= Idp.

We note that if we use wi = 1, ∀i, the bootstrap variance will be 0, since with such a

resampling scheme the resampled dataset is always the original dataset. On the other hand, we

have seen that with wi ∼ Poisson(1), the expected bootstrap variance was too large compared to

κ/(1 − κ)σ2
ε/p. Hence, we tried to find alternative weights via calculating a parameter α such

that if

wi
iid
v 1− α + αPoisson(1) , (6)

the expected bootstrap variance would match the theoretical value of κ/(1− κ)σ2
ε/p.

We solved numerically this problem to find α(κ) (see Supplementary Table S6 and Sup-

plementary Text, Subsection S5.1 for details of computation). We then used these values and

performed bootstrap resampling using the weights defined in Equation (6). We evaluated boot-

strap estimate of var
(
β̂1

)
as well as the confidence interval coverage of the true β1. We find that

this adjustment of the weights in estimating F̂ results in accurate bootstrap estimates of variance

and appropriate levels of confidence interval coverage (Table 1).

However, small changes in the choice of α can result in fairly large changes in E
(

var
(
v′β̂w|X, ε

))
.

For instance, for κ = 0.5, using the value of α = 0.95 which is close to the correct value of

α(0.5) = 0.92 results in an expected bootstrap variance roughly 30% larger than it should be.

Moreover, this strategy for finding a good weight distribution requires knowing a great deal

about the distribution of the design matrix. Hence the work we just presented on finding new

weight distributions for bootstrapping is a proof of principle that alternative weighting schemes

could be used for pairs bootstrapping in high-dimension, but important practical details would

depend strongly on the statistical model that is assumed. This is in sharp contrast with the low-

dimensional situation, where a unique and model-free bootstrap resampling technique works in

a broad variety of situations.
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κ
.1 .2 .3 .5

α .9875 .9688 .9426 .9203
Error Rate of 95% CIs 0.051 0.06 0.061 0.057

Ratio of Variances 1.0119 1.0236 0.9931 0.9992

Table 1: Summary of weight-adjusted bootstrap simulations for L2 : Given are the results of
performing bootstrap resampling for n = 500 according to the estimate of F̂ given by the weights
in Equation (6). “Error Rate of 95% CIs” denotes the percent of bootstrap confidence intervals
that did not containing the correct value of the parameter β1. “Ratio of Variances” gives the ratio
of the empirical expected bootstrap variance over our simulations divided by the theoretical value
σ2
εκ/(1− κ). Results are based on 1000 simulations, with a Gaussian random design and errors

distributed as double exponential.

4 The Jackknife

In the context we are investigating, where we know that the distribution of β̂1 is asymptot-

ically normal (see Supplementary Text, S3), it is natural to ask whether we could simply use

the jackknife to estimate the variance of β̂1. The jackknife relies on leave-one-out procedures to

estimate var
(
β̂1

)
. More specifically, for a fixed vector v, var

(
v′β̂
)

:

v̂arJACK(v′β̂) = varJACK =
n− 1

n

n∑
i=1

(v′[β̂(i) − β̃])2 (7)

where β̃ = 1
n

∑n
i=1 β̂(i). The case of β̂1 corresponds to picking v = e1, i.e the first canonical basis

vector. The Efron-Stein inequality guarantees in general that the expectation of the jackknife

estimate of variance gives an upper-bound on the variance of the statistic under consideration

[12].

Given the problems we just documented with the pairs bootstrap, it is natural to ask whether

confidence intervals based on the jackknife estimate of variance perform better than pairs boot-

strap intervals in high-dimensions. The jackknife is known to have problems ([11] or [27], p.105),

but the reliance of the jackknife on leave-one-out estimates β̂(i) might suggest it could be more

robust to dimensionality issues than other methods.
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Figure 6: Factor by which jack-
knife over-estimates the variance:
boxplots of the ratio of the jack-
knife estimate of the variance β̂1
to the variance of β̂1 as calculated
over 1000 simulations. Simulations
were with normal design matrix X
and normal error εi with values of
n = 500. Note that because the L1

jackknife estimates so wildly over-
estimate the variance, in order to put
all the methods on the same plot
the boxplot of ratio is on log-scale;
y-axis labels give the correspond-
ing ratio to which the log values
correspond. For the median values
of each boxplot, see Supplementary
Table S7.

Empirical findings As in the pairs bootstrap case, simulations show that confidence intervals

based on the jackknife estimate of variance lead to extremely poor inference for β1 (Figure 1)

and that the jackknife dramatically overestimates the variance of β̂1 (Figure 6 and Supplementary

table S7). For L2 and Huber loss, the jackknife estimate of variance is 10-15% too large for

p/n = 0.1, and for p/n = 0.5 the jackknife estimate of variance is 2-2.5 times larger than

it should be. In the case of L1 loss, the jackknife variance is completely erratic, even in low

dimensions; this is not completely surprising given the known problems with the jackknife for

the median [27]. Even for p/n = 0.01, the estimate is not unbiased for L1, with median estimates

twice as large as they should be and enormous variance in the estimates of variance. Higher

dimensions only worsen the behavior with jackknife estimates being 15 times larger than they

should.

4.1 Theoretical results

Again, in the case of least-squares regression with a Gaussian design matrix, we can theoret-

ically evaluate the behavior of the jackknife. The proof of the following theorem is given in the

Supplementary Text, Section S6.
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Theorem 4.1. Let us call varJACK the jackknife estimate of variance of β̂1, the first coordinate

of β̂. Suppose the design matrix X is such that Xi
iid
v N (0,Σ). Suppose β̂ is computed using

least-squares and the errors ε have a variance. Then we have, as n, p→∞ and p/n→ κ < 1,

E (varJACK)

var
(
β̂1

) → 1

1− κ
.

The same result is true for the jackknife estimate of variance of v′β̂, where v is any deterministic

vector with ‖v‖2 = 1.

Correcting the Jackknife in Least Squares Theorem 4.1 implies that scaling the jackknife

estimate of variance by multiplying it by 1− p/n will result in an estimate of var
(
β̂1

)
with the

correct expectation; simulations shown in Figure 7 confirm that confidence intervals based on

this corrected estimate of variance yield correct confidence intervals for least-squares estimates

of β̂ when the design matrix X is Gaussian. However this scaling factor is not robust to viola-

tions of these assumptions. In particular when the X matrix follows an elliptical distribution the

correction of 1 − p/n from Theorem 4.1 gives little improvement even when the loss is still L2

(Figure 7).

Corrections for more general settings For the more general setting of an elliptical design

matrix X and loss function ρ, preliminary computations suggest an alternative result. Let S be

the random matrix defined by

S =
1

n

n∑
i=1

ψ′(ei)XiX
′
i.

Then in our asymptotic regime, and when Σ = Idp, preliminary heuristic calculations suggest

that we can estimate the amount by which E (varJACK) overestimates the variance of β̂1 by

E (γ̂), where

γ̂ ,
trace (S−2) /p

[trace (S−1) /p]2
. (8)

Note that when applied to least-squares regression with X ∼ N (0, Idp) this conforms to our

result in Theorem 4.1. Theoretical considerations suggest that in our asymptotics, for smooth

ρ, γ̂ ' E (γ̂), which suggests a data-driven correction to the jackknife estimate of variance;
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however that correction depends having information about the distribution of the design matrix.

Equation (8) assumes that the loss function can be twice differentiated, which is not the case

for either Huber or L1 loss. In the case of non-differentiable ρ and ψ, we can use appropriate

regularizations to make sense of those functions. For ρ = Huberk, i.e a Huber function that

transitions from quadratic to linear at |x| = k, ψ′ should be understood as ψ′(x) = 1|x|≤k. For L1

loss, ψ′ should be understood as ψ′(x) = 1x=0.

In Figure 7 we show simulation results for confidence intervals created based on rescaling the

jackknife estimate of variance by E (γ̂) defined in Equation (8). In the case of least-squares with

an elliptical design matrix, this correction – which directly uses the distribution of the observed

X matrix – leads to a definite improvement in our jackknife confidence intervals. Similarly, for

the Huber loss we see a definite improvement as compared to the standard jackknife estimate,

as well as an improvement over the simpler correction of 1 − p/n that would be appropriate for

squared error loss.

It should be noted that the quality of this proposed correction seems to depend on how smooth

ψ is. In particular, even using the previous interpretations, the correction does not perform well

for L1 (at least for n = 1000 and κ = .1, .3, .5, data not shown) - though as we mentioned Figure

6 shows that jackknifing in L1-regression is probably not a good idea; see also [27], Section 3.9.

4.2 Case of Σ 6= Idp and extensions of Theorem 4.1

The invariance arguments concerning cov (Xi) we give in the Supplementary Text Section S7

apply to all loss functions ρ when Xi has an elliptical distribution. In particular, if β̂ρ(Σ) denotes

our estimator when cov (Xi) = Σ, we have

E
(

varJACK(v′β̂ρ(Σ))
)

var
(
v′β̂ρ(Σ)

) =
E
(

varJACK(v′β̂ρ(Idp))
)

var
(
v′β̂ρ(Idp)

)
In Equation (8) we give a heuristically derived way to estimate this quantity. However, the γ̂

given there depends crucially on knowing that cov (Xi) = Idp and cannot be used as-is when

Σ 6= Idp.

It is also natural to ask if Theorem 4.1 is likely to be true and can be extended to Xi,j’s

being i.i.d with mean 0 and variance 1. Since the proof of Theorem 4.1 is based on random
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Figure 7: Rescaling jackknife estimate of variance: Shown are the error rates for confidence
intervals for different re-scalings of the jackknife estimate of variance: the standard jackknife
estimate (green); re-scaling using 1 − p/n as given in Theorem 4.1 for the L2 case with normal
design matrix X (blue); and re-scaling based on the heuristic in Equation (8) for those settings
not covered by the assumptions of Theorem 4.1 (magenta). The Huber loss in this plot is Huber1
rather than the default Huber1.345; Huber1 is further from L2 than Huber1.345 and therefore better
shows the improvement gained by using the heuristic in Equation (8).

matrix techniques, further technical work should allow such an extension, provided Xi,j’s have

sufficiently many moments (see Supplementary Text, S6.3 for details).

5 Conclusion

In this paper, we have studied various resampling plans in the high-dimensional setting where

p/n is not close to zero. One of our main findings is that the two most widely-used and advocated

bootstraps will yield either highly conservative or highly anti-conservative confidence intervals.

This is in sharp contrast to the low-dimensional setting where p is fixed and n→∞ or p/n→ 0.

Under various assumptions underlying our simulations, we explained theoretically the phenom-
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ena we were observing in our numerical work. We give improvements to these bootstrap methods

that give confidence intervals with approximately correct coverage probability. However, these

corrections were generally based on knowing or assuming certain non-trivial properties of the de-

sign matrix - hence they violate the tenets of the bootstrap which promises a simple and universal

numerical method to get accurate solutions to a broad class of problems. A possible exception is

our proposal for resampling the standardized predicted errors. This bootstrap routine continued

to perform reasonably well without distribution-specific corrections and has the potential to be a

general-purpose bootstrap method for high dimensions.

This work has focused on estimation of the linear model, where we can check the perfor-

mance of the bootstrap against theoretical benchmarks. The real practical power of the bootstrap

lays in giving the ability to perform inference in complicated settings involving sophisticated sta-

tistical procedures for which we do not even begin to have theoretical results for the behavior of

our estimators. Yet, even for the simple case of inference in the linear model and for the simplest

inferential question, our work shows that the two most common and natural resampling tech-

niques perform very poorly in only moderately high-dimensions. More importantly, these two

equally intuitive methods have completely divergent statistical behavior with one being incredi-

bly conservative and the other anti-conservative. This casts serious doubts about the reliability,

interpretability and accuracy of inferential statements made through resampling methods in high

dimensions, which is troubling for more complicated problems where resampling techniques are

the only inference tools currently available. Our findings also raise many interesting new theo-

retical and methodological questions.

SUPPLEMENTARY MATERIAL

Supplementary Text More detailed description of simulations and proofs of the theorems stated

in main text (pdf)

Supplementary Figures Supplementary Figures referenced in the main text (pdf)

Supplementary Tables Supplementary Tables referenced in the main text (pdf)
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APPENDIX

Notations : in this appendix, we use e
i

to denote the i-th residual, i.e e
i

= y
i

�X 0
i

b�. We use
ẽ
i(i)

to denote the i-th prediction error, i.e ẽ
i(i)

= y
i

�X 0
i

b�
(i)

, where b�
(i)

is the estimate of b� with
the i-th pair (y

i

, X
i

) left out. We assume that the linear model holds so that y
i

= X 0
i

� + ✏
i

. We
assume that the errors ✏

i

are i.i.d with mean 0.

S1 Deconvolution Bootstrap

In the main text, we considered situations where our predictors X
i

are i.i.d with an elliptical
distribution and assume for instance that X

i

= �
i

⇠
i

, where ⇠
i

⇠ N (0,⌃) and �
i

are i.i.d scalar
random variables with E

�
�2
i

�
= 1. As described in the main text, if X is elliptical, ẽ

i(i)

is a
convolution of the correct G distribution and a Normal distribution,

ẽ
i(i)

' ✏
i

+

˜Z
i

,

where
˜Z
i

iidv N (0,�2
i

kb�
⇢(i)

� �k2
2

)

and are independent of ✏
i

.
We proposed in Section 2.3 of the main text an alternative bootstrap method based on using de-

convolution techniques to estimate G (Method 1). Specifically, we proposed the following bootstrap
procedure:

1. Calculate the predicted errors, ẽ
i(i)

2. Estimate |�
i

|kb�
⇢(i)

� �k
2

(the standard deviation of the ˜Z
i

)

3. Deconvolve in ẽ
i(i)

the error term ✏
i

from the ˜Z
i

term ;

4. Use the resulting estimates of G as the estimate of ˆG in residual bootstrapping.

S1.1 Estimating kb�⇢ � �k and the variance of the Z
i

Deconvolution methods that deconvolve ✏ from the ˜Z
i

require an estimate of the variance of the
˜Z
i

. Equation (3) gives the variance as �2
i

kb�
⇢(i)

� �k2
2

, and we need to estimate this quantity from
the data. We use the approximation

kb�
⇢(i)

� �k
2

' kb�
⇢

� �k
2

.

See Supplementary Text, S3 and references therein for justification of this approximation.
Furthermore, as we note in the main text, in our implementation of this deconvolution in simu-

lations we assume X ⇠ N (0, Id
p

) so that �
i

= 1 (see Section S1.5 below for estimating �
i

in the
elliptical case). This means we are estimating the variance of ˜Z

i

as kb� � �k2
2

for all i. We estimate
this as

dvar( ˜Z
i

) =dvar(ẽ
i(i)

)� �̂2
✏

,

where dvar(ẽ
i(i)

) is the standard estimate of variance and �̂2
✏

is the estimate of variance from the
least squares fit, b�2

✏,LS

, defined in the main text.
In the case where dvar(ẽ

i(i)

)  �̂2
✏

, we do not do a deconvolution, but simply bootstrap from the
ẽ
i(i)

. This is generally only the case when p/n is quite small.

1



S1.2 Estimating Ĝ

We used the deconvolution algorithm in the decon package in R [39] to estimate the distribu-
tion of ✏

i

. Deconvolution algorithms require selection of a bandwidth in the kernels that make up the
functional basis of the estimate. The appropriate bandwidth parameter in deconvolution problems is
tied intrinsically to the use of the estimate, with optimal bandwidths depending on what functional
of the distribution is wanted (e.g. the pdf versus the cdf). Moreover, the optimal bandwidth depends
on the distribution of ˜Z

i

with which the signal is being convolved. Ultimately, our procedure resam-
ples from the distribution ˆG, requiring estimates of G�1

(y), and the distribution of ˜Z
i

is Gaussian.
There is no specific theory for the optimal bandwidth in this setting (though see the work of [19] for
optimal bandwidth selection for estimations of the quantiles of ˆG if the ˜Z

i

are distributed accord-
ing to a distribution whose characteristic function decays polynomially at infinity - see Assumption
(A.11) on p.2133; this is clearly violated in our case where ˜Z

i

are normally distributed.)
We used the bandwidth estimation procedure bw.dboot2 provided in the package decon.

[6] outlines problems in the estimation of bandwidth parameter in decon; specifically that the
implementation in decon of existing bandwidth estimation procedures does not match their pub-
lished descriptions. bw.dboot2 was not one of the bandwidth procedures with these discrep-
ancies. However, we also compared our results with a bandwidth selected via the bandwidth se-
lection method of [4, 5] and used the R code implementation provided by the authors on http:

//www.ms.unimelb.edu.au/

˜

aurored/links.html#Code. The two different choices
in bandwidth, however, had little effect on the coverage of the bootstrap confidence intervals (Sup-
plemental Figure S3). The results in Figure 2 in the main text make use of the bandwidth parameter
of [4, 5].

For both bandwidth selections, we estimated the cdf using the function DeconCdf provided in
the decon package and provided the bandwidth parameters described above. We specified the error
distribution as ‘Normal’ and set the variance of ˜Z

i

as described above in Section S1.1. The number
of grid points for evaluating the cdf (the ‘ngrid’ argument) was set to be the number needed to get a
space of 0.01 across the range of observed ẽ

i(i)

, with a lower bound of 512 grid points (the default
of ‘ngrid’ given by the DeconCdf function). Other options were set to the default of DeconCdf.

S1.3 Random draws from Ĝ

The end result of the DeconCdf function was values of the ˆG evaluated at specific grid points
x. The resulting ˆG(x) was not always guaranteed to be  1 nor monotonically decreasing; this
is likely due to the fact that use of higher-order kernels estimates (which is standard practice in
deconvolution literature) does not constrain the estimate be a proper density. Furthermore, the tail
ends of the cdf are based on little data and unlikely to reliable, as well as having problems either
non-monotonicity or extending beyond the boundaries of (0, 1). We truncated the left tail of ˆG(x) to
be within 0.001 by finding the largest such x

0

such that ˆG(x
0

)  0.001 and setting ˆG(x) = 0.001
for x  x

0

; and we similarly trimmed the right tail based on 1 � 0.001. We then calculated the
differences d

i

=

ˆG(x
i

) � ˆG(x
i�1

) and for d
i

< 0 set d
i

= 0. We then defined a monotone cdf
based on the cumulative sum of the d

i

,

C(x
j

) =

jX

i=1

d
i

.

2



We then renormalized the values C(x
j

) so that they extend from 0 to 1, giving the final monotone
estimate of ˆG(x

j

) as
ˆG(x

j

) =

C(x
j

)�min

i

C(x
i

)

max

i

C(x
i

)�min

i

C(x
i

)

To randomly sample from ˆG, we needed to be able to evaluate ˆG for all x. We did this by linearly
interpolating between the ˆG(x

j

) values. In what follows, we consider the values ˆG(x) based on this
smoothed and monotone version of the original output of the DeconCdf function.

We create random draws from ˆG by drawing random variables U
i

from a Unif(0, 1) and calcu-
lating E

i

=

ˆG(U
i

). We further centered and standardized the draws E
j

from ˆG to get

✏⇤
j

= (E
j

�mean
i

(E
j

))

b�
✏,LSp

var (E
i

)

so that the resulting ✏⇤
j

have mean zero and variance b�2
✏,LS

. This was done because the variance of
ˆG was not guaranteed to have the correct variance, dispite the fact we prespecify the variance in
the deconvolution call. Ensuring the correct moments of ✏⇤

j

was a critical component for reasonable
coverage of the bootstrap confidence intervals. When we did not standardize the results and just took
the draws from E

j

, the resulting bootstrap confidence intervals became more and more conservative
as p/n grew. This again highlights the results of Theorem 2.1 – the variance of ˆG is the most
important feature of the distribution in order to have accurate confidence intervals.

S1.4 Bootstrap estimates b�⇤ from Ĝ

We used ˆG to create bootstrap errors, {✏⇤
i

}n
i=1

in two ways. For the first method we estimated
{✏⇤

i

}n
i=1

as a i.i.d draws from ˆG, and repeatedly drew such samples from ˆG, B times. In the second
method, we drew one single estimate {✏̂

i

}n
i=1

as i.i.d draws from ˆG and then created {✏⇤
i

}n
i=1

from
resampling from the empirical distribution of the {✏̂

i

}n
i=1

, and repeated this resampling from the
empirical distribution of {✏̂

i

}n
i=1

B times. For both methods, we then calculated b�⇤ from the data
(X

i

, y⇤
i

) where y⇤
i

= X 0
i

b� + ✏⇤
i

, as in the standard residual bootstrap. The first method seems to do
slightly better in simulations, see Supplemental Figure S3.

S1.5 Estimation of �2

i

To extend the deconvolution bootstrapping method to the elliptical case when p/n !  2 (0, 1),
one needs to be able to estimate �

i

, at least up to sign. In which case, one could estimate individually
the variance of ˜Z

i

and feed these individual estimates into the deconvolution method described
above.

We recall a simple proposal from the paper [9] to solve this problem. Specifically, the author
proposes to use

b�
i

2

=

kX2

i

k
2

/p

1

p

trace
⇣
b
⌃

⌘
=

kX
i

k2
2

1

n

P
n

i=1

kX
i

k2
2

,

where b⌃ =

1

n

P
n

i=1

X
i

X 0
i

. Under mild conditions on ⌃ and �
i

, it can be shown that when n ! 1
and p/n !  2 (0,1)

sup

1in

|�2
i

�c�2
i

| ! 0 in probability.

The intuition and proof are as follows. Concentration of measure arguments [26] show that k⇠
i

k2/p '
trace (⌃) /p and hence kX

i

k2/p ' �2
i

trace (⌃) /p. The law of large numbers and a little bit of fur-
ther technical work then imply that 1

n

P
n

i=1

kX
i

k2/p ' E
�
�2
i

�
trace (⌃) /p = trace (⌃) /p.
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S2 Description of Simulations and other Numerics

In the simulations described in the paper, we explored variations in the distribution of the design
matrix X , the error distribution, the loss function, the sample size (n), and the ratio of  = p/n,
detailed below.

All results in the paper were based upon 1, 000 replications of our simulation routine for each
combination of these values. Each simulation consisted of

1. Simulation of data matrix X , {✏
i

}n
i=1

and construction of data y
i

= X 0� + ✏
i

. However, for
our simulations, � = 0 (without loss of generality for the results, which are shift equivariant),
so y

i

= ✏
i

.

2. Estimate ˆ� using the corresponding loss function. For L
2

this was via the lm command in
R, for Huber via the rlm command in the MASS package with default settings (k = 1.345)
[38], and for L

1

via an internal program making use of MOSEK optimization package and
accessed in R using the Rmosek package [31]. The internal L

1

program was checked to give
the same results as the rq function that is part of the R package quantreg [25], but was
much faster for simulations.

3. Bootstrapping according to the relevant bootstrap procedure (using the boot package) and
estimating ˆ�⇤ for each bootstrap sample. Each bootstrap resampling consisted of R = 1, 000
bootstrap samples, the minimum generally suggested for 95% confidence intervals [3]. For
jackknife resampling and for calculating leave-one-out prediction errors ẽ

i(i)

, we wrote an
internal function that left out each observation in turn and recalculated ˆ�

(i)

.

4. Construction of confidence intervals for ˆ�
1

. For bootstrap resampling, we used the function
boot.ci in the boot package to calculate confidence intervals. We calculated “basic”,
“percentile”, “normal”, and “BCA” confidence intervals (see help of boot.ci and [3] for
details about each of these), but all results shown in the manuscript rely on only the percentile
method. The percentile method calculates the boundaries of the confidence intervals as the
estimates of 2.5% and 97.5% percentiles of ˆ�⇤

1

(note that the estimate is not exactly the ob-
served 2.5% and 97.5% of ˆ�⇤

1

, since there is a correction term for estimating the percentile,
again see [3]). For the jackknife confidence intervals, the confidence interval calculated was

a standard normal confidence interval (±1.96

q
dvar

Jack

(

ˆ�
1

))

S2.1 Values of parameters

Design Matrix For the design matrix X , we considered the following designs for the distribution
of an element X

ij

of the matrix X

• Normal: X
ij

are i.i.d N(0, 1)

• Double Exp: X
ij

are i.i.d. double exponential with variance 1.

• Elliptical: X
ij

⇠ �
i

Z
ij

where the Z
ij

are i.i.d N(0, 1) and the �
i

are i.i.d according to

– �
i

⇠ Exp(
p
2) (i.e. mean 1/

p
2)

– �
i

⇠ N(0, 1)

– �
i

⇠ Unif(0.5, 1.5)

4



Error Distribution We used two different distributions for the i.i.d errors ✏
i

: N(0, 1) and standard
double exponential (with variance 2).

Dimensions We simulated from n = 100, 500, and 1, 000 though we showed only n = 500 in
our results for simplicity. Except where noted, no significant difference in the results was seen for
varying sample size. The ratio  was simulated at 0.01, 0.1, 0.3, 0.5.

S2.2 Correction factors for Jackknife

We computed these quantities using the formula we mentioned in the text and Matlab. We
solve the associated regression problems with cvx [17, 16], running Mosek [1] as our optimization
engine. We used n = 500 and 1, 000 simulations to compute the mean of the quantities we were
interested in.

S2.3 Plotting of Figure 3a

This figure was generated with Matlab, using cvx and Mosek, as described above. We picked
n = 500 and did 500 simulations. p was taken in (5, 10, 30, 50, 75, 100, 125, 150, 175, 200, 225,
250, 275, 300, 350, 400, 450). We used our simulations for the case of the original errors to estimate
E
⇣
kb� � �k

2

⌘
. We used this estimate in our simulation under the convolved error distribution. The

Gaussian error simulations were made with N (0, 2) to match the variance of the double exponential
distribution.

S3 Technical background on results for robust regression

Recall that we consider

b�
⇢

= argmin

u2Rp

nX

i=1

⇢(y
i

�X 0
i

u) , where y
i

= ✏
i

+X 0
i

� .

The ✏
i

’s are assumed to be i.i.d with mean 0 here.

S3.1 Classical results and asymptotic normality

Least-squares In this case ⇢(x) = x2/2 and we have of course

b�
LS

� � = (X 0X)

�1X 0✏ .

Hence,
cov

⇣
b�
LS

⌘
= (X 0X)

�1

var (✏) .

Robust regression We recall the classic result of Huber [22] and [23], Chapter 7: when p is fixed
and n ! 1,

cov

⇣
b�
⇢

⌘
=

1

n

✓
X 0X

n

◆�1 E
�
 2

(✏)
�

[E ( 0
(✏))]2

.

See also the papers [33, 34, 35, 27] for the situation where p ! 1 and p/n ! 0 at various rates.
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Asymptotic normality questions and impact on confidence intervals: p/n ! 0 In the case
of least-squares, the Lindeberg-Feller theorem [37] guarantees that under mild conditions on the
p ⇥ n matrix X , the coordinates of b�

LS

are asymptotically Normal. Similarly if the 1 ⇥ n vec-
tor v0(X 0X)

�1X 0 satisfy the conditions of the the Lindeberg-Feller theorem, then v0(b�
LS

� �) is
asymptotically normal. Similarly, under mild conditions on X , the classic papers mentioned above
guarantee asymptotic normality of the coordinates of b�

⇢

when p/n ! 0. In these cases, the width
of confidence intervals for the coordinates of � are hence only dependent asymptotically on the
variance of the coordinates of b�

⇢

.

S3.2 Summary of recent results on high-dimensional robust regression

We summarize in this section the key results we use from the recent papers [13, 14, 10]. The
third paper is a completely rigorous version of the heuristic arguments of the first two; the first
paper is the long-form version of the second one. Those papers are concerned with the asymptotic
properties of b�

⇢

when p/n !  2 (0, 1). The predictor vectors X
i

’s are assumed to be random and
independent, with X

i

= �
i

⌃

1/2

˜X
i

, where ˜X
i

has i.i.d (not necessarily Gaussian) entries with mean
0 and variance 1. �

i

’s are independent random variables with E
�
�2
i

�
= 1. (The n⇥p design matrix

X is full rank with probability 1. ⌃ has only positive eigenvalues.) X
i

’s are independent of ✏
i

’s.

Role of cov (X
i

) = ⌃ It is shown that in these papers, if b�(�;⌃) is the regression vector corre-
sponding to the situation where y

i

= X 0
i

� + ✏
i

and cov (X
i

) = ⌃ for all i,

b�
⇢

(�;⌃) = � + ⌃

�1/2b�(0; Id
p

) .

This follows from a simple change of variable. It also means that to understand the properties of
b�
⇢

(�;⌃), it is enough to understand the “null case” � = 0 and ⌃ = Id

p

.

Consequence for leave-one-out-predicted errors The result we just mentioned has an important
consequence for our leave-one-out predicted error, i.e ẽ

i(i)

= y
i

�X 0
i

b�
(i)

: ẽ
i(i)

(�;⌃) = ẽ
i(i)

(0; Id

p

).
In other words, we can assume without loss of generality that � = 0 and ⌃ = Id

p

when working
with leave-one-out-predicted errors.

A non-asymptotic and exact stochastic representation in the elliptical case When X
i

iidv �
i

�
i

,
where �

i

⇠ N (0,⌃) and �
i

is a random variable independent of �
i

, it is shown that

b�
⇢

(�;⌃)
L
= � + kb�

⇢

(0; Id

p

)k
2

⌃

�1/2u ,

where u is uniformly distributed on the unit sphere in Rp and kb�
⇢

(0; Id

p

)k
2

is independent of u.
kb�

⇢

(0; Id

p

)k
2

is simply the norm of b�
⇢

when � = 0 and cov (X
i

) = Id

p

. Note that u has the
stochastic representation u

L
= Z

p

/kZ
p

k
2

, where Z
p

⇠ N (0, Id
p

).

Consequence of the previous representation for large p Since kZ
p

k
2

has �
p

distribution, it is
clear that as p ! 1, if v is a deterministic vector,

p
p
v0(b�

⇢

(�;⌃)� �)

kb�
⇢

(0; Id

p

)k
2

=) N (0, v0⌃�1v) ,

where =) denotes weak convergence of distributions. Hence, provided kb�
⇢

(0; Id

p

)k
2

and v0⌃�1v

remain bounded, v0b�
⇢

(�;⌃) is pp-consistent for v0�.
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Properties of kb�
⇢

(0; Id

p

)k
2

It is shown, under various technical assumptions, that as p and n tend
to infinity with p/n ! , the variance of the random variable kb�

⇢

(0; Id

p

)k
2

goes to zero. Hence,
for practical matters, kb�

⇢

(0; Id

p

)k
2

can be considered non-random. In particular, that implies that

p
pv0(b�

⇢

(�;⌃)� �) is approximately Normal as p/n !  .

Of great importance is the characterization of kb�
⇢

(0; Id

p

)k
2

, since it will affect the width of confi-
dence intervals. It can be characterized, in the case where �

i

= 1 (see the papers for the case �
i

6= 1)
in the following way: kb�

⇢

(0; Id

p

)k
2

! r
⇢

(). The non-random scalar r
⇢

() can be characterized
through a system of two non-linear equations, involving another constant, c. The pair of positive
and deterministic scalars (c, r

⇢

()) satisfy: if ẑ
✏

= ✏+ r
⇢

()Z, where Z ⇠ N (0, 1) is independent
of ✏, and ✏ has the same distribution as ✏

i

’s:
⇢

E ((prox(c⇢))0(ẑ
✏

)) = 1�  ,
r2

⇢

() = E
�
[ẑ
✏

� prox(c⇢)(ẑ
✏

)]

2

�
.

In this system, prox(c⇢) refers to Moreau’s proximal mapping of the convex function c⇢ - see [30]
or [20]. (The system is rigorously shown in [10] under the assumption that the X

i

’s have i.i.d
entries with mean 0 and variance 1, as well as a few other minor requirements; these assumptions
are satisfied when X

i,j

have a Gaussian distribution, or are bounded, or do not have heavy tails, the
latter requiring appeal to various truncation arguments. Another proof of the validity of this system,
which first appeared in [13], can be found in [7]. That proof is limited to the case of X

i

’s having
i.i.d Gaussian entries.) The assumptions on ✏

i

’s and ⇢ are relatively mild. See [12] for the latest,
handling the situation where ✏

i

’s have for instance a Cauchy distribution. We note that some of the
results in [10] are stated with ⇢ strongly convex (and ✏

i

’s having many moments). While the proof
in that paper suggests several ways of removing this assumption, it is also possible to change ⇢ in
to ⇢ + ⌘x2/2 with ⌘ very small (e.g ⌘ = 10

�100) to satisfy this technical assumption and change
essentially nothing to the statistical problem at hand.

Consequences for the distribution of b�
1

or other contrasts of interest In our simulation setup,
the previous results imply that the distribution of b�

1

(or any other coordinates or contrasts v0b� for v
deterministic) is asymptotically normal. In the case where ⌃ = Id

p

, the variance of pp(b�
1

� �
1

) is
roughly N (0, r2

⇢

()). See [2] and its supplementary material for a longer discussion and questions
related to building confidence intervals.

Asymptotic normality questions and impact on confidence intervals: p/n !  2 (0,1)
Because we know that, in the Gaussian design case, the coordinates of b�

⇢

are asymptotically normal,
the width of these intervals is completely determined by the variance of the coordinates of b�

⇢

. We
explain above how these variances depend on the distribution of ✏ and the loss function ⇢: basically
through kb�(⇢; Id)k

2

and hence r
⇢

(). Therefore, as was the case in the low-dimensional situation,
the variance of the coordinates of b�

⇢

can be used as a proxy for the width of the confidence interval
in the high-dimensional case where p/n ! , 0 <  < 1.

In [2], these asymptotic normality results are used to create confidence intervals for v0� in the
Gaussian design case: if z

1�↵/2 is the (1�↵/2)-quantile of the Gaussian distribution a 100(1�↵)%
confidence interval for v0� is

v0b� ±
z
1�↵/2p

p
r̂

q
(1� p/n)v0b⌃�1v ,

7



where r̂ is a consistent estimator of kb�
⇢

(0; Id

p

)k
2

. In [2], it is said without more precision that
leave-one-techniques can be used to come up with r̂; we propose in the current paper estimates r̂
based on leave-one-out predicted errors that can therefore be used for the purpose of building those
confidence intervals. (See Section 2.3 in the main paper)

Leave-one-out approximations for b� It is shown in the aforementioned papers that

b� ' b�
(i)

+

1

n
S�1

i

X
i

 (e
i

) ,

where ' means that we are neglecting a quantity that is negligible for all our mathematical and
statistical purposes (see the papers for very precise bounds on the quantity we are neglecting). This
approximation is the key to the approximations in Equations (3) and (4) which we use in the main
paper. Recall that S

i

=

1

n

P
j 6=i

 0
(ẽ

j(i)

)X
j

X 0
j

.

S3.3 Consequences for the residual bootstrap

We call {✏⇤
i

}n
i=1

the estimated errors used in the residual bootstrap. When doing a residual
bootstrap, we are effectively sampling from a model with fixed design X , “true �” taken to be equal
to b�

⇢

and i.i.d errors sampled according to the empirical distribution of the {✏⇤
i

}n
i=1

. As a shortcut,
we call this distribution ✏⇤ in what follows. We call b�⇤

⇢

the bootstrapped version of b�.

Case p/n ! 0 Naturally, the classic results mentioned above imply that the distribution of
v0(b�⇤

⇢

� b�
⇢

) is going to be asymptotically normal (under mild conditions on X that are satisfied in

our simulations); the variance of the coordinates of b�⇤
⇢

, on the other hand depends on E
(

 

2
(✏

⇤
)

)

[E( 

0
(✏

⇤
))]

2 .
Hence, even if the distribution of the estimated errors ✏⇤ is very different from that of the “true”
errors, ✏, the residual bootstrap may work very well: indeed, if ✏ and ✏⇤ have two very different
distribution but

E
�
 2

(✏⇤)
�

[E ( 0
(✏⇤))]2

=

E
�
 2

(✏)
�

[E ( 0
(✏))]2

,

using a residual bootstrap with “the wrong error distribution”, ✏⇤, will give us bootstrap confidence
intervals of the right width. An important question then becomes, when p/n is small: what class

of distributions ✏⇤ is such that E
(

 

2
(✏

⇤
)

)

[E( 

0
(✏

⇤
))]

2 =

E
(

 

2
(✏)

)

[E( 

0
(✏))]

2 , as this class defines all acceptable error
distributions from the point of view of our residual bootstrap.

Case p/n !  2 (0,1) We note that at this point in the case p/n !  2 (0, 1) we are not aware
of central limit theorems for the coordinates of b� that are valid conditional on the design matrix X .
However, it is expected that such theorems will hold if the design matrix results from a draw of a
random design matrix similar to the ones we consider (with very high-probability with respect to
the sampling of the design matrix). The discussions above make then clear that the key quantity to
describe the width of the residual bootstrap confidence intervals becomes the risk kb�

⇢

(0; Id

p

; ✏⇤)k
2

,
i.e the risk kb�

⇢

(0; Id

p

)k
2

when the error distribution is ✏⇤. A “good” error distribution is therefore
one for which r

⇢

(; ✏⇤) ' r
⇢

(; ✏). (We used the notation r
⇢

(; ✏) = lim

n!1kb�
⇢

(0; Id

p

; ✏)k, when
p/n ! .)

8



The case of least squares Let us call ˆG
n,p

the distribution of the errors we use in our residual
bootstrap. We assume that ˆG

n,p

has mean 0. Let us call w0
= v0(X 0X)

�1X 0 - where we choose to
not index v and w by p for the sake of clarity. v is a deterministic sequence of p-dimensional vec-
tors. Assume that w and ˆG

n,p

satisfy the conditions of the Linderberg-Feller theorem for triangular
arrays, and that lim

n!1 var

⇣
ˆG
n,p

⌘
= �2

✏

. Then the Lindeberg-Feller theorem guarantees that

v0(b�⇤ � b�)
kwk =) N (0,�2

✏

) .

Note that it also guarantees, under the same assumptions on w that

v0(b� � �)

kwk =) N (0,�2
✏

) .

These results do not depend on the size of , the limit of the ratio p/n.
Informally, what this means is that provided that the entries of w are all relatively small, that

ˆG
n,p

has mean 0 and var

⇣
ˆG
n,p

⌘
is close to �2

✏

, then bootstrapping from the residuals in least-

squares works for approximating the distribution v0(b� � �).

Conclusion for the purposes of the main paper In our discussions we use kb�
⇢

(0; Id

p

; ✏⇤)k and
its closeness to its value under the correct error distribution, kb�

⇢

(0; Id

p

; ✏)k, as a proxy to understand
a priori the quality of residual bootstrap confidence intervals when using ✏⇤ to sample the errors
instead of ✏. The previous discussion explains why we do so. Our numerical work in Section 2.3
of the main text shows numerically that this yields valuable insights. This is why our discussion in
Section 2.4 is focused on understanding kb�(0; Id

p

; ✏)k
2

for various error distributions. In particular,
Theorem 2.1 shows that when p/n is close to 1, if ✏⇤ has approximately the same two first moments
as ✏, kb�(0; Id

p

; ✏⇤)k/kb�(0; Id
p

; ✏)k ' 1. This explains why the scaled r̃
i(i)

is probably a good error
distribution ✏⇤ to use in the residual bootstrap when  is close to 0 or 1. We note that when  is
close to 1, r̃

i(i)

gives an error distribution that is in general very different from the distribution of ✏.
Our numerical work of Section 2.3 shows that it is nonetheless a good error distribution from the
point of view of the residual bootstraps we consider.

S4 Residual bootstrap (p/n close to 1)

We analyze the problem when p/n is close to 1 and prove Theorem 2.1.

Proof of Theorem 2.1. Recall the system describing the asymptotic limit of kb�
⇢

��k when p/n ! 
and the design matrix has i.i.d mean 0, variance 1 entries, is, under some conditions on ✏

i

’s and some
mild further conditions on the design (see Section S3 above): kb�

⇢

� �k ! r
⇢

() and the pair of
positive and deterministic scalars (c, r

⇢

()) satisfy: if ẑ
✏

= ✏ + r
⇢

()Z, where Z ⇠ N (0, 1) is
independent of ✏, and ✏ has the same distribution as ✏

i

’s:
⇢

E ((prox(c⇢))0(ẑ
✏

)) = 1�  ,
r2

⇢

() = E
�
[ẑ
✏

� prox(c⇢)(ẑ
✏

)]

2

�
.

In this system, prox(c⇢) refers to Moreau’s proximal mapping of the convex function c⇢ - see [30]
or [20].
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We first give an informal argument to “guess” the correct values of various quantities of interest,
namely c and of course, r

⇢

().
Note that when |x| ⌧ c, and when  (x) ⇠ x at 0, prox(c⇢)(x) ' x

1+c

. Hence, x �
prox(c⇢)(x) ' xc/(1+c). (Note that as long as  (x) is linear near 0, we can assume that  (x) ⇠ x,
since the scaling of ⇢ by a constant does not affect the performance of the estimators.)

We see that 1 �  ' 1/(1 + c), so that c ' /(1 � ) - assuming for a moment that we can
apply the previous approximations in the system . Hence, we have

r
⇢

()2 ' (c/(1 + c))2[r
⇢

()2 + �2
✏

] ' 2[r
⇢

()2 + �2
✏

] .

We can therefore conclude (informally at this point) that

r
⇢

()2 ⇠ �2
✏



1� 
⇠ �2

✏

1� 
.

Once these values are guessed, it is easy to verify that r
⇢

() ⌧ c and hence all the manipulations
above are valid if we plug these two expressions in the system driving the performance of robust
regression estimators described above. We note that our argument is not circular: we just described
a way to guess the correct result. Once this has been done, we have to make a verification argument
to show that our guess was correct.

In this particular case, the verification is done as follows: we can rewrite the expectations as
integrals and split the domain of integration into (�1,�s



), (�s


, s


), (s


,1), with s


= (1 �
)�3/4. Using our candidate values for c and r

⇢

(), we see that the corresponding bz
✏

has extremely
low probability of falling outside the interval (�s



, s


) - recall that 1 �  ! 0. Coarse bounding
of the integrands outside this interval shows the corresponding contributions to the expectations are
negligible at the scales we consider. On the interval (�s



, s


), we can on the other hand make
the approximations for prox(c⇢)(x) we discussed above and integrate them. That gives us the
verification argument we need, after somewhat tedious but simple technical arguments. (Note that
the method of propagation of errors in analysis described in [29] works essentially in a similar a-
posteriori-verification fashion. Also, s



could be picked as (1 � )�(1/2+�) for any � 2 (0, 1/2)
and the arguments would still go through.)

S5 On the expected Variance of the bootstrap estimator (Proof of The-
orem 3.1)

In this section, we compute the expected variance of the bootstrap estimator.
We recall that for random variables T,�, we have

var (T ) = var (E (T |�)) +E (var (T |�)) .

In our case, T = v0b�
w

, the projection of the regression estimator b�
w

obtained using the random
weights w on the contrast vector v. � represents both the design matrix and the errors. We assume
without loss of generality that kvk

2

= 1.
Hence,

var

⇣
v0b�

w

⌘
= var

⇣
v0E

⇣
b�
w

|�
⌘⌘

+E
⇣
var

⇣
v0b�

w

|�
⌘⌘

.

In plain English, the variance of v0b�
w

is equal to the variance of the bagged estimator plus
the expectation of the variance of the bootstrap estimator (where we randomly weight observation
(y

i

, X
i

) with weight w
i

).
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As explained in Section S7, we can study without loss of generality the case where ⌃ = Id

p

and � = 0. This is what we do in this proof. Further the rotational invariance arguments we give in
Section S7 mean that we can focus on the case v = e

p

,the p-th canonical basis vector, without loss
of generality.

We consider the case where X
i

iidv N (0, Id
p

). This allows us to work with results in [13, 14],
[10].

Notational simplification To make the notation lighter, in what follows in this proof we use the
notation b� for b�

w

. There are no ambiguities that we are always using a weighted version of the
estimator and hence this simplification should not create any confusion.

In particular, we have, using the derivation of Equation (9) in [14] and noting that in the least-
squares case all approximations in that paper are actually exact equalities,

b�
p

= ĉ

P
n

i=1

w
i

X
i

(p)e
i,[p]

p
.

e
i,[p]

here are the residuals based on the first p�1 predictors, when � = 0. We note that, under our as-
sumptions on X

i

’s and w
i

’s, ĉ = 1

n

trace
�
S�1

w

�
+o

L2(1), where S
w

=

1

n

P
n

i=1

w
i

X
i

X 0
i

. It is known
from work in random matrix theory (see e.g [8]) that 1

n

trace
�
S�1

w

�
is asymptotically deterministic in

the situation under investigation with our assumptions on w and X , i.e 1

n

trace
�
S�1

w

�
= c+o

L2(1),
where c = E

�
1

n

trace
�
S�1

w

��
.

We also recall the residuals representation from [14], which are exact in the case of least-
squares : namely here,

b� � b�
(i)

=

w
i

n
S�1

i

X
i

 (e
i

) ,

which implies that, with S
i

=

1

n

P
j 6=i

w
j

X
j

X 0
j

,

ẽ
i(i)

= e
i

+ w
i

X 0
i

S�1

i

X
i

n
 (e

i

) .

In the case of least-squares,  (x) = x, so that

e
i

=

ẽ
i(i)

1 + w
i

c
i

,

where

c
i

=

X 0
i

S�1

i

X
i

n
.

These equalities also follow from simple linear algebra since we are in the least-squares case. We
note that c

i

= c + o

P

(1), where c is deterministic, as explained in e.g [9], [10]. Furthermore, here
the approximation holds in L

2

because of our assumptions on w’s and existence of moments for the
inverse Wishart distribution - see e.g [18]. As explained in [10], the same is true for c

i,[p]

which is
the same quantity computed using the first (p� 1) coordinates of X

i

, vectors we denote generically
by V

i

. We can rewrite

b�
p

= ĉ

P
n

i=1

w
i

X
i

(p)
ẽi(i),[p]

1+wici,[p]

p
.

Let us call bb the bagged estimate. We note that ẽ
i(i),[p]

is independent of w
i

and so is c
i,[p]

. We have
already seen that ĉ is close to a constant, c. So taking expectation with respect to the weights, we

11



have, if w
(i)

denotes {w
j

}
j 6=i

, and using independence of the weights,

bb
p

=

1

p

nX

i=1

E
wi

✓
cw

i

1 + cw
i

◆
X

i

(p)E
w(i)

�
ẽ
i(i),[p]

�
[1 + o

L2(1)] .

Now the last term is of course the prediction error for the bagged problem, i.e

E
w(i)

�
ẽ
i(i),[p]

�
= ✏

i

� V 0
i

(bg
(i)

� �)

where bg
(i)

is the bagged estimate of b� and b� is the regression vector obtained by regressing y
i

on
the first p � 1 coordinates of X

i

. (Recall that in these theoretical considerations we are assuming
that � = 0, without loss of generality.)

So we have, since we can work in the null case where � = 0 (without loss of generality),

bb
p

=

1

p

nX

i=1

E
wi

✓
cw

i

1 + cw
i

◆
X

i

(p)
⇥
✏
i

� V 0
i

bg
(i)

⇤
(1 + o

L2(1)) .

Hence,

E
⇣
pbb2

p

⌘
=

1

p

nX

i=1


E

wi

✓
cw

i

1 + cw
i

◆�
2

(�2
✏

+E
�
kbg

(i)

k2
2

�
)(1 + o(1)) .

Now, in expectation, using e.g [10], E
�
kbg

(i)

k2
2

�
(1 + o(1)) = E

⇣
kbbk2

2

⌘
= pE

⇣
bb2
p

⌘
. The last

equality comes from the fact that all coordinates play a symmetric role in this problem, so they are
all equal in law.

Now, recall that according to e.g [14], top-right equation on p. 14562, or [9]

1

n

nX

i=1

1

1 + cw
i

= 1� p

n
+ o

L2(1) ,

since the previous expression effectively relates trace
�
D

w

X(X 0D
w

X)

�1X 0� to n� p, the rank of
the corresponding “hat matrix”.

Since cwi
1+cwi

= 1� 1

1+cwi
, we see that

E
wi

✓
cw

i

1 + cw
i

◆
=

p

n
+ o(1) .

Hence, for the bagged estimate, we have the equation

E
⇣
kbbk2

2

⌘
=

p

n

⇣
�2 +E

⇣
kbbk2

2

⌘⌘
(1 + o(1)) .

We conclude that
E
⇣
kbbk2

2

⌘
= (1 + o(1))



1� 
�2 .

Note that 

1��
2

= E
⇣
kb�

sLS

k2
2

⌘
, where the latter is the standard (i.e non-weighted) least squares

estimator.
We note that the rotational invariance argument given in [13, 14] still apply here, so that we

have the
bb� �

L
= kbb� �ku ,
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where u is uniform on the sphere and independent of kbb � �k (recall that this simply comes from
the fact that if X

i

is changed into OX
i

, where O is orthogonal, bb is changed into Obb - and we then
apply invariance arguments coming from rotational invariance of the distribution of X

i

). Therefore,

var

⇣
v0(bb� �)

⌘
=

kvk2

p
E
⇣
kbb� �k2

2

⌘
.

So we conclude that

pE
⇣
var

⇣
v0b�

w

|�
⌘⌘

= pvar
⇣
v0b�

w

⌘
� 

1� 
�2kvk2

2

+ o(1) .

Now, the quantity var

⇣
v0b�

w

⌘
is well understood. The rotational invariance arguments we men-

tioned before give that

var

⇣
v0b�

w

⌘
=

kvk2
2

p
E
⇣
kb�

w

� �k2
2

⌘
.

In fact, using the notation D
w

for the diagonal matrix with D
w

(i, i) = w
i

, since

b�
w

� � = (X 0D
w

X)

�1X 0D
w

✏ ,

we see that
E
⇣
kb�

w

� �k2
2

⌘
= �2

✏

E
�
trace

�
(X 0D

w

X)

�2X 0D
w

2X
��

.

(Note that under mild conditions on ✏, X and w, we also have kb�
w

� �k2
2

= E
⇣
kb�

w

� �k2
2

⌘
+

o

L2(1) - owing to concentration results for quadratic forms of vectors with independent entries; see
[26].)

We now need to simplify this quantity.
Analytical simplification of trace

�
(X0DwX)�2X0Dw2X

�
Of course,

trace
�
(X 0D

w

X)

�2X 0D
w

2X
�
= trace

�
D

w

X(X 0D
w

X)

�2X 0D
w

�
=

nX

i=1

w2

i

X 0
i

(X 0D
w

X)

�2X
i

.

Hence, if b⌃
w

=

1

n

P
n

i=1

w
i

X
i

X 0
i

, wi
n

X
i

X 0
i

+

b
⌃

(i)

, we have

trace
�
(X 0D

w

X)

�2X 0D
w

2X
�
=

1

n

nX

i=1

w2

i

X 0
i

b
⌃

�2X
i

n
.

Call b⌃(z) = b
⌃� zId

p

. Using the identity

(

b
⌃� zId

p

)(

b
⌃� zId

p

)

�1

= Id

p

,

we see, after taking traces, that ([36])

1

n

nX

i=1

w
i

X 0
i

(

b
⌃� zId

p

)

�1X
i

� ztrace
⇣
(

b
⌃� zId

p

)

�1

⌘
= p .

We call, for z 2 C, c(z) = 1

n

trace
⇣
(

b
⌃� zId

p

)

�1

⌘
and c

i

(z) = X 0
i

(

b
⌃

(i)

� zId
p

)

�1X
i

, provided z

is not an eigenvalue of b⌃.
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Differentiating with respect to z and taking z = 0 (we know here that b⌃ is non-singular with
probability 1, so this does not create a problem), we have

1

n

nX

i=1

w
i

X 0
i

b
⌃

�2X
i

� trace
⇣
b
⌃

�1

⌘
= 0 .

Also, since, by the Sherman-Morrison-Woodbury formula ([21]),

X 0
i

b
⌃(z)�1X

i

=

X 0
i

b
⌃

(i)

(z)�1X
i

1 + w
i

1

n

X 0
i

b
⌃

(i)

(z)�1X
i

,

we have, after differentiating,

1

n
X 0

i

b
⌃

�2X
i

=

c0
i

(0)

[1 + w
i

c
i

(0)]

2

,

where of course c0
i

(0) = X 0
i

b
⌃

�2

(i)

X
i

. Hence,

1

n

nX

i=1

w2

i

1

n
X 0

i

b
⌃

�2X
i

=

1

n

nX

i=1

w2

i

c0
i

(0)

[1 + w
i

c
i

(0)]

2

= c0(0)
1

n

nX

i=1

w2

i

[1 + w
i

c(0)]2
.

(Note that the arguments given in e.g [9] or [15] for why c
i

(z) = c(z)(1 + o

P

(1)) extend easily to
c0
i

and c0 given our assumptions on w’s and the fact that these functions have simple interpretations
in terms of traces of powers of inverses of certain well-behaved - under our assumptions - matrices.)

Going back to

1

n

nX

i=1

w
i

X 0
i

(

b
⌃� zId

p

)

�1X
i

� ztrace
⇣
(

b
⌃� zId

p

)

�1

⌘
= p ,

and using the previously discussed identity

w
i

n
X 0

i

(

b
⌃� zId

p

)

�1X
i

= 1� 1

1 + w
i

c
i

(z)
,

we have

n�
nX

i=1

1

1 + w
i

c
i

(z)
� znc(z) = p .

In other words,

1�  =

1

n

nX

i=1

1

1 + w
i

c
i

(z)
+ zc(z) .

Now,

c(z)
1

n

nX

i=1

w
i

1 + w
i

c(z)
=

1

n

nX

i=1

(1� 1

1 + w
i

c(z)
)

=

1

n

nX

i=1

(1� 1

1 + w
i

c
i

(z)
) + ⌘(z)

= + zc(z) + ⌘(z) ,
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where ⌘(z) is such that ⌘(z) = o

P

(1) and ⌘0(z) = o

P

(1) (⌘ has an explicit expression which allows
us to verify these claims). Therefore, by differentiation, and after simplifications,

1

n

X
w
i

1 + w
i

c(0)

�
2

c0(0) = 
c0(0)

[c(0)]2
� 1 + o

P

(1) .

Hence,

trace
�
(X 0D

w

X)

�2X 0D
w

2X
�
=

2

4
trace

⇣
b
⌃

�2

w

⌘
/n

[trace
⇣
b
⌃

�1

w

⌘
/n]2

� 1

3

5
+ o

P

(1) .

The fact that we can take expectations on both sides of this equation and that o
P

(1) is in fact o
L2(1)

come from our assumptions about w
i

’s - especially the fact that they are independent and bounded
away from 0 - and properties of the inverse Wishart distribution.

Conclusion We can now conclude that a consistent estimator of the expected variance of the
bootstrap estimator is
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We further note that asymptotically, when w
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are i.i.d and satisfy our assumptions, c(0) ! c,
which solves:

E
wi


1

1 + w
i

c

�
= 1�  .

Hence, asymptotically, when w
i

’s are i.i.d and satisfy our assumptions, we have

trace
⇣
b
⌃

�2

w

⌘
/n

[trace
⇣
b
⌃

�1

w

⌘
/n]2

! 1

cE
wi [wi

/(1 + w
i

c)2]
.

Since cw
i

/(1 + cw2

i

) = 1/(1 + cw
i

)� 1/(1 + cw
i

)

2, we finally see that

cE
wi


w
i

(1 + w
i

c)2

�
= E

wi


1

1 + cw
i

�
�E

wi


1

(1 + cw
i

)

2

�
,

= 1� �E
wi


1

(1 + cw
i

)

2

�
.

So asymptotically, the expected bootstrap variance is equivalent to, when kvk
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where E
⇣

1

1+cwi

⌘
= 1� .

In particular, when w
i

= 1, we see, unsurprisingly that the above quantity is 0, as it should,
given that the bootstrapped estimate does not change when resampling.

We finally make note of a technical point, that is addressed in papers such as [9, 10] and on which
we rely here by using those papers. Essentially, theoretical considerations regarding quantities such
as 1

p

trace
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b
⌃

�k

w

⌘
are easier to handle by working rather with 1

p
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)
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⌘
, for some

⌧ > 0. In the present context, it is easy to show (and done in those papers) that this approximation
allows us to take the limit - even in expectation - for ⌧ ! 0 in all the expressions we get for ⌧ > 0

and that that limit is indeed E
⇣
1

p

trace
⇣
b
⌃

�k
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⌘⌘
. Technical details rely on using the first resolvent

identity [24], using moment properties of inverse Wishart distributions and using the fact that w
i

’s
are bounded below.

S5.1 On acceptable weight distributions

An acceptable weight distribution is such that the variance of the resampled estimator is equal
to the variance of the sampling distribution of the original estimator, i.e the least-squares one in the
case we are considering. Here, this variance is asymptotically /(1 � )�2

✏

/p, in the case where
⌃ = Id

p

.
Recall that in the main text, we proposed to use

w
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1� 
,

we performed a simple dichotomous search for ↵ over the interval [0, 1]. Our initial ↵ was .95. We
specified a tolerance of 10�2 for the results reported in the paper in Table S6. This means that we
stopped the algorithm when the ratio of the two terms in the previous display was within 1% of 1.
We used a sample size of 106 to estimate all the expectations.

Case ⌃ 6= Id

p

In the case where ⌃ 6= Id, both E
⇣
var

⇣
v0b�⇤

⌘⌘
and var

⇣
v0b�
⌘

depend on v0⌃�1v.
It is therefore natural to ask how we could estimate this quantity. If we are able to do so, it is clear
that we could follow the same strategy as above to find ↵ from the data. Standard Wishart results
([28], Theorem 3.4.7) give that

v0⌃�1v

v0b⌃�1v
⇠
�2

n�p

n� 1

! (1� )in probability.

This of course suggests using (1 � p/n)v0b⌃�1v as an estimator of v0⌃�1v and solves the question
we were discussing above.

However, we note that since
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var

⇣
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⌘
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does not depend on ⌃ when the design is Gaussian or Elliptical, the same ↵ should work regardless
of ⌃, provided it is positive definite. In particular, an acceptable weight distribution for resampling
as defined above could be computed by assuming ⌃ = Id

p

and would work for any positive definite
⌃.

S5.2 Numerics for Figure 5a

This figure, related to the current discussion was generated by assuming Poisson(1) weights and
computing deterministically the expectations of interest. This was easy since if W ⇠ Poisson(1),
P (W = k) = exp(�1)

k!

.
We truncated the expansion of the expectation at K = 100, so we neglected terms of order

1/100! or lower only. The constant c was found by dichotomous search, with tolerance 10

�6 for
matching the equation E (1/(1 +Wc)) = 1 � p/n. Once c was found, we approximated the
expectation in Theorem 3.1 in the same fashion as we just described.

Once we had computed the quantity appearing in Theorem 3.1, we divided it by /(1� ). We
repeated these computations for  = .05 to  = .5 by increments of 10�3 to produce our figure.

S5.3 Extensions of Theorem 3.1

S5.3.1 Elliptical Design

In this case, we have ˜X
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’s are i.i.d and bounded away from 0.
We can go through the proof of Theorem 3.1 and make necessary adjustments.
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If we reformulate this expression in terms of X we get
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So this quantity is affected by the distribution of �
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’s; hence the risk of b�
w

is different in the Gaussian
and elliptical design case.

The other important part of the proof is the computation of the risk of the bagged estimator. In
this case, earlier work in random matrix theory (e.g [8, 15]) shows that we can use the approxima-
tions
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we see by keeping track of changes in the earlier proof that we have asymptotically
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The same arguments we used before give that

E
�
g(�2

i

)

�
=  .

17



Based on this information, we can compute E
⇣
var

⇣
v0b�⇤

w

⌘⌘
as we had in the proof of Theorem 3.1

and compare it to var
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. The expressions do not seem to simplify much further however in this
case, by contrast to the Gaussian design case where �
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= 1 for all i. (For instance, when �
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) = g(1) =  and we recover the results of Theorem 3.1.)
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. And hence the expression we gave in Theorem 3.1 won’t apply directly to the elliptical

case.

S5.3.2 Multinomial(n, 1/n) weights

A natural question is whether the computations we have made can be extended to w
i

’s that are
i.i.d Poisson(1) and/or Multinomial(n, 1/n), as in the standard bootstrap.

In both cases, technical issues arise because with asymptotically negligible but non-zero proba-
bility, the matrix X 0D

w

X may be of rank less than p. This can handled in several ways. A simple
one is to replace the weights w
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(⌧) = ⌧ + (1� ⌧)w
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and study the problem when ⌧ ! 0.
Beyond that technicality, an important question is whether one can handle the fact that the

weights are dependent in the multinomial case. For quantities of the type 1
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was argued in [9] that one could ignore the dependency issue and treat the problem as if the weights
where i.i.d Po(1). This type of arguments would be easy to extend where we need them here, for
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, 1/(n � 1)), the only real technical hurdle is to
show that E
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. A strategy for this is to
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where ' means that the approximation is valid in Euclidean norm. The same coupling arguments
will give that

kE
w

�
b�
(i)

�
k ' kˆbk ,

where ˆb is the bagged estimator. This will yield the same results as in the i.i.d Po(1) case.

Numerical results We verified that our theoretical results (i.e Theorem 3.1 hold for Poisson(1)
weights in limited simulations (note that in this case w

i

= 0 is possible). For Gaussian design
matrix, double exponential errors, and ratios  = .1, .3, .5 we found that the ratio of the observed
bootstrap expected variance of b�⇤

1

to our theoretical prediction using Poisson(1) weights was 1.0027,
1.0148, and 1.0252, respectively (here n = 500, and there were R = 1000 bootstrap resamples for
each of 1000 simulations).

S6 Jackknife Variance (Proof of Theorem 4.1)

As explained in Section S7, we can study without loss of generality the case where ⌃ = Id

p

and
� = 0. This is what we do in this proof.

We study it in details in the least-squares case, and postpone a detailed analysis of the robust
regression case to future studies.

According to the approximations in [14], which are exact for least squares, or classic results
[40] we have:

b� � b�
(i)

=

1

n
b
⌃

�1

(i)

X
i

e
i

.

Recall also that
e
i

=

ẽ
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by appealing to standard results about concentration of high-dimensional Gaussian random vari-
ables, and standard results in random matrix theory and classical multivariate statistics (see [28, 18]).
By the same arguments, this approximation works not only for each i but for all 1  i  n at once.
The approximation is also valid in expectation, using results concerning Wishart matrices found for
instance in [28].
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S6.1 Dealing with the centering issue
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Because we have enough moments, the previous result is also true in expectation.

S6.2 Putting everything together
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This completes the proof of Theorem 4.1
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S6.3 Extension to more involved design and different loss functions

Our approach could be used to analyze similar problems in the case of elliptical designs. How-
ever, in that case, it seems that the factor that will appear in quantifying the amount by which the
variance is misestimated will depend in general on the ellipticity parameters. We refer to [11] for
computations of quantities such as v0b⌃�2v in that case, which are of course essential to measuring
mis-estimation.

We obtained the possible correction we mentioned in the paper for these more general settings
following the ideas used in the rigorous proof we just gave, as well as approximation arguments
given in [14] and justified rigorously in [10]. Checking fully rigorously all the approximations we
made in this Jackknife computation would require a very large amount of technical work, and since
this is tangential to our main interests in this paper, we postpone that to a future work of a more
technical nature.

It is also clear, since all these results and the proof we just gave rely on random matrix tech-
niques, that a similar analysis could be carried out in the case where X

i,j

are i.i.d with a non-
Gaussian distribution, provided that distribution has enough moments (see e.g [32] or [15] for ex-
amples of such techniques, actually going beyond the case of i.i.d entries for the design matrix).
The main issues in carrying out this program seem to be technical and not conceptual at this point,
so we leave this problem to possible future work.

S7 More details on going from ⌃ = Idp to ⌃ 6= Idp

As discussed in Section S3, we have
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; ✏
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) ,

In other words, b�
⇢

(ỹ
i

;⌃

�1/2X
i

; ✏
i

) is the robust regression estimator in the null case where � = 0

and X
i

is replaced by ˜X
i

= ⌃

�1/2X
i

. Of course, if cov (X
i

) = ⌃, cov
⇣
˜X
i

⌘
= Id

p

.

S7.1 Consequences for the Jackknife

Naturally the same equality applies to leave-one-out estimators. So, with the notations of Equa-
tion (7) in the main text, we have, when span({X

i

}n
i=1

) = Rp and ⌃ is positive definite,
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Let us call b�
⇢

(⌃;�) our robust regression estimator when cov (X
i

) = ⌃ and E (y
i

|X
i

) = X 0
i

�. It is
clear from the previous display that the properties of varJACK(v0b�

⇢

(⌃;�)) are the same as those of
varJACK(v0⌃�1/2b�

⇢

(Id

p

; 0)). So understanding the null case is enough to understand the general
case, which is why we focus on the null case in our computations.

Furthermore, by the same arguments, we have
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So we have
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Calling u
1

= ⌃

�1/2v/k⌃�1/2vk, we see that u
1

is a unit vector. And we finally see that
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Hence, characterizing varJACK(v
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for all � and invertible ⌃. This is why our proof is focused on the null case ⌃ = Id

p

and � = 0.

S7.2 Consequences for the pairs bootstrap

Let us call D
w

the diagonal matrix with (i, i)-entry D(i, i) = w
i

. We consider only the case
where w

i

> 0, so we do not have to consider the case where fewer than p X
i

’s are assigned positive
weights - which would result in b�

⇢

being ill-defined (since infinitely many solutions would then be
feasible).

In particular, for least squares, we have in our setting
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More generally, by a simple change of variables, since w
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) = Rp, when
⌃ is invertible,

b�
w,⇢

(y
i

; {X
i

}n
i=1

; ✏
i

)� � = ⌃

�1/2b�
w,⇢

(✏
i

;⌃

�1/2X
i

; ✏
i

) .

If b
⇢

is the corresponding bagged estimate, obtained by averaging b�
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over w’s, we also have
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Hence, we also have
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The previous equation clearly implies that, if v is a fixed vector and u
1

= ⌃

�1/2v

v0(b�⇤
⇢

(y
i

; {X
i

}n
i=1

;�)� b
⇢

(y
i

; {X
i

}n
i=1

;�))

= u0
1

h
b�⇤
⇢

(y
i

;⌃

�1/2X
i

; ✏
i

)� b
⇢

(y
i

;⌃

�1/2X
i

; ✏
i

)

i
,

= u0
1

h
b�⇤
⇢

(✏
i

;⌃

�1/2X
i

; ✏
i

)� b
⇢

(✏
i

;⌃

�1/2X
i

; ✏
i

)

i
.

We note that if cov (X
i

) = ⌃, the last line in the previous display corresponds to the bootstrap
distribution of our estimator in the null case where � = 0 and ⌃ = Id

p

, but v has been replaced
by u

1

= ⌃

�1/2v. This shows that understanding the bootstrap properties of v0(b�⇤
⇢

� b
⇢

) in the null
case cov (X

i

) = ⌃ and � = 0 gives the result we seek in the general case of ⌃ 6= Id

p

and � 6= 0.
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(Here we centered our estimator around the bagged estimator, because it is natural when computing
bootstrap variances. The arguments above show that many other centering choices are possible,
however.)

The last small issue that one needs to handle is the fact that our computations are done for v
with unit norm and u

1

may not have unit norm. This is easily handled by simply scaling by the
deterministic ku

1

k. In particular, it is easy to see through simple scaling arguments that
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where ũ
1

= u
1

/ku
1

k has unit norm.

S7.3 Rotational invariance arguments and consequences

Motivated by the arguments in the previous two subsections, we now consider the null case
where � = 0 and cov (X

i

) = Id

p

. Note that then y
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. Also, if X
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is replaced by OX
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, where O

is an orthogonal matrix, and b� is replaced by Ob�. In other words,
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Note that when the design matrix is such that OX
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for all i (i.e the distribution of X
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’s is
invariant by rotation),
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When w
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> 0 for all i, we see that exactly the same arguments apply to b�
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This implies that for any unit vector v, we have, if e
1

is the first canonical basis vector,
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Indeed, we just need to take O to be such that O0v = e
1

to prove the above result.
In the case where X

i

’s are i.i.d N (0, Id
p

), we do have X
i

L
= OX

i

, so the arguments above apply.
Therefore, to understand E

⇣
var

⇣
v0b�⇤

⇢

⌘⌘
in this case it is sufficient to understand E
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⇣
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This latter case is the case tackled in the proof of Theorem 3.1. (These rotational invariance argu-
ments are closely related to those in [14].)
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Residual Jackknife Pairs
r=0.01 0.063 0.089 0.035
r=0.1 0.113 0.005 0.013
r=0.3 0.137 0.000 0.003
r=0.5 0.210 0.000 0.000

(a) L1 loss

Residual Jackknife Pairs
r=0.01 0.057 0.054 0.054
r=0.1 0.068 0.037 0.041
r=0.3 0.090 0.015 0.004
r=0.5 0.198 0.002 0.000

(b) Huber loss

Residual Jackknife Pairs
r=0.01 0.040 0.061 0.040
r=0.1 0.060 0.034 0.052
r=0.3 0.098 0.021 0.033
r=0.5 0.188 0.005 0.000

(c) L2 loss

Table S1: Error rate of 95% confidence intervals of �
1

for n = 500 This tables give the exact
error rates plotted in Figure 1. See figure caption for more details.

Normal Ellip. Normal Ellip. Exp
r=0.01 1.001 1.001 1.017
r=0.1 1.016 1.090 1.156
r=0.3 1.153 1.502 1.655
r=0.5 1.737 3.123 3.635

Table S2: Ratio of CI Width of Pairs compared to Standard. This tables give the ratio of the
average width of the confidence intervals from pairs bootstrapping to the average for the standard
interval given by theoretical results, i.e. using var( ˆ�) = �2

(X 0X)

�1 and creating standard confi-
dence interval. These values were used for Figure 4 in the text.
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Residual Std. Pred Error Deconv
r=0.01 0.064 0.042 0.031

r=0.1 0.091 0.028 0.018
r=0.3 0.135 0.026 0.022
r=0.5 0.182 0.030 0.035

(a) L1 loss

Residual Std. Pred Error Deconv
r=0.01 0.065 0.048 0.036

r=0.1 0.051 0.054 0.039
r=0.3 0.098 0.035 0.037
r=0.5 0.174 0.034 0.036

(b) Huber loss

Table S3: Error rate of 95% confidence intervals using predicted errors. This tables give the
exact error rates plotted in Figure 2. See figure caption for more details.

Residual Jackknife Pairs
r=0.01 0.064 0.073 0.032
r=0.1 0.091 0.002 0.005
r=0.3 0.135 0.001 0.001
r=0.5 0.182 0.000

(a) L1 loss

Residual Jackknife Pairs
r=0.01 0.065 0.061 0.059
r=0.1 0.051 0.042 0.027
r=0.3 0.098 0.009 0.009
r=0.5 0.174 0.001 0.000

(b) Huber loss

Residual Jackknife Pairs
r=0.01 0.052 0.052 0.052
r=0.1 0.056 0.036 0.045
r=0.3 0.114 0.018 0.022
r=0.5 0.155 0.008 0.002

(c) L2 loss

Table S4: Error rate of 95% confidence intervals of �
1

for double exponential error This tables
give the exact error rates plotted in Figure S1. See figure caption for more details.
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Residual Jackknife Pairs
r=0.01 0.055 0.053 0.049
r=0.1 0.070 0.029 0.047
r=0.3 0.103 0.013 0.024
r=0.5 0.157 0.008 0.000

(a) Ellipical, Unif

Residual Jackknife Pairs
r=0.01 0.041 0.046 0.047
r=0.1 0.061 0.034 0.036
r=0.3 0.098 0.005 0.006
r=0.5 0.177 0.002 0.000

(b) Elliptical, Normal

Residual Jackknife Pairs
r=0.01 0.059 0.041 0.060
r=0.1 0.063 0.011 0.025
r=0.3 0.115 0.005 0.002
r=0.5 0.157 0.000 0.000

(c) Elliptical, Exp

Table S5: Error rate of 95% confidence intervals of �
1

for elliptical design X This tables give
the exact error rates plotted in Figure S2. See figure caption for more details.

 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
↵() 0.9938 0.9875 0.9812 0.9688 0.9562 0.9426 0.9352 0.9277 0.9222 0.9203

Table S6: Values of ↵() to use to fix the variance estimation issue in high-dimensional pairs-
bootstrap

L2 Huber L1
r=0.01 0.964 0.991 2.060

r=0.1 1.115 1.173 5.432
r=0.3 1.411 1.613 10.862
r=0.5 1.986 2.671 14.045

(a) Jackknife

L2 Huber L1
r=0.01 1.078 0.923 1.081

r=0.1 1.041 1.098 1.351
r=0.3 1.333 1.954 2.001
r=0.5 2.808 4.507 3.156

(b) Pairs Bootstrap

Table S7: Over estimation of variance for Pairs bootstrap and Jackknife This tables give the
median values of the boxplots plotted in Figures 5 and 6. See relevant figure captions for more
details.
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Figure S1: Performance of 95% confidence intervals of �
1

(double exponential error): Here we
show the coverage error rates for 95% confidence intervals for n = 500 with the error distribution
being double exponential (with �2

= 2) and i.i.d. normal entries of X . See the caption of Figure 1
for more details.

1



●

●

●

●

0.
00

0.
05

0.
10

0.
15

0.
20

Ratio (κ)

95
%

 C
I E

rro
r R

at
e

0.01 0.30 0.50

●

●

●

●

●

●

Residual
Jackknife
Pairs
Std. Residuals

(a) Normal X

●

●

●

●

0.
00

0.
05

0.
10

0.
15

0.
20

Ratio (κ)
95

%
 C

I E
rro

r R
at

e
0.01 0.30 0.50

●
●

●
●

(b) Ellip. X , Unif

●

●

●

●

0.
00

0.
05

0.
10

0.
15

0.
20

Ratio (κ)

95
%

 C
I E

rro
r R

at
e

0.01 0.30 0.50

●

●

●

●

(c) Ellip. X , N(0, 1)

●
●

●

●

0.
00

0.
05

0.
10

0.
15

0.
20

Ratio (κ)

95
%

 C
I E

rro
r R

at
e

0.01 0.30 0.50

●
●

●

●

(d) Ellip. X , Exp

Figure S2: Performance of 95% confidence intervals of �
1

for L
2

loss (elliptical design X):
Here we show the coverage error rates for 95% confidence intervals for n = 500 with different
distributions of the design matrix X using ordinary least squares regression: (a) N(0, 1), (b) ellip-
tical with �

i

⇠ U(.5, 1.5), (c) elliptical with �
i

⇠ N(0, 1), and (d) elliptical with Exp(
p
2). In all

of these plots, the error is distributed N(0, 1) and the loss is L
2

. See the caption of Figure 1 for
additional details.
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Figure S3: Different bandwidths for Method 1: We plotted the error rate of 95% confidence
intervals for the deconvolution bootstrap (Method 1) using two different choices of bandwith: the
bw.dboot2 in decon (light blue) or that of (author?) [4, 5] (maroon). The solid lines refer to
bootstrapping by drawing {✏⇤

i

}n
i=1

as a i.i.d draws from ˆG; the dashed lines refer to {✏⇤
i

}n
i=1

drawn
from repeated resampling of a single draw ({✏̂

i

}n
i=1

) from ˆG. See section S1.4 below. Note that the
y-axis for these plots is different than that shown in the main text.
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