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Abstract

We study the probabilistic properties of the solutions of certain high-dimensional optimization prob-
lems arising in statistics. More specifically, if for 1 ≤ i ≤ n, Xi ∈ Rp and εi ∈ R, we study the properties
of

β̂ = argminβ∈Rp

1

n

n∑
i=1

ρ(εi −X ′iβ) +
τ

2
‖β‖2 ,

in the high-dimensional setting where p/n tends to a finite non-zero limit.
While most the work is done for τ > 0, we show that under some extra assumptions on ρ, it is

possible to recover the case τ = 0 as a limiting case when p/n < 1. This implies that we can derive
results for the unpenalized (i.e τ = 0) standard “regression M-estimate” problem where εi is replaced by
Yi = X ′iβ0 + εi, with β0 an arbitrary deterministic vector in Rp, characterizing in this case the behavior

of β̂ − β0.
Our assumptions on Xi’s are very general and cover for instance cases where Xi’s are i.i.d with

independent entries. Importantly, our proof handles the case where these entries are not Gaussian.
While our main focus is on the case of i.i.d εi’s, our proof technique can also handle the case of εi’s

with different distributions and we give some details on this problem at the end of the paper.

1 Introduction

The last 15-20 years have seen renewed interest in statistics and machine learning for the use of convex
methods in data analysis. Hence, in many applied situations, practitioners now often solve a non-trivial
optimization problem to estimate or approximate a parameter or quantity of interest. A natural question
is therefore to understand the probabilistic properties of the solutions of these optimization problems, if we
assume for instance that the data is generated by an underlying probabilistic mechanism. We study this
issue in this paper for a certain class of optimization problems which are “natural” in high-dimensional
statistics and demonstrate that the tools and intuition developed in random matrix theory can be brought
to bear on some of these problems. Our focus in this paper is probabilistic, but we now give some statistical
background for the problems we consider.

We will focus on the basic statistical problem of regression M-estimates in high-dimension. Regression
M -estimates have been of interest in statistics for at least five decades (Anscombe (1967); Relles (1968);
Huber (1973)). They are natural extensions of the least-squares problem: namely one estimates a regression
vector by solving the optimization problem

β̂ = argminβ∈Rp
1

n

n∑
i=1

ρ(Yi −X ′iβ) , (1)
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for ρ a function chosen by the user. Here, Xi ∈ Rp is a vector of (observed) predictors and Yi ∈ R is an
observed scalar response. In this paper, ρ is a convex function from R to R+. Typically once assumes that
there is a linear relationship between Xi and Yi, i.e

Yi = X ′iβ0 + εi ,

where εi are unobserved random errors, and β0 is an unknown fixed vector one wishes to estimate. The
n× p matrix X whose i-th row is X ′i is called the design matrix. A very natural question is to understand

how close β̂ is to β0, since β̂ is an estimate of β0.
Huber’s papers from the 1970’s (Huber (1972), Huber (1973)) contain a number of very interesting

results, including limiting behavior for β̂ as n → ∞ when p is held fixed. Huber also raised the question
of understanding the behavior of the estimators when p is large and obtained partial results in the least-
squares case. Further interesting contributions happened in the mid to late 80’s with work of Portnoy
(Portnoy (1984), Portnoy (1985), Portnoy (1987)) and Mammen (Mammen (1989)). In these studies, the
authors studied the behavior of regression M-estimates when p and n are both large, but p/n→ 0 at various
rates. Some of the papers refer to fixed design (i.e Xi’s are non-random and the only source of randomness
in the problem are εi’s), others treat the random design case (i.e both Xi’s and εi’s are random).

A central result of Huber (see e.g Huber and Ronchetti (2009)) is that when p is held fixed, and εi’s are
i.i.d, the optimal ρ one can use is − log fε, where fε is the density of the errors εi’s - at least when we measure

quality of the estimator by the size of cov
(
β̂
)

. This essentially means that maximum likelihood methods

are asymptotically optimal for these problems in low-dimension. In El Karoui et al. (2011), El Karoui
et al. (2013) a group of us looked at corresponding questions in the high-dimensional setting where p/n is
not small and found the situation to be very different. Indeed, it was clear that one could do significantly
better than using − log fε, in many metrics, including ones that would typically favor maximum likelihood
methods in low dimension. More specifically, we found, in the situation where fε is a log-concave density
that, at least for certain design matrices X, instead of considering ρ = − log(fε), it was more natural to
consider

ρ# = (p2 + r2
# log φr# ? fε)

∗ − p2 .

where r# = min{r : r2Iε(r) = p/n}. Here p2 is the function such that p2(x) = x2/2, φr is the Gaussian
density with variance r2, f ? g represents the convolution of f and g, Iε(r) is the Fisher information
(Lehmann and Casella (1998), p. 115) of φr ? fε and g∗(x) = supy(xy− g(y)), is the Fenchel-Legendre dual
of g. This convinced us that, on top of their great theoretical interest, these high-dimensional investigations
could uncover unexpected insights that could be put to use, in perhaps slightly different form, in statistical
practice. We also note that this result is a key motivation for the current paper. In particular, to develop a
probabilistic theory that is relevant to the result just discussed, we need to be able to work with errors εi’s
that are log-concave and functions ρ that grow at infinity at least polynomially fast - the latter creating
a number of mathematical problems. This is what we do in this paper. (A more statistical discussion
explaining the setup of our work is in Appendix D-2.)

In El Karoui et al. (2011), we proposed a probabilistic heuristic - i.e a heuristic based on sound
mathematical arguments - to understand the behavior of β̂ and verified the high quality of its predictions
in simulations and computations. As an aside, we note that this heuristic approach was also the route
taken by Huber (Huber (1973)) in his seminal work. Our heuristic was also developed because certain
physics-based heuristic produced wrong predictions and we thought it would be helpful to develop other
methods to guide practitioners’ intuition. We believe that our methods are more reliable in the hands of
mathematically-minded researchers. Our heuristic led to the formulation of a natural variational problem
to optimize ‖β̂ − β0‖, which we rigorously solved in Bean et al. (2013). Interestingly, the solution of
the variational problem - i.e ρ# mentioned above - depends in general on p/n, i.e the dimensionality
of the problem and is convex. In other words, in general, “good” ρ’s depend in high-dimension of the
dimensionality of the problem. (El Karoui et al. (2011) is the long form of the paper El Karoui et al.
(2013), which is very short due to page-limit requirements in the journal where it appeared.)

In El Karoui et al. (2011) pp. 4-5, we showed that when Xi’s are i.i.d N (0,Σ) with Σ invertible, when
p < n and Yi = X ′iβ0 + εi, with {εi}ni=1 independent of X = {Xi}ni=1, the solution of Equation (1) has a
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simple stochastic representation, namely

β̂ − β0
L
= Σ−1/2‖β̂(0; Idp)‖u ,

where u is uniform on the unit sphere in Rp and independent of ‖β̂(0; Idp)‖, which is the norm of the
solution of Equation (1) when β0 = 0 and Σ = Idp. As we explained in that paper and detailed in Bean
et al. (2013), this stochastic representation can be used to create confidence intervals for v′β0, where v is a
fixed deterministic vector of Euclidean norm 1, based on v′β̂ - i.e attach “error-bars” to this quantity. The
width of the interval, and hence the accuracy of v′β̂ as an approximation of v′β0, depends on ‖β̂(0; Idp)‖
and so understanding this quantity - which is one of the foci of the current paper - is interesting and useful
(the width of these confidence intervals naturally measures the quality of the corresponding statistical
statements). So, even though ‖β̂ − β0‖ does not go to zero asymptotically in the problems we consider,
β̂ can be used to build confidence intervals of width of order n−1/2 for the linear contrasts v′β0 we just
mentioned. This is, remarkably, similar to the situation in low-dimension, i.e p fixed and n→∞. We refer
the reader to the supplementary material of Bean et al. (2013) for precise details. The characterization of
‖β̂(0; Idp)‖ allowed us to optimize the width of these intervals over ρ in Bean et al. (2013), illustrating the

need to understand well ‖β̂(0; Idp)‖. Finally, ‖β̂(0; Idp)‖ evidently plays a key role in measuring prediction
error, another reason to study and understand it - see Appendix D-2.3 for more details. The fact that
‖β̂ − β0‖ does not tend to 0 asymptotically is what renders the problem interesting probabilistically but
has been a source of misunderstanding among some statisticians. We address these misunderstandings in
Appendix D-2, since statistical issues are not the main concern of this paper.

Beside these performance issues, our investigation also pointed to an interesting behavior for the residu-
als, i.e Ri = Yi−X ′iβ̂, suggesting that the natural idea of “bootstrapping from the residuals” is problematic
in the situation we investigate. (See also Theorem 3.1 of the current paper.) We refer to El Karoui and
Purdom (2015) for more details and solutions to some of those statistical problems.

The idea of looking at asymptotics for p and n large is motivated by their probabilistic interest,
naturalness, and the fact that these asymptotic results might yield better approximation in finite samples
than their traditional “small p, large n” counterparts - see e.g Johnstone (2001). At a high-level, this is
explained by the fact in this type of work, we need to keep track of “higher-order” quantities that are
typically neglected in classical asymptotics. As we just discussed, this different perspective also sheds new
light on quantities of statistical interest that up to now were thought to be well understood. We note that
Huber (1973) already raised the “large p, large n” question.

Our heuristic in El Karoui et al. (2011) was based on random matrix theory, convex analysis and
concentration of measure ideas. We prove in this paper that these tools can be used to obtain a rigorous
understanding of various aspects of the problems of interest in great generality. The proof presented here
does not simply follow from the heuristic - i.e we are not filling some “minor technical details”. Rather, the
heuristic provided some insights which helped us design the proof presented in the current article. Also,
the problem on which we focus most of our attention here - see Equation (2) - is more general than the
one studied in El Karoui et al. (2013) - the latter having no penalization. The introduction of penalization
created conceptual challenges which are tackled here, while also simplifying some technical issues, resulting
in quite general results.

The assumptions under which we operate for the design matrix reflect the central role played by the
concentration of measure phenomenon (Ledoux (2001)) in this problem - see also our discussion on page 11
and the proof. Concentration of certain quadratic forms in Xi’s is especially important here. We thought
it important to do the proof at this level of generality to show the scope (or lack thereof) of potential
“universality” results. This is also the level of generality that is now standard in random matrix theory.
For an example where our concentration assumptions on Xi’s are not satisfied and the corresponding results
are completely different, see El Karoui et al. (2011) and our discussion in Subsection 6.2.

Two weeks before this paper was posted on arXiv (with a slightly different presentation), Donoho and
Montanari (Donoho and Montanari (2013)), motivated by El Karoui et al. (2011), posted on arXiv a proof
of some of the results explained in El Karoui et al. (2013) under the assumption that the design matrix is
full of i.i.d Gaussian random variables (i.e Xi’s are independent with i.i.d Gaussian entries). Their proof
uses different ideas than ours - it is based on the technology of rigorous analysis of approximate message
passing algorithms (see Donoho et al. (2009) and Bayati and Montanari (2012)).
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By working under concentration assumptions, we are able to show many results without requiring i.i.d-
ness of the entries of the vectors Xi’s (see Section 3 and Assumption O4 below) - in fact the entries could
be quite dependent. However, to prove all the results of the current paper, we still need the Xi’s to have
i.i.d entries, but they do not need to be Gaussian.

Donoho and Montanari also make interesting connections with rigorous work in statistical physics,
namely to the so-called Shcherbina-Tirozzi model (Shcherbina and Tirozzi (2003) and Talagrand (2003))
and other physics-based heuristic approaches based on approximate message passing (Rangan (2011)). Our
approach can also be used to have a different point of view on these statistical physics models, in the zero
temperature setting.

Our point of view is that the properties of β̂ defined in Equation (1) or Equation (2) below can be
understood via connections to random matrix theory - which are not obvious a priori. As such, our proof
relies on “leave-one-out”, martingale and concentration of measure ideas, as some of our previous random
matrix theoretic work (see e.g El Karoui (2009)) did. We also use quite a few tools from convex analysis,
especially Moreau’s proximal mapping (introduced in Moreau (1965)). Leave-one-out ideas have been
prevalent in both theoretical and applied Statistics for many decades - though the double leave-one-out
idea we used in El Karoui et al. (2011) was a new take on it. Leave-one-out ideas seem to be known
in Physics under the name “cavity method”, so our general approach falls broadly in that category. A
number of the tools we use are also used in the spectral analysis of large random matrices via the Stieltjes
transform method (see Marčenko and Pastur (1967), Wachter (1978), Silverstein (1995)). However, the
random matrices that appear in the current paper are non-standard from the point of view of random
matrix theory: they are weighted covariance matrices with weights depending from the design matrix X
in a non-trivial way; the distribution of the weights is also itself a major challenge to understand. By
contrast, when similar issues arise in random matrix theory, the weight distribution is typically assumed
to be known and independent of the design matrix.

In the notation of the abstract and Equation (2) below, this paper gives a very detailed understanding
of the properties of β̂, the residuals Ri = εi −X ′iβ̂, and several other interesting quantities.

Beside Theorems 1.1 (p.5) and 6.1 (p.42), our main results are Theorem 3.1 (p.21) and Theorem 4.1
(p. 33). Theorem 3.1 explains how to approximate β̂ to high-accuracy using a non-linear function of Xi

and explains the behavior of the residuals in the high-dimensional setting (where p and n are both large
and p/n is not small) under consideration. The results in Subsection 6.1 explain how to go from results
concerning the “`2-penalized” problem which are at the center of this paper, i.e τ > 0 to the unpenalized
problem, i.e τ = 0. This in turn allows us to study the non-null case, i.e β0 6= 0, in the unpenalized case
(τ = 0). In other words, we obtain some of the properties of the solution of Equation (1) by understanding
the solution of Equation (2). We also explain in Section 6 that our techniques can be adapted to the case
where εi’s have different distributions (the heteroskedastic case) and mention briefly potential extensions
to the elliptical setting, as well as to weighted robust regression for instance. For the convenience of the
reader, we summarize the key results of our analysis in the next few subsections. Sections 2, 3, 4 and
5 are devoted to proofs, the main contribution of the current paper. Section 6 describes results in the
unpenalized case and extensions. The Appendix contains mathematical and statistical background. Our
notations are standard but we redefine most of them on p. 12.

Probabilistically, this paper is part of an effort to understand the probabilistic properties of solutions
of high-dimensional optimization problems depending on random observations, which we believe is an
interesting endeavor from both a purely probabilistic and a more applied point of view. This paper shows
that it is possible to do so using a random matrix point of view, which we believe also opens a new set of
interesting questions for random matrix theorists.

Regression M -estimates are quite widely used, despite the fact that in some random design cases, they
are known to have undesirable inadmissibility properties (Stein (1960), Baranchik (1973)) even in simple
(Gaussian) situations. We do not dwell more on these otherwise interesting issues, since they are tangential
to the main aim of this particular paper, which is to obtain a very detailed probabilistic understanding of
β̂ and other quantities of interest.
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1.1 Main focus of the paper and results

The focus of the paper is the problem of understanding the probabilistic properties of

β̂ = argminβ∈Rp
1

n

n∑
i=1

ρ(εi −X ′iβ) +
τ

2
‖β‖2 (2)

where τ > 0. For all 1 ≤ i ≤ n, we have εi ∈ R and Xi ∈ Rp. We will see later (see Subsubsection 1.1.1
and Section 6.1) that under certain conditions on ρ, the understanding of β̂ for various τ > 0 will lead us
to rigorous understanding of β̂ when τ = 0. This will then allow us to study the solution of Equation (1)
in the standard linear regression model, i.e Yi = X ′iβ0 + εi.

The aim of the paper is to prove the following theorem:

Theorem 1.1. Consider β̂ defined in Equation (2) and assume that τ > 0 is given, i.e does not change
with p and n. Under Assumptions O1-O7, P1 and F1-F2, detailed below, we have: as p, n tend to

infinity while p/n → κ ∈ (0,∞), var
(
‖β̂‖2

)
→ 0. Furthermore, for rρ(κ) a deterministic scalar, if

ẑε = ε+ rρ(κ)Z, where ε is a random variable with the same distribution as εi’s and Z is a N (0, 1) random

variable independent of ε, we have: ‖β̂‖ → rρ(κ) in probability and there exists a constant cρ(κ) ≥ 0 such
that  E

(
[proxcρ(κ)(ρ)]′(ẑε)

)
= 1− κ+ τcρ(κ)

κr2
ρ(κ) = E

(
(ẑε − proxcρ(κ)(ρ)(ẑε))

2
)
.

(3)

We use the notation proxc(ρ) to denote the proximal mapping of the function cρ, where c ≥ 0. ρ is
assumed to be convex. This notion was introduced in Moreau (1965). We recall that

proxc(ρ)(x) = argminy∈R(cρ(y) +
1

2
(x− y)2) , or equivalently,

proxc(ρ)(x) = (Id + cψ)−1(x) , where ψ = ∂ρ

is the sub-differential of ρ (see Schirotzek (2007), p.59). The proximal mapping is an important notion
in convex analysis and convex optimization (beside the very thorough and nice Moreau (1965), see for
instance Beck and Teboulle (2010) or Ruszczyński (2006), Section 7.3). We note that even when ρ is not
differentiable, proxc(ρ)(x) is a well-defined function.

As explained in Bean et al. (2013), the previous system can be reformulated in terms of prox1((cρ(κ)ρ)∗),
where f∗ represents the Fenchel-Legendre dual of f . Indeed, Moreau’s prox identity (Moreau (1965)) gives

prox1((cρ)∗)(x) = x− prox1(cρ)(x) .

Example : our assumptions are for instance satisfied when

• Xi’s are i.i.d with i.i.d entries. Those entries have mean 0 and variance 1 and have for instance a
“strongly log-concave density” (i.e a density fε of the form fε = exp(−gε), where gε is convex with
g′′ε ≥ C for some C > 0; an example is the Gaussian distribution) or are bounded. (See p. 11 or
Appendix D-4 for justification.)

• εi’s are i.i.d, independent of Xi’s, and have a log-concave distribution that is symmetric around 0.

• the function ρ is twice-differentiable, convex and grows at most polynomially at ∞. Furthermore, its
unique minimizer is at 0 where ρ(0) = 0.

As explained below, our assumptions are in fact much less restrictive than what is stated in the example
just given (chosen mostly because it is simple to state). In case the reader is unfamiliar with Moreau’s
proximal mapping, we give a few examples in Appendix A.
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1.1.1 From τ 6= 0 and β0 = 0 to τ = 0 and β0 6= 0

The standard linear model in statistics assumes that the statistician observes Yi = X ′iβ0 + εi. Then it

is of interest to understand the properties of β̂({Yi, Xi}ni=1)− β0, where β̂({Yi, Xi}ni=1) is defined as

β̂({Yi, Xi}ni=1) = argminβ∈Rp
1

n

n∑
i=1

ρ(Yi −X ′iβ) .

We have the following simple lemma.

Lemma (A). Suppose that span{Xi}ni=1 = Rp and Yi = X ′iβ0 + εi. Suppose that ρ is strongly convex and
call

β̂({Yi, Xi}ni=1) = argminβ∈Rp
1

n

n∑
i=1

ρ(Yi −X ′iβ) ,

β̂ = argminβ∈Rp
1

n

n∑
i=1

ρ(εi −X ′iβ) .

Then
β̂({Yi, Xi}ni=1)− β0 = β̂ .

In particular, using Theorem 6.1, we see that when Assumptions O1-O7, P1 and F1-F2 are satisfied,
lim p/n = κ < 1, and ρ is strongly convex, we have,

lim
n,p→∞

∣∣∣‖β̂‖ − rρ(κ; 0)
∣∣∣→ 0 in probability ,

where rρ(κ; 0) = limτ→0 rρ(κ; τ) and rρ(κ; τ) is the quantity denoted by rρ(κ) in Theorem 1.1.

More information, details and justifications are provided in Subsection 6.1 and Theorem 6.1 on p. 42.
(We refer the reader to Hiriart-Urruty and Lemaréchal (2001) p. 73 for a definition of strong convexity.)

The previous lemma simply states that to understand the properties of β̂({Yi, Xi}ni=1)−β0, it is enough

to understand those of β̂τ as τ → 0, where β̂τ is defined as

β̂τ = argminβ∈Rp
1

n

n∑
i=1

ρ(εi −X ′iβ) +
τ

2
‖β‖2 .

1.2 Key intermediate results

We present here some key intermediate results - of probabilistic, analytic and statistical interest -
that appear in our proof for the convenience of the reader. Different parts of the proof require different
assumptions, so we label the assumptions accordingly. The assumptions are progressively more restrictive.
We decided to state them separately to show what aspects of the proof held under the less restrictive
assumptions, something that would have been lost if we had just stated the most restrictive assumptions
at once.

These results apply to β̂ as defined in Equation (2). τ is held fixed in our asymptotics and we choose
to not index β̂ by τ to avoid cumbersome notations.

We believe our notations are standard, but definitions, if needed, can be found on p. 12.

1.2.1 Impact of leaving one observation out

We first consider the situation where we leave the i-th observation, (Xi, εi), out. We call, with standard
notation,

β̂(i) = argminβ∈Rp Fi(β) , where Fi(β) =
1

n

∑
j 6=i

ρ(εj −X ′jβ) +
τ

2
‖β‖2 .
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Definition. We call, assuming that ρ is twice differentiable and ψ = ρ′,

Ri = εi −X ′iβ̂ , and S =
1

n

n∑
i=1

ψ′(Ri)XiX
′
i ,

r̃j,(i) = εj −X ′j β̂(i) and Si =
1

n

∑
j 6=i

ψ′(r̃j,(i))XjX
′
j ,

fi(β) = − 1

n

∑
j 6=i

Xjψ(εj −X ′jβ) + τβ , f(β) +
1

n
Xiψ(εi −X ′iβ) .

Using the above definitions, let us now consider

β̃i = β̂(i) +
1

n
(Si + τ Id)−1Xiψ(proxci(ρ)(r̃i,(i))) , β̂(i) + ηi , (4)

where

ci =
1

n
X ′i(Si + τ Id)−1Xi , and (5)

ηi =
1

n
(Si + τ Id)−1Xiψ(proxci(ρ)(r̃i,(i))) . (6)

Our main results from Section 3, Theorem 3.1 and Proposition 3.4 state the following:

Theorem (B). Under Assumptions O1-O7 stated below, we have, for any fixed k, when τ is held fixed,

sup
1≤i≤n

‖β̂ − β̃i‖ = OLk(
polyLog(n)

n
) .

In particular, we have

∀1 ≤ i ≤ n ,E
(
‖β̂ − β̃i‖2

)
= O(polyLog(n)/n2) .

Also,

sup
1≤i≤n

sup
j 6=i
|r̃j,(i) −Rj | = OLk(

polyLog(n)

n1/2
) ,

sup
i
|Ri − proxci(ρ)(r̃i,(i))| = OLk(

polyLog(n)

n1/2
) ,

var
(
‖β̂‖2

)
= O(

polyLog(n)

n
) .

Beside their probabilistic interest, these results give us fine insights about how to perform “online
updates” for β̂ (i.e how to change β̂ if a new observation becomes available without solving the optimization
problem anew, something that is very useful computationally) and the error made in doing so. They
also show that the behavior of the residuals Ri is very different from the classical setting lim p/n → 0
(in that setting, we basically have Ri ' εi), and that Moreau’s proximal mapping is a key ingredient
for understanding the marginal behavior of the residuals. Under the assumptions detailed below, the
probabilistic behavior of r̃i,(i) is much simpler to understand than that of Ri - that is one of the motivations
for relating these two quantities.

For this part of the proof (i.e “leave-one-Observation-out”), we work under the following assumptions:

• O1: p/n has a finite non-zero limit.

• O2: ρ is twice differentiable, convex and non-linear. ψ = ρ′. Note that ψ′ ≥ 0 since ρ is convex.
We assume that ρ ≥ 0, ρ(0) = 0 and 0 is the unique minimizer of ρ. Note that this implies that
sign(ψ(x)) = sign(x).

• O3: ψ′ is L(u)-Lipschitz on (−|u|, |u|), where L(|u|) ≤ K|u|m1 as |u| → ∞. Hence, ψ(|x|) = O(|x|m)
at infinity for some m and ρ grows at most polynomially at ∞.
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• O4: Xi’s are independent and identically distributed. Xi ∈ Rp. Their distribution is allowed to
change with p and n. Furthermore, for any 1-Lipschitz (with respect to Euclidean norm) convex
function G, if mG(Xi) is a median of G(Xi), for any t > 0, P (|G(Xi)−mG(Xi)| > t) ≤ Cn exp(−cnt2),
Cn and cn can vary with n. For simplicity, we assume that, 1/cn = O(log(n)α) for some α ≥ 0 and
Cn is bounded in n. Xi’s have mean 0 and cov (Xi) = Idp. Furthermore, for any given k, we assume
that the k-th moment of the entries of Xi is bounded independently of n and p.

• O5: {Xi}ni=1 are independent of {εi}ni=1

• O6: for any fixed k , 1
n

∑n
i=1 E

(
ψ2k(εi)

)
remains uniformly bounded in p and n, as both grow to

infinity.

• O7: sup1≤i≤n |εi| , En = OLk((log n)β) for some β > 0 and εi’s are independent. In other words, we
assume that for any given k ≥ 1, E

(
|En|k

)
= O((log n)βk).

We do not assume at this point that εi’s have identical distribution. (Note that if εi’s are log-concave or
bounded, O6-O7 are satisfied.)

1.2.2 Impact of leaving one predictor out

For the second part of the proof (i.e “leave-one-Predictor-out”), we need all the previous assumptions
and

• P1: Xi’s have i.i.d entries. We call Xi(k) the k-th coordinate of Xi. Furthermore, the vectors
Θk = (X1(k), . . . , Xn(k)) in Rn satisfy: for any 1-Lipschitz (with respect to Euclidean norm) convex
function G, if mG(Θk) is a median of G(Θk), for any t > 0, P (|G(Θk)−mG(Θk)| > t) ≤ Cn exp(−cnt2),
Cn and cn can vary with n. For simplicity, we assume that 1/cn = O(log(n)α) for some α ≥ 0 and
Cn is bounded in n.

We note that according to Corollary 4.10 and the discussion that follows in Ledoux (2001), Assumptions
O4 and P1 are compatible. O4 and P1 are for instance satisfied if the entries of Xi’s are independent
and bounded by O((log n)α/2). Another example is the case of Xi ∼ N (0, Idp). We note that as the proof
will make clear, the assumption that Xi’s have the same distribution at given n and p could be relaxed.
By contrast, we use strongly the assumption of independence.

Let us now state the main approximation results we get by leaving one predictor out.
We call V the n × (p − 1) matrix corresponding to the first (p − 1) columns of the design matrix X.

We call Vi in Rp−1 the vector corresponding to the first p− 1 entries of Xi, i.e V ′i = (Xi(1), . . . , Xi(p− 1)).
We call X(p) the vector in Rn with j-th entry Xj(p).

Let us call γ̂ the solution of our optimization problem when we use the design matrix V instead of X.
In other words,

γ̂ = argminγ∈Rp−1

1

n

n∑
i=1

ρ(εi − V ′i γ) +
τ

2
‖γ‖2 . (7)

(It is easy to see that

(
γ̂
0

)
is the solution of the original optimization problem (2) when Xi(p) is

replaced by 0.)
The corresponding residuals are {ri,[p]}ni=1, i.e

ri,[p] = εi − V ′i γ̂ .

We call

up =
1

n

n∑
i=1

ψ′(ri,[p])ViXi(p) , and Sp =
1

n

n∑
i=1

ψ′(ri,[p])ViV
′
i .

Note that up ∈ Rp−1 and Sp is (p− 1)× (p− 1). We call

ξn ,
1

n

n∑
i=1

X2
i (p)ψ′(ri,[p])− u′p(Sp + τ Id)−1up , (8)
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and

Np ,
1√
n

n∑
i=1

Xi(p)ψ(ri,[p]) . (9)

It is shown in Subsubsection 4.2.2 that ξn ≥ 0. We consider

bp ,
1√
n

Np

τ + ξn
, (10)

and call

b̃ =

[
γ̂
0

]
+ bp

[
−(Sp + τ Id)−1up

1

]
. (11)

We have, if β̂p denotes the last coordinate of β̂:

Theorem (C). Under Assumptions O1-O7 and P1, we have, for any fixed τ > 0,

‖β̂ − b̃‖ ≤ OLk

(
polyLog(n)

n

)
Furthermore,

√
n(β̂p − bp) = OLk(polyLog(n)/

√
n) ,

sup
i
|X ′i(β̂ − b̃)| = OLk

(
polyLog(n)√

n

)
,

sup
i
|Ri − ri,[p]| = OLk

(
polyLog(n)√

n

)
.

This is the statement of Theorem 4.1 on p.33.
The last coordinate of b̃, bp, has a much simpler probabilistic structure under Assumption P1 than β̂p,

the last coordinate of β̂. Because our approximations in the previous theorem are sufficiently good, we will
be able to transfer our insights about bp to β̂p.

We also have the following results concerning ci’s and ‖β̂‖. We call, using the definition of S on p.7,

cτ,p =
1

n
trace

(
(Sp + τ Idp−1)−1

)
,

cτ =
1

n
trace

(
[S + τ Idp]

−1
)
.

Then we have, under Assumptions O1-O7 and P1, with ci defined in (5) on p. 7, the following results.

Proposition (D).

sup
i
|ci − cτ | = OLk(n−1/2polyLog(n)) and |cτ − cτ,p| = OLk(n−1/2polyLog(n)) .

Furthermore, ∣∣∣∣cτ,p(ξn + τ)− p− 1

n

∣∣∣∣ = OLk

(
polyLog(n)√

n

)
.

Also, ( p
n

)2
nE
(
b2
p

)
=

1

n

n∑
i=1

E
(
(cτ,pψ(ri,[p])

2
)

+ o(1) .

And finally,

p

n
E
(
‖β̂‖2

)
=

1

n

n∑
i=1

E
(
(cτψ(proxcτ (ρ)(r̃i,(i))))

2
)

+ o(1) .

This last equation is at a high-level what gives us the second equation in System (3). The second one,
following “Furthermore,”, is closely related to the first equation in System (3), as can be understood from
reading Section 4.
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1.2.3 Final steps

The last steps of the proof in Section 5 are divided into two: first we show that β̂′(i)Xi is asymptotically

normal, with obvious consequences for r̃i,(i) = εi − β̂′(i)Xi. This is done in Lemma 5.1. Then some work is

needed (under assumptions F1-F2 below) to show that our system has a unique solution and that cτ (and
hence ci’s) is asymptotically deterministic. This is done in Lemma 5.4.

The assumptions we just mentioned are:

• F1: the εi’s have identical distribution and for any r > 0, if Z ∼ N (0, 1), independent of εi, εi+rZ has
a density f which is increasing on (−∞, 0) and decreasing on (0,∞). Furthermore, lim|t|→∞ tf(t) = 0.

• F2: For any fixed k, E
(
|εi|k

)
<∞.

We refer the reader to Lemma C-1 and the discussion immediately following it for examples of densities
fulfilling the assumptions made in F1. We note that symmetric (around 0) log-concave densities will for
instance satisfy all the assumptions we made about the εi’s. See Karlin (1968) and Ibragimov (1956) for
instance.

We could relax assumption F1 to εi’s having identical distribution and many of our arguments would
go through, except for the fact that cρ(κ) in our system (3) would only be shown to be a random variable,
with possibly non-zero variance. The proof of Lemma 5.4 explains this in much more details. Equation
(39) is especially important to understand cτ , which is very closely related to cρ(κ).

Remark : We note that if one is interested in understanding the fluctuation behavior of β̂p, the
approximations above (in particular in Theorem (C)) and the definition of bp in Equation (10) lead to

fairly easy central limit theorems for β̂p and, by symmetry, the other coordinates of β̂. For space reasons,
we leave the minor technical details that need to be filled in to the interested reader. (Of course in the
case of i.i.d Gaussian predictors with identity covariance, the rotational invariance arguments given in El
Karoui et al. (2011) apply when p/n < 1 and allow us to characterize the fluctuation behavior of

√
nv′β̂

for any fixed vector v with ‖v‖ = 1 from simply understanding ‖β̂‖)

Remarks on the assumptions

• Assumptions concerning ρ: in this paper, we wanted to allow ρ to grow reasonably fast at infinity.
One of the motivations for this was to be able to handle a broad class of situations where εi’s are i.i.d with
a log-concave density fε and for our results to hold when ρ = − log(fε). This is a natural choice from the
point of view of maximum-likelihood estimation and the paper Bean et al. (2013) which highlighted, in the
case of log-concave errors, the importance of the functions ρ# described in the introduction. We note that
the new “canonical” loss functions ρ# tend to be fairly smooth (see Bean et al. (2013)) and hence the fact
that the current paper requires ρ to be twice differentiable is not a source of major concerns to us. The
classic reference papers Huber (1973); Portnoy (1984, 1985); Mammen (1989) also all require smooth ρ’s.
We also note that if a function ψ = ρ′ of interest is for instance not differentiable at one or two (or a
few points), our main result, Theorem 1.1, will apply to a slightly smoothed version of ψ and hence an
approximation of ρ. For the purpose of the current paper - where the effort is really probabilistic, trying
to handle fairly general Xi’s - working with smooth ρ is therefore enough. See nonetheless Appendix D-3.
Finally, in the context of Lemma (A) our results are stated for strongly convex ρ. This is not very natural
for some (but not all) questions in “robust statistics” - but it is not a problem for the kind of optimality
questions that one could tackle using Lemma (A) or Theorem 1.1 - we discuss these issues a bit more in
Appendix D-2. However, it is well-known that if ρ is convex, ρη = ρ+ ηp2, where p2(x) = x2/2 and η > 0
is strongly convex, almost by definition (see Hiriart-Urruty and Lemaréchal (2001), p. 73). Once again,
it seems that a bit more work of an approximation theoretic nature should allow us to extend the current
results of Lemma (A), which apply to ρη for any η > 0 to a ρ that is not strongly convex. Of course, the
fact that we can handle ρ’s that grow at infinity quite fast is important to allow this kind of approximation
arguments. (We also recall that the εi’s we are concerned with in the current paper are not allowed to
have very heavy-tails because we allow ρ to grow “fast” at infinity.)
A detailed look at the proof reveals that if we had more restrictive growth conditions on ρ at infinity than
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the ones we impose in the paper, we could tolerate εi’s with fewer moments and heavier tails. Understanding
how heavy the tails of εi can be and while our system (3) remains valid is interesting statistically, but we
leave these considerations for future work since our focus in the current paper is primarily probabilistic and
is on the development of mathematical tools and strategy for rigorously tackling this class of problems. We
refer the interested reader to Appendix D-2 for a longer discussion of these and related issues explaining
why we chose the setup we consider in the current paper.
We finally would like to clarify a little bit a semantic point: the optimization problems we consider in this
paper are associated by many researchers in statistics with “robust statistics”, which generally deals with
εi’s having heavy tails (and hence the functions ρ’s that are considered in that field are quite restrictive,
from a mathematical point of view). The fact that we consider εi’s having relatively light tails and ρ’s
that can grow at infinity “fast” is motivated by two factors: one is purely mathematical, since the growth
conditions on ρ at infinity create a number of challenges; the other one is that we are not concerned here
with the impact of having a few εi’s having a heavy-tailed distribution on the probabilistic properties of
β̂ (something the current techniques nonetheless seem able to handle when ρ’s are not allowed to be as
general as the ones considered here). Rather, one motivation for our setup is to show that even in a
“simple” context, where εi’s do not have heavy-tails, standard methods of statistics do not perform in
high-dimension as low-dimensional (i.e p fixed, n → ∞) intuition would suggest. This is the content of
Lemma (A) and the results of the paper Bean et al. (2013), when for instance, εi’s are i.i.d with density
fε = exp(−g) and g is strongly convex, symmetric around 0 and has its unique minimum at 0: even in
this simple setting, one can improve upon maximum-likelihood techniques, which are basically optimal in
low-dimension.
• Assumptions concerning Xi’s Assumption O4 is a bit stronger than we will need. For instance,

Sections 2 and 3 do not actually require the Xi’s to have identical distributions. The functions G we will
be dealing with will either be linear or square-root of quadratic forms, so we could limit our assumptions
to those functions. However, as documented in Ledoux (2001), a large number of natural or “reasonable”
distributions satisfy the O4 assumptions - see also Appendix D-4. Our choice of having a potentially
varying cn is motivated by the idea that we could, for instance, relax an assumption of boundedness of
the entries of Xi’s - that guarantees that O4 and P1 are satisfied when Xi has independent entries, see
Appendix D-4 - and replace it by an assumption concerning the moments of the entries of Xi’s: this is
what we did for instance in El Karoui (2009) through a truncation of triangular arrays argument (see also
Yin et al. (1988)). We also refer the interested reader to El Karoui (2009) for a short list of distributions
satisfying O4, compiled from various parts of Ledoux (2001). Finally, we could replace the exp(−cnt2)
upper bound in e.g O4 by exp(−cntα) for some fixed α > 0 and it seems that all our arguments would
go through. We chose not to work under these more general assumptions because it would involve extra
book-keeping and does not enlarge the set of distributions we can consider enough to justify this extra
technical cost. From a more applied point of view, Assumption O4 imposes certain restrictions on the
Euclidean geometry of the “point cloud” generated by the Xi’s - see e.g El Karoui (2009) for more details
on this or Appendix D-4. Working at the level of generality of Assumption O4 allows us to show that this
geometry plays a key role in our main results.
Our assumption that 1/cn increases like a power of log(n) at most is quite restrictive when it comes to
bounded random variables (or truncating random variables) - but is of course satisfied by e.g Gaussian
random variables where cn is a constant independent on n - and motivated by simplifying the book-keeping
needed in our proof. The result also applies to Xi,j ’s that are i.i.d and bounded (uniformly in n). Having
1/cn grow like nγ for a small γ should be feasible - with γ depending on m and m1 (see O3). In the first
part of the proof we keep track of the impact of cn to illustrate this aspect of the problem.
We would also like to address the question of whether working under O4 and P1 is “artificially general”.
While it is true that we could assume i.i.d-ness of Xi,j (and some conditions on their distribution), we
would then constantly be using in the proofs the fact that the functionals of Xi,j we need in this paper
satisfy certain concentration properties. We feel that working under these simpler-to-state assumptions
(like i.i.d-ness) would potentially obscure some of the geometric properties of the vectors Xi’s - concerning
e.g ‖Xi‖/

√
p or X ′iXj/p - that appear to be fundamental in establishing Theorem 1.1. Working under the

assumptions we state makes rather clear (at least in light of previous papers and the short discussion in
Appendix D-4) the role of these geometric properties.
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Finally, we think the questions raised here are interesting from both a probabilistic and statistical point of
views. Hence, we worked under broad assumptions for the sake of mathematical and probabilistic interest,
even though for certain statistical tasks, less general assumptions (concerning e.g ψ) are arguably more
natural. However, these assumptions (such as having ψ bounded) seem to render the analysis simpler.
Hence since our aim was mostly probabilistic in this paper, we chose to work under more general assump-
tions that enlarge the domain of validity of the results to a large class of interesting situations and also
forced us to deal with numerous extra technical and conceptual difficulties - the proof makes this clear.

Notations

We will repeatedly use the following notations: polyLog(n) is used to replace a power of log(n); λmax(M)
denotes the largest eigenvalue of the matrix M ; |||M |||2 denotes the largest singular value of M . We call
Σ̂ = 1

n

∑n
i=1XiX

′
i the usual sample covariance matrix of the Xi’s when Xi’s are known to have mean 0. We

say that X ≤ Y in Lk if E
(
|X|k

)
≤ E

(
|Y |k

)
. We write X

L
= Y to say that the random variables X and Y

are equal in law. We use the notation un . vn to say that there exists a constant K independent of n such
that un ≤ Kvn for all n. We use the usual notation β̂(i) to denote the regression vector we obtain when
we do not use the pair (Xi, Yi) or (Xi, εi) in our optimization problem, a.k.a the leave-one-out estimate.
We will also use the notation X(i) to denote {X1, . . . , Xi−1, Xi+1, . . . , Xn}. We use the notation (a, b) for
either the interval (a, b) or the interval (b, a): in several situations, we will have to localize quantities in
intervals using two values a and b but we will not know whether a < b or b > a. We denote by X the n× p
design matrix whose i-th row is X ′i. ‖v‖ denotes the Euclidean norm of the vector v. κl(ξ) stands for the
k-th cumulant of the random variable ξ. We write a ∧ b for min(a, b) and a ∨ b for max(a, b). If A and B
are two symmetric matrices, A � B means that A − B is positive semi-definite, i.e A is greater than B
in the positive-definite/Loewner order. The notations oP , OP are used with their standard meanings, but
see van der Vaart (1998) p.12 for definitions if needed. For the random variable W , we use the definition

‖W‖Lk =
[
E
(
|W |k

)]1/k
. For sequences of random variables Wn, Zn, we use the notation Wn = OLk(Zn)

(resp Wn = oLk(Zn)) when ‖Wn‖Lk = O(‖Zn‖Lk) (resp ‖Wn‖Lk = o(‖Zn‖Lk)).

Remarks

Note that under our assumptions on ρ, β̂, the solution of Equation (2), is defined as the solution of

f(β̂) = 0 with (12)

f(β) =
1

n

n∑
i=1

−Xiψ(εi −X ′iβ) + τβ . (13)

We call

F (β) =
1

n

n∑
i=1

ρ(εi −X ′iβ) +
τ

2
‖β‖2 . (14)

Of course, f = ∇βF .

2 Preliminaries

In all the paper, we work under Assumption O2, which is purely about the function ρ, i.e there are
no probabilistic elements in this assumption. We also assume O1, which guarantees that p/n remains
bounded.

In case it is helpful to the reader, we give a very high-level overview of our proof strategy in Appendix
D-1.
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2.1 General remarks

Proposition 2.1. Let β1 and β2 be two vectors in Rp. Then

‖β1 − β2‖ ≤
1

τ
‖f(β1)− f(β2)‖ . (15)

When ρ is strongly convex with modulus of convexity C > 0, we also have

‖β1 − β2‖ ≤
1

Cλmin(Σ̂) + τ
‖f(β1)− f(β2)‖ .

For a definition of modulus of convexity we refer to Proposition 1.1.2 on p. 73 in Hiriart-Urruty and
Lemaréchal (2001). When ρ is twice differentiable, the modulus of convexity is a lower bound on its second
derivative (see Theorem 4.3.1 on p. 115 in Hiriart-Urruty and Lemaréchal (2001)).

Proof. Let β1 and β2 be two vectors in Rp. We have by definition

f(β1)− f(β2) = τ(β1 − β2) +
1

n

n∑
i=1

Xi

[
ψ(εi −X ′iβ2)− ψ(εi −X ′iβ1)

]
.

We can use the mean value theorem to write

ψ(εi −X ′iβ2)− ψ(εi −X ′iβ1) = ψ′(γ∗εi,X′iβ1,X′iβ2
)X ′i(β1 − β2) ,

where γ∗εi,X′iβ1,X′iβ2
is in the interval (εi −X ′iβ1, εi −X ′iβ2) - recall that we do not care about the order of

the endpoints in our notation.
We therefore have

f(β1)− f(β2) = τ(β1 − β2) +
1

n

n∑
i=1

ψ′(γ∗εi,X′iβ1,X′iβ2
)XiX

′
i(β1 − β2) ,

which we write
f(β1)− f(β2) = (Sβ1,β2 + τ Idp)(β1 − β2) , (16)

where

Sβ1,β2 =
1

n

n∑
i=1

ψ′(γ∗εi,X′iβ1,X′iβ2
)XiX

′
i .

We therefore have
β1 − β2 = (Sβ1,β2 + τ Idp)

−1 (f(β1)− f(β2)) .

Since ρ is convex, ψ′ = ρ′′ is non-negative and Sβ1,β2 is positive semi-definite. In the semi-definite
order, we have Sβ1,β2 + τ Idp � τ Idp. When ρ is strongly convex with modulus C, we have ψ′(x) ≥ C (see

Theorem 4.3.1 p. 115 in Hiriart-Urruty and Lemaréchal (2001)) and therefore, Sβ1,β2 +τ Idp � CΣ̂+τ Idp �
(Cλmin(Σ̂) + τ)Idp. In particular,

‖β1 − β2‖ ≤
1

τ
‖f(β1)− f(β2)‖ .

In the strongly convex case, we have

‖β1 − β2‖ ≤
1

Cλmin(Σ̂) + τ
‖f(β1)− f(β2)‖ .

Proposition 2.1 yields the following lemma.

Lemma 2.1. For any β1,

‖β̂ − β1‖ ≤
1

τ
‖f(β1)‖ .

The lemma is a simple consequence of Equation (15) since by definition f(β̂) = 0 .
In the following, we will strive to find approximations of β̂. We will therefore use Lemma 2.1 repeatedly.
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2.2 Boundedness of ‖β̂‖

We have the following lemma.

Lemma 2.2. Let us call Wn = 1
n

∑n
i=1Xiψ(εi), Wn ∈ Rp. We have

‖β̂‖ ≤ 1

τ
‖Wn‖ .

In particular, under Assumptions O4 and O5,

E
(
‖β̂‖2

)
≤ 1

τ2

p

n

1

n

n∑
i=1

E
(
ψ2(εi)

)
. (17)

If k ≥ 1, a similar result holds in L2k - provided the entries of Xi’s have cumulants of order 2k bounded
in n. In other words,

E
(
‖β̂‖2k

)
= O

(
1

n

n∑
i=1

E
(
ψ2k(εi)

))
.

These conditions are automatically satisfied under our assumptions O4 and O6.
This guarantees that ‖β̂‖ is bounded in L2k provided 1

n

∑n
i=1 E

(
|ψ(εi)|2k

)
is bounded. If this latter

quantity is polyLog(n) so is E
(
‖β̂‖2k

)
.

We also have

‖β̂‖ ≤
√

2

τ

√√√√ 1

n

n∑
i=1

ρ(εi) , (18)

and hence

E
(
‖β̂‖2k

)
≤ 2k

τk
E

[ 1

n

n∑
i=1

ρ(εi)

]k .

Though from a probabilistic point of view our various bounds might look interchangeable, it is important
to have both from the point of view of potential statistical applications (beyond the scope of this paper).
Indeed, in some robust regression problems, where εi’s can have heavy tails, one would typically used
bounded ψ functions (for instance the Huber functions or smoothed version of the Huber functions - see
Huber and Ronchetti (2009), p. 84, Equation (4.51) for a definition of the exponential of the Huber
functions). The bound based on Equation (17) will then be particularly helpful.

Proof. The first inequality follows easily from taking β1 = 0 in Lemma 2.1 and realizing that Wn = −f(0).
The second inequality follows from the fact that, if e is an n-dimensional vector with entries all equal to
1, Wn = X ′Dψe/n, where X is n× p and Dψ is a diagonal matrix whose (i, i) entry is ψ(εi). Hence,

‖Wn‖2 =
1

n2
e′DψXX

′Dψe ,

and therefore, E
(
‖Wn‖2

)
= p

n2

∑n
i=1 E

(
ψ2(εi)

)
, since E (XX ′) = pIdn and {εi}ni=1 is independent of

{Xi}ni=1.
For the L2k bound, we can use E

(
‖Wn‖2k

)
≤ pk−1

∑p
j=1 E

(
W 2k
n (j)

)
, because for αi ≥ 0, (

∑p
i=1 αi)

k ≤
pk−1

∑p
i=1 α

k
i by convexity.

Let us work temporarily conditional on εi. We control E
(
W 2k
n (j)|{εi}ni=1

)
through the use of cumu-

lants since Wn(j) =
∑n

i=1Xi(j)ψ(εj)/n, so the 2k-th cumulant of Wn(j) - conditional on {εi}ni=1 - is∑n
i=1 ψ

2k(εi)/n
2kκ2k(Xi(j)). These cumulants are all of order n1−2k, if

∑
ψ2k(εi)/n = O(1). By the classi-

cal connection between moments and cumulants, we see that E
(
W 2k
n (j)

)
= O(n−k) if 1

n

∑n
i=1 E

(
ψ2k(εi)

)
is uniformly bounded. Hence, E

(
‖Wn‖2k

)
= O(pk−1pn−k) = O(1).
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The proof of Equation (18) simply follows from observing that, since ρ ≥ 0,

τ

2
‖β̂‖2 ≤ 1

n

n∑
i=1

ρ(εi −X ′iβ̂) +
τ

2
‖β̂‖2 = F (β̂)

≤ 1

n

n∑
i=1

ρ(εi) = F (0) .

Indeed, since, according to Equation (14), β̂ = argminβ∈Rp F (β) , we have F (β̂) ≤ F (0) = 1
n

∑n
i=1 ρ(εi) ,

and the result follows immediately.

3 Approximating β̂ by β̂(i): leave-one-observation-out

We consider the situation where we leave the i-th observation, (Xi, εi), out and refer the reader to
Subsection 1.2 for definitions of the quantities that will play a key role in our analysis.

These definitions and the approximations they will imply can be understood in light of the probabilistic
heuristics we derived for this problem in El Karoui et al. (2011) and El Karoui et al. (2013) - so we refer the
reader to these papers for explanations and intuition about why we choose to introduce these quantities;
see also Appendix D-1.

With the definitions introduced in Subsection 1.2 and Subsubsection 1.2.1, the aim of the work in
this section to show that β̂ can be very well approximated by β̃i. In Theorem 3.1, we show that the
approximation is accurate to order polyLog(n)/n in Euclidean norm, if for instance 1/cn = O(polyLog(n)).
We refer the reader to Theorem 3.1 for full details.

3.1 Deterministic bounds

We refer the reader to Subsubsection 1.2.1 where the important quantities β̃i, ηi, r̃j,(i) and fi are
defined.

Proposition 3.1. We have, with β̃i defined in Equation (4),

‖β̂ − β̃i‖ ≤
1

τ
‖Ri‖ , (19)

where

Ri =
1

n

∑
j 6=i

[
ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))

]
XjX

′
jηi , (20)

and γ∗(Xj , β̂(i), ηi) is in the (“unordered”) interval (r̃j,(i), r̃j,(i) −X ′jηi)=(εj −X ′j β̂(i), εj −X ′j β̃i).

Proof. We have of course, since fi(β̂(i)) = 0, and β̃i = β̂(i) + ηi,

f(β̃i) = f(β̃i)− fi(β̂(i)) = − 1

n
Xiψ(εi −X ′iβ̃i) +

1

n

∑
j 6=i

Xj

[
ψ(εj −X ′j β̂(i))− ψ(εj −X ′j(β̂(i) + ηi))

]
+ τηi .

By the mean-value theorem, we also have

ψ(εj −X ′j β̂(i))− ψ(εj −X ′j(β̂(i) + ηi)) = ψ′(r̃j,(i))X
′
jηi +

[
ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))

]
X ′jηi ,

where γ∗(Xj , β̂(i), ηi) is in the (“unordered”) interval (εj−X ′j β̂(i), εj−X ′j(β̂(i) +ηi)), i.e (r̃j,(i), r̃j,(i)−X ′jηi).
Hence, if Ri is the quantity defined in Equation (20),

1

n

∑
j 6=i

Xj

[
ψ(εj −X ′j β̂(i))− ψ(εj −X ′j(β̂(i) + ηi))

]
=

1

n

∑
j 6=i

ψ′(r̃j,(i))XjX
′
jηi +Ri ,

= Siηi +Ri .
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In light of the previous simplifications, we have, using

f(β) = fi(β)− 1

n
Xiψ(εi −X ′iβ) and fi(β̂(i)) = 0 ,

the equality

f(β̃i) = − 1

n
Xiψ(εi −X ′iβ̃i) + (Si + τ Id)ηi +Ri .

Since by definition, ηi = 1
n(Si + τ Id)−1Xiψ(proxci(ρ)(r̃i,(i))),

(Si + τ Id)ηi =
1

n
Xiψ(proxci(ρ)(r̃i,(i))) .

In other respects,
εi −X ′iβ̃i = r̃i,(i) − ciψ(proxci(ρ)(r̃i,(i))) .

When ρ is differentiable, x− cψ(proxc(ρ)(x)) = proxc(ρ)(x) almost by definition of the proximal mapping
(see Lemma A-1 and its proof). Therefore, εi −X ′iβ̃i = proxci(ρ)(r̃i,(i)) and

− 1

n
Xiψ(εi −X ′iβ̃i) + (Si + τ Id)ηi =

1

n
Xi

[
−ψ(proxci(ρ)(r̃i,(i))) + ψ(proxci(ρ)(r̃i,(i)))

]
= 0.

We conclude that
f(β̃i) = Ri .

Applying Lemma 2.1, we see that

‖β̂ − β̃i‖ ≤
1

τ
‖Ri‖ .

3.1.1 On Ri

Lemma 3.1. We have

‖ηi‖ ≤
1√
nτ

‖Xi‖√
n

[
|ψ(r̃i,(i))| ∧

|r̃i,(i)|
ci

]
, (21)

and

‖Ri‖ ≤ |||Σ̂|||2 sup
j 6=i

∣∣∣ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))
∣∣∣ 1√

nτ

‖Xi‖√
n

[
|ψ(r̃i,(i))| ∧ |r̃i,(i)|/ci

]
. (22)

Proof. We have

Ri =
1

n

∑
j 6=i

[
ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))

]
XjX

′
jηi .

Of course, S = 1
n

∑
j 6=i

[
ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))

]
XjX

′
j can be written S = 1

nX
′DX, where D is a

diagonal matrix with (j, j) entry
[
ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))

]
and (i, i) entry 0.

Using the fact that ||| · |||2 is a matrix norm, we see that |||S|||2 ≤ |||Σ̂|||2|||D|||2. This implies that

‖Ri‖ ≤ |||Σ̂|||2 sup
j 6=i

∣∣∣ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))
∣∣∣ ‖ηi‖ ,

where Σ̂ = 1
n

∑n
i=1XiX

′
i is the usual sample covariance matrix.

We note that, since |||(Si + τ Idp)
−1|||2 ≤ τ−1,

‖ηi‖ ≤
1√
nτ

‖Xi‖√
n
|ψ(proxci(ρ)(r̃i,(i)))| .

Using Lemma A-1, we see that

|ψ(proxci(ρ)(r̃i,(i)))| ≤ |ψ(r̃i,(i))| ∧
|r̃i,(i)|
ci

.

The lemma is shown.
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3.1.2 On γ∗(Xj , β̂(i), ηi) and related quantities

We now show how to control 1√
n

supj 6=i

∣∣∣ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))
∣∣∣

Lemma 3.2. Let us call
Bn(i) = sup

j 6=i

[
|εj −X ′j β̂(i)|+ |X ′jηi|

]
.

Suppose, as in our assumption O3, that ψ′ is L(Bn(i)) Lipschitz on (−Bn(i),Bn(i)). Then,

sup
j 6=i

∣∣∣ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))
∣∣∣ ≤ L(Bn(i)) sup

j 6=i
|X ′jηi| .

It follows that

‖Ri‖ ≤ sup
j 6=i
|X ′jηi|

L(Bn(i))√
nτ

‖Xi‖√
n
|||Σ̂|||2

[
|ψ(r̃i,(i))| ∧ |r̃i,(i)|/ci

]
.

We note that we could replace the assumption concerning the Lipschitz property of ψ′ on (−Bn(i),Bn(i))
by saying that ψ′ has modulus of continuity ωn when restricted to this interval and putting growth condition
on this modulus. We chose not to do this to simplify the exposition.

Proof. By definition, we have
|γ∗(Xj , β̂(i), ηi)− r̃j,(i)| ≤ |X ′jηi| .

Therefore,

sup
j 6=i
|γ∗(Xj , β̂(i), ηi)| ≤ sup

j 6=i

[
|εj −X ′j β̂(i)|+ |X ′jηi|

]
Recall that

Bn(i) = sup
j 6=i

[
|εj −X ′j β̂(i)|+ |X ′jηi|

]
.

ψ′ is L(Bn(i))-Lipschitz on (−Bn(i),Bn(i)) by assumption. Therefore,

sup
j 6=i

∣∣∣ψ′(γ∗(Xj , β̂(i), ηi))− ψ′(r̃j,(i))
∣∣∣ ≤ L(Bn(i)) sup

j 6=i
|X ′jηi| .

The bound for ‖Ri‖ follows immediately.

3.2 Probabilistic aspects

Note that

X ′jηi = ψ(proxci(ρ)(r̃i,(i)))
1

n
X ′j(Si + τ Idp)

−1Xi .

We can rewrite the bound on ‖Ri‖ as

‖Ri‖ ≤

[
sup
j 6=i

|X ′j(Si + τ Idp)
−1Xi|

n

]
L(Bn(i))√

nτ

‖Xi‖√
n
|||Σ̂|||2

([
|ψ(r̃i,(i))| ∧ |r̃i,(i)|/ci

]
|ψ(proxci(ρ)(r̃i,(i))|

)
.

In light of Proposition 3.1, the bound on ‖Ri‖ is encouraging since it shows that we can control ‖β̂− β̃i‖
in Lk provided we can control each terms in the above product in L5k: indeed, for a product of m random

variables {Wj}mj=1, we have E
(
|
∏m
j=1Wj |

)
≤
∏m
j=1 [E (|Wj |m)]1/m by Hölder’s inequality. In particular,

we will later need control of E
(
‖β̂ − β̃i‖2

)
and will therefore require subsequent bounds to in L10.
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3.2.1 On supj 6=i |X ′j(Si + τ Id)−1Xi/n|

We will control X ′j(Si+ τ Id)−1Xi/n by appealing to Lemma B-2, which is designed to handle problems
of the kind we are encountering here.

Lemma 3.3. Suppose Xi are independent and satisfy the concentration assumptions mentioned in As-
sumption O4. Then

sup
j 6=i

‖Xj‖
τ
√
n

= OL20(1)

and

sup
j 6=i
|X ′j(Si + τ Id)−1Xi/n| = OL10

(
polyLog(n)

c
1/2
n

)
.

Proof. • First part Using the fact that Xj → ‖Xj‖/
√
n is n−1/2-Lipschitz with respect to Euclidean norm

we see, using Lemma B-1, that

sup
j 6=i
|‖Xj‖/

√
n−m‖Xj‖/√n| ≤ polyLog(n)/(

√
ncn) in L20 .

Recall that cov (Xi) = Idp. So m‖Xj‖/
√
n is of order 1 in the case we are interested in (using for instance

Proposition 1.9 in Ledoux (2001)). Hence,

sup
j 6=i
|‖Xj‖/

√
n| = OL20(1) ,

provided 1/(ncn) = O(polyLog(n)). This is clearly the case under our assumptions. This shows the first
result of the Lemma.
• Second part Let us work conditionally on X(i) = {X1, . . . , Xi−1, Xi+1, . . . , Xn}. Call vj,(i) = (Si +

τ Id)−1Xj . The map Fj(Xi) = X ′j(Si+ τ Id)−1Xi = X ′ivj,(i) is Lipschitz (as a function of Xi) with Lipschitz

constant
√
X ′j(Si + τ Id)−2Xj ≤ ‖Xj‖/τ . Indeed, it is linear in Xi. Call mFj its mean, conditional on X(i).

Since Xi has mean 0, we see that mFj = 0.
Therefore, using Lemma B-2, we see thatE

[ 1

n
sup
j 6=i
|X ′j(Si + τ Id)−1Xi|

]10
1/10

= O


E

[ 1√
n

sup
j

‖Xj‖
τ
√
n

]20
1/20√

polyLog(n)/cn

 ,

and therefore
1

n
sup
j 6=i
|X ′j(Si + τ Id)−1Xi| = OL10

(√
polyLog(n)/cn

)
,

since we have established earlier that supj 6=i |‖Xj‖/
√
n| = OL20(1).

3.2.2 Control of the residuals Ri and r̃i,(i)

Our aim here is to show that we can control supi |Ri|, where Ri = εi −X ′iβ̂ are the residuals from the
full robust ridge-regression problem. This will allow us to achieve control of Bn(i). As r̃i,(i) is much easier
to understand than Ri, our strategy is to relate the two.

Lemma 3.4. We have the deterministic bound

|Ri| ≤ |r̃i,(i)|+
‖Xi‖2

n

1

τ
|ψ(r̃i,(i))| . (23)

Denoting by En = sup1≤i≤n |εi|, we have under our assumptions on {Xi}ni=1,

sup
1≤i≤n

|r̃i,(i)| ≤ En + [‖Wn‖+
1

n
sup

1≤i≤n
‖Xi‖|ψ(En) ∨ ψ(−En)|]polyLog(n)/[τ

√
cn] in Lk .
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Under the assumption (see O3) that |ψ(x)| = O(|x|m) for some fixed m at infinity, we have, for some
constant K,

sup
i
|Ri| ≤ K(sup

i
|r̃i,(i)|)m∨1 in Lk ,

and ‖Wn‖+ 1
n sup1≤i≤n‖Xi‖|ψ(En) ∨ ψ(−En)| = OLk(‖Wn‖+ polyLog(n)Emn /

√
n).

Proof. Recall the representation

β1 − β2 = (Sβ1,β2 + τ Idp)
−1 (f(β1)− f(β2)) .

Take β1 = β̂ and β2 = β̂(i). Note that since fi(β̂(i)) = 0,

f(β̂(i)) = − 1

n
Xiψ(r̃i,(i))−

1

n

∑
j 6=i

Xiψ(r̃j,(i)) + τ β̂(i) = − 1

n
Xiψ(r̃i,(i)) .

Therefore,

β̂ − β̂(i) =
1

n
(S
β̂,β̂(i)

+ τ Idp)
−1Xiψ(r̃i,(i)) .

Since r̃i,(i) −Ri = X ′i(β̂ − β̂(i)), we also have

|r̃i,(i) −Ri| ≤
‖Xi‖2

n

1

τ
|ψ(r̃i,(i))| .

We conclude that

|Ri| ≤ |r̃i,(i)|+
‖Xi‖2

n

1

τ
|ψ(r̃i,(i))| .

Now under assumptions, we have sup1≤i≤n |‖Xi‖2/n− p
n | = OLk(polyLog(n)/

√
ncn), according to Lemma

B-3. Using the fact that ‖β̂(i)‖ ≤ ‖Wn,(i)‖/τ (see Lemma 2.2 with obvious modifications of notations), the

independence of Xi and β̂(i), we have, through Lemma B-2,

sup
1≤i≤n

|X ′iβ̂(i)| ≤ sup
1≤i≤n

‖Wn,(i)‖
τ

polyLog(n)/
√
cn .

Since ‖Wn,(i)‖ ≤ ‖Wn‖+ ‖Xi‖|ψ(εi)|/n, we have

|r̃i,(i)| ≤ |εi|+ [‖Wn‖+ sup
i
‖Xi‖|ψ(εi)|/n)]polyLog(n)/[τ

√
cn] in Lk .

Denoting by En = sup1≤i≤n |εi|, we have, using the fact that ψ is non-decreasing,

sup
1≤i≤n

|r̃i,(i)| ≤ En +

[
‖Wn‖+

1

n1/2
sup

1≤i≤n

‖Xi‖
n1/2

|ψ(En) ∨ ψ(−En)|
]

polyLog(n)/[τ
√
cn] in Lk ,

for any given k. We note that if |ψ(x)| = O(|x|m) at ∞, since we have shown that

|Ri| ≤ |r̃i,(i)|+
‖Xi‖2

n

1

τ
|ψ(r̃i,(i))| ,

we have the bound sup1≤i≤n |Ri| . sup1≤i≤n |r̃i,(i)|m∨1 and therefore,

sup
1≤i≤n

|Ri| .
[
En + polyLog(n)/[τ

√
cn][‖Wn‖+

1

n
sup

1≤i≤n
‖Xi‖|ψ(En) ∨ ψ(−En)|

]m∨1

in Lk ,

provided the bound on sup1≤i≤n |r̃i,(i)| holds in Lmk. Note that this is guaranteed under our assumptions.
Of course, here we are using control of supi‖Xi‖2/n, which we get by controlling ‖Xi‖/

√
n through con-

centration arguments. The fact that supi‖Xi‖/
√
n = OLk(1) gives us the last statement of the lemma.
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Remark 1: at the gist of the bound on r̃i,(i) is a uniform bound on ‖β̂(i)‖ in Lk. We could also

have used the bound supi‖β̂(i)‖ ≤
√

2/τ
√

1/n
∑n

i=1 ρ(εi) which is immediate from Lemma 2.2. This would
change slightly the appearance of our bounds on supi |r̃i,(i)|.

In the case where ρ grows like |x|1+ε at infinity, it seems preferable to have bounds that depend on
ψ(εi) and not ρ(εi), which is why we demonstrated how to use those ψ-based bounds, instead of using the
slightly simpler ones based on ρ. This difference will likely be more important when En is allowed to grow
much faster with n than under our assumption O7 - but we leave this variant of statistical interest to
another paper.

Remark 2: We note that a similar result holds of course for r̃j,(i). More precisely,

|r̃j,(i) −Rj | ≤
∣∣∣∣ 1nX ′j(Sβ̂,β̂(i) + τ Idp)

−1Xi

∣∣∣∣ ∣∣ψ(r̃i,(i))
∣∣ ,

and hence,

|r̃j,(i) −Rj | ≤
‖Xj‖‖Xi‖

nτ

∣∣ψ(r̃i,(i))
∣∣ .

Of course, this bound is very coarse and we will see that we can get a better one later.
However, this finally allows us to have the following proposition

Proposition 3.2. Under the assumption that |ψ(x)| = O(|x|m), as in O3, we have the bound

Bn(i) ≤ K
[
En + (‖Wn‖+

Emn√
n

)polyLog(n)/[τ
√
cn]

]m∨1

in Lk ,

where K is a constant independent of p and n. When ‖Wn‖ and E
m
n√
n

are bounded in Lk, this bound simply

becomes
Bn(i) ≤ K [En ∨ polyLog(n)/(τ

√
cn)]m∨1 in Lk .

The same bound holds for supi Bn(i) in Lk .

Proof. The result follows easily from the fact that

Bn(i) = sup
j 6=i

[
|r̃j,(i)|+ |X ′jηi|

]
,

the fact that

sup
i

sup
j 6=i
|r̃j,(i) −Rj | ≤ sup

i
sup
j

‖Xj‖‖Xi‖
nτ

∣∣ψ(r̃i,(i))
∣∣ ,

and the bounds on supi |Ri| we have derived earlier. In more details, we have

Bn(i) ≤ sup
i
Ri + sup

i
sup
j 6=i
|r̃j,(i) −Rj |+ sup

i
sup
j 6=i
|X ′jηi| .

The same bound is of course true for supi Bn(i). Now we recall that

X ′jηi =
X ′j(Si + τ Id)−1Xi

n
ψ(proxci(ρ)(r̃i,(i))) .

Using our previous investigations concerning X ′j(Si + τ Idp)
−1Xi, the part concerning supi supj 6=i |X ′jηi|

is easily shown to be negligible compared to the bound on

sup
i

sup
j 6=i
|r̃j,(i) −Rj | .
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3.2.3 Consequences

We have the following result. Recall that ψ′ is assumed to be Lipschitz with Lipschitz constant L(u)
on (−|u|, |u|).

Proposition 3.3. Suppose, as is consistent with O3, O6 and O7, that |ψ(x)| = O(|x|m), ‖Wn‖ is bounded
in Lk and Emn = o(

√
n) in Lk. Suppose further that L(x) ≤ K|x|m1. Then we have

‖Ri‖ ≤ K
polyLog(n)

nτ2c
3/2
n

(
En ∨ (τcn)−1/2polyLog(n)

)2m+m1(m∨1)
in Lk .

In particular, if En = OLk(polyLog(n)) and 1/cn = O(polyLog(n)), we have, since τ is assumed to be fixed,

‖Ri‖ ≤ K
polyLog(n)

n
in Lk .

Furthermore, the same bounds hold for supi‖Ri‖.

Proof. The proof follows by aggregating all the intermediate results we had and noticing that under our
assumptions, |||Σ̂|||2 = OLk(c−1

n ). This latter result follows easily from a standard ε-net and union bound

argument for controlling |||Σ̂|||2 - see e.g Talagrand (2003), Appendix A.4. We provide some details on this
bound in Lemma B-4.

The statement concerning supi‖Ri‖ follows by the same method.

We have the following theorem, which is very important for this paper. We recall that β̃i is defined in
Equation (4) on p.7.

Theorem 3.1. Under Assumptions O1-O7, we have, for any fixed k, when τ is held fixed,

sup
1≤i≤n

‖β̂ − β̃i‖ = OLk(
polyLog(n)

n
) .

In particular, we have

∀1 ≤ i ≤ n ,E
(
‖β̂ − β̃i‖2

)
= O(polyLog(n)/n2) .

Also,

sup
1≤i≤n

sup
j 6=i
|r̃j,(i) −Rj | = OLk(

polyLog(n)

n1/2
) .

Finally,

sup
i
|Ri − proxci(ρ)(r̃i,(i))| = OLk(

polyLog(n)

n1/2
) .

Proof. The only parts that may require a discussion are the ones involving the residuals. However, they
follow easily from the very coarse bound

sup
j 6=i
|r̃j,(i) −Rj | = sup

j 6=i

∣∣∣X ′j(β̂ − β̂i)∣∣∣ ≤ sup
j 6=i

∣∣∣X ′j(β̂ − β̃i)∣∣∣+ sup
j 6=i
|X ′j(β̃i − β̂i)| ,

≤

(
sup

1≤j≤n

‖Xj‖√
n

)
√
n‖β̂ − β̃i‖+ sup

j 6=i
|X ′jηi| ,

and the fact that
(

sup1≤j≤n
‖Xj‖√
n

)
= OLk(1) under our assumptions. Recalling that ‖β̂ − β̃i‖ ≤ ‖Ri‖/τ

and hence supi‖β̂ − β̃i‖ ≤ supi‖Ri‖/τ gives control of the first term. Control of the second term follows
from Lemma 3.3 and our bounds on supi |r̃i,(i)| in Lemma 3.4.

Concerning the fine approximation of Ri, recall that

Ri = εi −X ′iβ̂ = εi −X ′iβ̃i −X ′i(β̂ − β̃i) .

21



Now, given the definition of β̃i, we have

X ′iβ̃i = X ′iβ̂(i) + ciψ[proxci(ρ)(r̃i,(i))] .

Hence,
εi −X ′iβ̃i = r̃i,(i) − ciψ[proxci(ρ)(r̃i,(i))] = proxci(ρ)(r̃i,(i)) ,

where the last equality is a standard property of the proximal mapping (see Lemma A-1 if needed). So we
have established that

sup
i

∣∣Ri − proxci(ρ)(r̃i,(i))
∣∣ = sup

i

∣∣∣X ′i(β̃i − β̂)
∣∣∣

and the result follows from our previous bounds.

3.3 Asymptotically deterministic character of ‖β̂‖2

Proposition 3.4. Under our assumptions O1-O7,

var
(
‖β̂‖2

)
→ 0 as n→∞ .

Therefore ‖β̂‖2 has a deterministic equivalent in probability and in L2.
More specifically, when 1/cn = O(polyLog(n)), we have

var
(
‖β̂‖2

)
= O(

polyLog(n)

n
) .

Proof. We will use the Efron-Stein inequality - a martingale inequality - to show that var
(
‖β̂‖2

)
goes to

0 as n → ∞. In what follows, we rely on our assumptions, which imply that ψ(εi) have enough moments

for all the expectations of the type E
(
‖β̂‖2k

)
to be bounded like 1/τ2k. Note that this the content of our

Lemma 2.2.
Recall that the Efron-Stein inequality (Efron and Stein (1981)) gives, if Y is a function of n independent

random variables, and Y(i) is any function of all those random variables except the i-th,

var (Y ) ≤
n∑
i=1

var
(
Y − Y(i)

)
≤

n∑
i=1

E
(
(Y − Y(i))

2
)
.

We first observe that

E
(
|‖β̂‖2 − ‖β̂(i)‖2|2

)
≤ 2

[
E
(
|‖β̂‖2 − ‖β̃i‖2|2

)
+ E

(
|‖β̃i‖2 − ‖β̂(i)‖2|2

)]
.

Of course, using the fact that β̂ = β̂ − β̃i + β̃i and |‖β̂‖2 − ‖β̃i‖2|2 = [(β̂ − β̃i)′(β̂ + β̃i)]
2, |‖β̂‖2 − ‖β̃i‖2|2 =

OL1(‖β̂−β̃i‖4)+

√
OL1(‖β̂ − β̃i‖4), by the Cauchy-Schwarz inequality, since E

(
‖β̂‖2

)
exists and is bounded

by K/τ2.
Using the results of Theorem 3.1, we see that

E
(
|‖β̂‖2 − ‖β̃i‖2|2

)
= O(

polyLog(n)

n2
) = o(n−1) .

On the other hand, given the definition in Equation (4),

‖β̃i‖2 − ‖β̂(i)‖2 = 2
1

n
β̂′(i)(Si + τ Id)−1Xiψ(proxci(ρ)(r̃i,(i))) +

1

n2
X ′i(Si + τ Id)−2Xiψ

2(proxci(ρ)(r̃i,(i))) .

Since β̂(i) and Si are independent of Xi, and |||(Si+τ Id)−1|||2 ≤ 1/τ , β̂′(i)(Si+τ Id)−1Xi = OL4(‖β̂(i)‖/c
1/2
n ),

using our concentration assumptions on Xi (O4) applied to linear forms. Therefore, we see that both terms

are OL2(1/nc
1/2
n ) provided ψ(proxci(ρ)(r̃i,(i))) has 4 + ε absolute moments - uniformly bounded in n - by
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using Hölder’s inequality. Under our assumptions, given our work on r̃i,(i), the fact that the prox is a
contractive mapping (Moreau (1965)) and that we assume that sign(ψ(x)) = sign(x), it is clear that this
is the case. We conclude that then

E

(∣∣∣‖β̃i‖2 − ‖β̂(i)‖2
∣∣∣2) = O(

polyLog(n)

n2
) .

Taking Y = ‖β̂‖2 and Y(i) = ‖β̂(i)‖2 in the Efron-Stein inequality, we clearly see that

var
(
‖β̂‖2

)
= O(

polyLog(n)

n
) = o(1) .

This shows that ‖β̂‖2 has a deterministic equivalent in probability and in L2.

4 Leaving out a predictor

In this second main step of the proof, we do need at various points that the entries of the data vector
Xi be independent, whereas as we showed before, it is not important when studying what happens when
we leave out an observation.

We refer the reader to Subsubsection 1.2.2 for the definition of the various quantities that appear in
the current section.

We will show later, in Subsubsection 4.2.2 that ξn ≥ 0. However, we will use this information from
the beginning and there are no circular arguments. Note that when ξn > 0, we have, with the definitions
introduced in Subsubsection 1.2.2,

bp =
1
n

∑n
i=1Xi(p)ψ(ri,[p])− τbp

1
n

∑n
i=1X

2
i (p)ψ′(ri,[p])− u′p(Sp + τ Id)−1up

=
n−1/2Np − τbp

ξn
.

The aim of our work in the second part of this proof is to establish Theorem 4.1 on p.33, which shows that
‖b̃−β̂‖ = O(polyLog(n)/n) in Lk. Because the last coordinate of b̃, bp, has a reasonably simple probabilistic
structure and our approximations are sufficiently good, we will be able to transfer our insights about this
coordinate to β̂p, the last coordinate of β̂.

Appendix D-1 provides some intuitive explanations for why bp is a natural quantity in our context.

4.1 Deterministic aspects

Proposition 4.1. Recall the definition of b̃ in Equation (11). We have

‖β̂ − b̃‖ ≤ 1

τ
|bp| sup

1≤i≤n
|di,p| |||Σ̂|||2

√
‖(Sp + τ Id)−1up‖2 + 1 . (24)

where di,p = [ψ′(γ∗i,p)− ψ′(ri,[p])] and γ∗i,p is in the interval (εi − V ′i γ̂, εi −X ′i b̃).
Furthermore,

‖(Sp + τ Id)−1up‖2 ≤
1

nτ

n∑
i=1

X2
i (p)ψ′(ri,[p]) . (25)

As we saw in Equation (16) and Lemma 2.1, we have

‖β̂ − b̃‖ ≤ 1

τ
‖f (̃b)‖ ,

where

f (̃b) = − 1

n

n∑
i=1

Xiψ(εi −X ′i b̃) + τ b̃ .

We note furthermore that

g(γ̂) , − 1

n

n∑
i=1

Viψ(εi − V ′i γ̂) + τ γ̂ = 0p−1 .
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The strategy of the proof is to control f (̃b) by using g(γ̂) to create good approximations and then use
the fact that g(γ̂) = 0p−1.

Proof. a) Work on the first (p− 1) coordinates of f (̃b)

We call fp−1(β) the first p− 1 coordinates of f(β). We call γ̂ext the p-dimensional vector whose first p− 1
coordinates are γ̂ and last coordinate is 0, i.e

γ̂ext =

[
γ̂
0

]
.

For a vector v, we use the notation vcomp,k to denote the p− 1 dimensional vector consisting of all the
coordinates of v except the k-th.

Clearly,

fp−1(̃b) = fp−1(̃b)− g(γ̂) = − 1

n

n∑
i=1

Vi

[
ψ(εi −X ′i b̃)− ψ(εi − V ′i γ̂)

]
+ τ (̃bcomp,p − γ̂) .

We can write by using the mean value theorem, for γ∗i,p in the interval (εi − V ′i γ̂, εi −X ′i b̃),

ψ(εi −X ′i b̃)− ψ(εi − V ′i γ̂) = ψ′(γ∗i,p)X
′
i(γ̂ext − b̃) ,

= ψ′(ri,[p])X
′
i(γ̂ext − b̃) + [ψ′(γ∗i,p)− ψ′(ri,[p])]X ′i(γ̂ext − b̃) .

Let us call

di,p = [ψ′(γ∗i,p)− ψ′(ri,[p])] ,

δi,p = [ψ′(γ∗i,p)− ψ′(ri,[p])]X ′i(γ̂ext − b̃) ,

Rp = − 1

n

n∑
i=1

di,pViX
′
i(γ̂ext − b̃) .

We have with this notation

fp−1(̃b) = − 1

n

n∑
i=1

ψ′(ri,[p])ViX
′
i(γ̂ext − b̃) + τ (̃bcomp,p − γ̂) + Rp , Ap + Rp .

We note that by definition,

γ̂ext − b̃ = bp

[
(Sp + τ Id)−1up

−1

]
,

b̃comp,p − γ̂ = −bp(Sp + τ Id)−1up .

Therefore, X ′i(γ̂ext − b̃) = bp
[
V ′i (Sp + τ Id)−1up −Xi(p)

]
, and

Ap = −bp

(
1

n

n∑
i=1

ψ′(ri,[p])Vi
[
V ′i (Sp + τ Id)−1up −Xi(p)

])
+ τ(−bp(Sp + τ Id)−1up) .

Recalling the definition of Sp and up, we see that

Ap = −bp
(
Sp(Sp + τ Id)−1up − up + τ(Sp + τ Id)−1up

)
= 0p−1 ,

since Sp(Sp + τ Id)−1 + τ(Sp + τ Id)−1 = Id.
We conclude that

fp−1(̃b) = Rp .

24



b) Work on the last coordinate of f (̃b)

We call [f (̃b)]p the last coordinate of f (̃b). We recall the representation

ψ(εi −X ′i b̃)− ψ(εi − V ′i γ̂) = ψ′(ri,[p])X
′
i(γ̂ext − b̃) + [ψ′(γ∗i,p)− ψ′(ri,[p])]X ′i(γ̂ext − b̃)

and call
δi,p = [ψ′(γ∗i,p)− ψ′(ri,[p])]X ′i(γ̂ext − b̃) .

Clearly,

ψ(εi −X ′i b̃) = ψ(ri,[p]) + ψ′(ri,[p])X
′
i(γ̂ext − b̃) + δi,p ,

= ψ(ri,[p]) + ψ′(ri,[p])bp
[
V ′i (Sp + τ Id)−1up −Xi(p)

]
+ δi,p .

We therefore see that

[f (̃b)]p +
1

n

n∑
i=1

Xi(p)δi,p = − 1

n

n∑
i=1

Xi(p)
(
ψ(ri,[p]) + ψ′(ri,[p])bp

[
V ′i (Sp + τ Id)−1up −Xi(p)

])
+ τ b̃p ,

= − 1

n

n∑
i=1

Xi(p)ψ(ri,[p])− bpu
′
p(Sp + τ Id)−1up + bp

1

n

n∑
i=1

ψ′(ri,[p])X
2
i (p) + τbp ,

= −

[
1

n

n∑
i=1

Xi(p)ψ(ri,[p])− τbp

]
+ bp

(
1

n

n∑
i=1

ψ′(ri,[p])X
2
i (p)− u′p(Sp + τ Id)−1up

)
,

= −
[

1√
n
Np − τbp

]
+ bpξn ,

= 0 .

We conclude that

[f (̃b)]p = − 1

n

n∑
i=1

Xi(p)δi,p = − 1

n

n∑
i=1

di,pXi(p)X
′
i(γ̂ext − b̃) .

Representation of f (̃b)

Aggregating all the results we have obtained so far, we see that

f (̃b) =

(
− 1

n

n∑
i=1

di,pXiX
′
i

)
(γ̂ext − b̃) ,

= −bp

(
1

n

n∑
i=1

di,pXiX
′
i

)[
(Sp + τ Id)−1up

−1

]
.

We conclude immediately that

‖f (̃b)‖ ≤ |bp| sup
1≤i≤n

|di,p| |||Σ̂|||2
√
‖(Sp + τ Id)−1up‖2 + 1 . (26)

In connection with Equation (15), this gives Equation (24).
Calling Dψ′(r·,[p]) the diagonal matrix with (i, i) entry ψ′(ri,[p]), we see that

up =
1

n
V ′Dψ′(r·,[p])X(p) and Sp =

1

n
V ′Dψ′(r·,[p])V . (27)

Therefore,

‖(S + τ Id)−1up‖2 =
X(p)′√

n
D

1/2
ψ′(r·,[p])

D
1/2
ψ′(r·,[p])

V
√
n

(
V ′Dψ′(r·,[p])V

n
+ τ Id

)−2 V ′D
1/2
ψ′(r·,[p])√
n

D
1/2
ψ′(r·,[p])

X(p)√
n

.
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Clearly, using for instance the singular value decomposition of
D

1/2

ψ′(r·,[p])
V

√
n

or Lemma V.1.5 in Bhatia

(1997),

D
1/2
ψ′(r·,[p])

V
√
n

(
V ′Dψ′(r·,[p])V

n
+ τ Id

)−1 V ′D
1/2
ψ′(r·,[p])√
n

� Id ,

and
D

1/2
ψ′(r·,[p])

V
√
n

(
V ′Dψ′(r·,[p])V

n
+ τ Id

)−2 V ′D
1/2
ψ′(r·,[p])√
n

� Id

τ
.

So we have

‖(S + τ Id)−1up‖2 ≤
1

nτ
X(p)′Dψ′(r·,[p])X(p) =

1

nτ

n∑
i=1

X2
i (p)ψ′(ri,[p]) .

4.2 Probabilistic aspects

From now on, we assume that X(p), the p-th column of the design matrix, is independent of {Vi, εi}ni=1.
This is consistent with Assumption P1.

Because ri,[p] are the residuals from a ridge-regularized robust regression problem with n observations
and p− 1 predictors, the analysis done above concerning the Ri - see Lemma 3.4, p. 18 - applies and will
allow us to control max1≤i≤n |ψ′(ri,[p])|2. (Note that Assumption O4 is satisfied for Vi if it is satisfied for
Xi: convex 1-Lipschitz function of Vi can be trivially made to be convex 1-Lipschitz function of Xi by
simply not acting on the last coordinate of Xi.)

In light of Lemma 3.4 and using independence of Xi(p)’s and ri,[p], it is clear that the upper bound in
Equation (25) is OLk(polyLog(n)) under Assumptions O1-O7 and P1. In other words, at τ fixed,

‖(Sp + τ Id)−1up‖2 = OLk(polyLog(n))

(Note that p does not play a particular role here. If we considered the same quantity when we remove
the k-th predictor instead of the p-th, and took the sup over 1 ≤ k ≤ p of the corresponding random
variables, the same inequality would hold, in light of our work in Section 3.)

This guarantees that∥∥∥∥(Sp + τ Id)−1up
−1

∥∥∥∥2

≤ (1 + ‖(Sp + τ Id)−1up‖2) = OLk(polyLog(n)) .

We conclude, using Equation (26), that

‖β̂ − b̃‖ ≤ K

τ
polyLog(n)|bp| sup

1≤i≤n
|di,p| |||Σ̂|||2 in Lk.

Recall that Lemma B-4 gives a bound on |||Σ̂|||2. At a high level, we expect sup1≤i≤n |di,p| and bp to
be small, which should give us that

‖β̂ − b̃‖ = OLk(polyLog(n) sup
1≤i≤n

|di,p||bp|) .

In fact, we will show in Proposition 4.2 that bp = OLk(polyLog(n)n−1/2) and in Proposition 4.4 that
sup1≤i≤n |di,p| = OLk(polyLog(n)n−1/2).

We now show these two results.
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4.2.1 On bp

We recall the notations

Np =
1√
n

n∑
i=1

ψ(ri,[p])Xi(p) ,

ξn =
1

n

n∑
i=1

ψ′(ri,[p])X
2
i (p)− u′p(Sp + τ Id)−1up .

Under our assumptions, we have E (Xi) = 0 and cov (Xi) = Idp and hence E
(
X2
i (p)

)
= 1. Recall that

since we assume that X(p) is independent of {Vi, εi}ni=1, X(p) is independent of {ri,[p]}ni=1.

Proposition 4.2. We have

|bp| ≤
1√
nτ
|Np| .

Furthermore, under assumptions O1-O7 and P1, Np = OLk(polyLog(n)) and therefore, when τ is held
fixed,

bp = OLk(polyLog(n)n−1/2) .

Proof. From the definition of bp, we see that, when ξn 6= 0

bp =
1√
n

Np

τ + ξn
.

We will see later, in Subsubsection 4.2.2, that ξn ≥ 0. It immediately then follows that

|bp| ≤
1√
nτ
|Np| .

Using independence of X(p) and {Vi, εi}ni=1, we have for instance

E
(
N2
p

)
=

1

n

n∑
i=1

E
(
X2
i (p)

)
E
(
ψ2(ri,[p])

)
,

whether the right-hand side is finite or not.
Since ri,[p] are the residuals for our original problem with n observations and p − 1 predictors, our

previous analyses show that Np has as many moments as we need and Np = OLk(polyLog(n)). (Indeed,
for higher moments, since Xi(p) are independent random variables when i varies from 1 to n, it suffices to
apply reasoning similar to the arguments given in Lemma 2.2 for the control of the moments of Wn(j) in
connections with our bounds on ri,[p] and therefore on ψ(ri,[p]) under Assumption O3).

We therefore have

|bp| ≤
1√
nτ

OLk(polyLog(n)) .

4.2.2 On ξn

Let us write ξn using matrix notations: denoting by X(p) the last column of the design matrix X, we
have

ξn =
1

n
X(p)′D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

X(p) , (28)

where

M = Idn −
D

1/2
ψ′(r·,[p])

V
√
n

(
1

n
V ′Dψ′(r·,[p])V + τ Id

)−1 V ′D
1/2
ψ′(r·,[p])√
n

. (29)

This simply comes from the representations of up and Sp given in the proof of Proposition 4.1, specifically
in Equation (27).
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Lemma 4.1. We have
ξn ≥ 0 .

Furthermore, under Assumptions O1-O7 and P1,

|ξn −
1

n
trace

(
D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

)
| = OLk( sup

1≤i≤n
ψ′(ri,[p])/(

√
ncn)) . (30)

Proof. Let us first focus on M , as defined in Equation (29). When τ > 0, it is clear that all the eigenvalues

of M are strictly positive, i.e M is positive definite. Indeed, if the singular values of n−1/2D
1/2
ψ′(r·,[p])

V are

denoted by σi, the eigenvalues of M are τ/(σ2
i + τ).

Therefore, since ξn = 1
nv
′Mv with v = D

1/2
ψ′(r·,[p])

X(p), ξn ≥ 0.

M is symmetric and has eigenvalues between 0 and 1, as we just saw. Therefore, using e.g Lemma
V.1.5 in Bhatia (1997),

0 � D1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

� Dψ′(r·,[p]) .

The matrix M is independent of X(p) under Assumption P1. Dψ′(r·,[p]) is also independent of X(p).
Since Xp satisfy the necessary concentration assumptions under Assumption P1, we can now appeal

to Lemma B-3 to obtain∣∣∣∣ 1nX(p)′D
1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

X(p)− 1

n
trace

(
D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

)∣∣∣∣ = OLk(
1
√
ncn

sup
i
ψ′(ri,[p])) .

We now take a slight detour from the aim of showing that we have a very good approximation of β̂
through b̃ by working on finer properties of ξn and bp. These properties will be essential in establishing
the validity of the system (3).

To get a finer understanding of ξn, we now focus on the properties of

1

n
trace

(
D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

)
.

About 1
ntrace

(
D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

)
Lemma 4.2. Let us call Sp = 1

n

∑n
i=1 ψ

′(ri,[p])ViV
′
i and Sp(i) = Sp − 1

nψ
′(ri,[p])ViV

′
i . Let us also call

cτ,p =
1

n
trace

(
(Sp + τ Id)−1

)
,

ζi =
1

n
V ′i (Sp(i) + τ Id)−1Vi − cτ,p .

Then we have under Assumptions O1-O7 and P1, if M is the matrix defined in Equation (29),∣∣∣∣ 1n trace (Idn −M)−
(

1

n
trace

(
D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

))
cτ,p

∣∣∣∣ ≤ [sup
i
|ζi|
]

1

n

∑
i

ψ′(ri,[p]) . (31)

We also have
1

n
trace (Idn −M) =

p− 1

n
− τcτ,p .

Proof. We call di,i = ψ′(ri,[p])/n. Of course, by using the Sherman-Morrison-Woodbury formula (see e.g
Horn and Johnson (1990), p.19),

Mi,i = 1− di,iV ′i (V ′Dψ′(r·,[p])V/n+ τ Id)−1Vi ,

= 1− di,i
V ′i (Sp(i) + τ Id)−1Vi

1 + di,iV ′i (Sp(i) + τ Id)−1Vi
,

=
1

1 + di,iV ′i (Sp(i) + τ Id)−1Vi
.
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Recall that we are interested in 1
n

∑
i ψ
′(ri,[p])Mi,i = 1

ntrace
(
D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

)
. Note that, since

trace (AB) = trace (BA),

trace (Idn −M) = trace
(
(Sp + τ Id)−1Sp

)
= p− 1− τtrace

(
(Sp + τ Id)−1

)
= p− 1− nτcτ,p .

On the other hand,

trace (Idn −M) =
∑
i

(1−Mi,i) =
∑
i

di,i
V ′i (Sp(i) + τ Id)−1Vi

1 + di,iV ′i (Sp(i) + τ Id)−1Vi
. (32)

With our definitions, we have

1

n
trace (Idn −M) =

(
1

n

∑
i

ψ′(ri,[p])Mi,i

)
cτ,p +

1

n

∑
i

ψ′(ri,[p])
ζi

1 + di,iV ′i (Sp(i) + τ Id)−1Vi
.

It immediately follows that∣∣∣∣∣ 1ntrace (Idn −M)−

(
1

n

∑
i

ψ′(ri,[p])Mi,i

)
cτ,p

∣∣∣∣∣ ≤
[
sup
i
|ζi|
]

1

n

∑
i

ψ′(ri,[p]) ,

as announced.

Controlling ζi

Lemma 4.3. Suppose we can find {r(i)j,[p]}j 6=i independent of Vi such that supj 6=i |r
(i)
j,[p] − rj,[p]| ≤ δn(i).

Suppose further that we can find Kn such that

sup
i

sup
j 6=i
|ψ′(r(i)j,[p])− ψ

′(rj,[p])| ≤ Kn

Then

sup
i
|ζi| = OLk

(
1

τ2
Kn|||Σ̂|||2 +

polyLog(n)

τ
√
ncn

+
1

nτ

)
, (33)

provided Kn has 3k uniformly bounded moments.

Proof. We call

AMi,p =
1

n

∑
j 6=i

ψ′(r
(i)
j,[p])VjV

′
j .

Then, using for instance the first resolvent identity, i.e A−1 −B−1 = A−1(B −A)B−1, we see that

|||(Sp(i) + τ Id)−1 − (AMi,p + τ Id)−1|||2 ≤
1

τ2
Kn|||Σ̂|||2 ,

since ||| 1n
∑

i ViV
′
i |||2 ≤ |||Σ̂|||2. In particular,∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi −

1

n
V ′i (AMi,p + τ Id)−1Vi

∣∣∣∣ ≤ ‖Vi‖2n

1

τ2
Kn|||Σ̂|||2 .

However, since AMi,p is independent of Vi, we can use Lemma B-3 and see that

sup
1≤i≤n

∣∣∣∣ 1nV ′i (AMi,p + τ Id)−1Vi −
1

n
trace

(
(AMi,p + τ Id)−1

)∣∣∣∣ = OLk(
polyLog(n)

τ
√
ncn

) ,

by using the fact that λmax((AMi,p + τ Id)−1) ≤ 1
τ .

However, by the argument we gave above,∣∣∣∣ 1ntrace
(
(AMi,p + τ Id)−1

)
− 1

n
trace

(
(Sp(i) + τ Id)−1

)∣∣∣∣ ≤ 1

τ2
Kn|||Σ̂|||2

p

n
.
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We conclude that

sup
1≤i≤n

∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi −
1

n
trace

(
(Sp(i) + τ Id)−1

)∣∣∣∣ ≤ 1

τ2
Kn|||Σ̂|||2 sup

1≤i≤n

[
p

n
+
‖Vi‖2

n

]
+

polyLog(n)

τ
√
ncn

,

in Lk.
Now, it is clear that under O1 and O4, sup1≤i≤n‖Vi‖2/n = OLk(1) and finally

sup
1≤i≤n

∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi −
1

n
trace

(
(Sp(i) + τ Id)−1

)∣∣∣∣ = OLk(
1

τ2
Kn|||Σ̂|||2 +

polyLog(n)

τ
√
ncn

) .

Control of 1
ntrace

(
(Sp(i) + τ Id)−1

)
− 1

ntrace
(
(Sp + τ Id)−1

)
Using the Sherman-Woodbury-Morrison formula, we have

(Sp(i) + τ Id)−1 − (Sp + τ Id)−1 =
ψ′(ri,[p])

n

(Sp(i) + τ Id)−1ViV
′
i (Sp(i) + τ Id)−1

1 +
ψ′(ri,[p])

n V ′i (Sp(i) + τ Id)−1Vi
.

After taking traces, we see that

0 ≤ trace
(
(Sp(i) + τ Id)−1

)
− trace

(
(Sp + τ Id)−1

)
≤ 1

τ
,

since V ′i (Sp(i) + τ Id)−2Vi ≤ 1
τ V
′
i (Sp(i) + τ Id)−1Vi.

Therefore,

0 ≤ 1

n
trace

(
(Sp(i) + τ Id)−1

)
− 1

n
trace

(
(Sp + τ Id)−1

)
≤ 1

nτ
.

We conclude that

sup
1≤i≤n

|ζi| = OLk

(
1

τ2
Kn|||Σ̂|||2 +

polyLog(n)

τ
√
ncn

+
1

nτ

)
,

provided we can use Holder’s inequality. In effect, this requires Kn to have 3k uniformly bounded moments.

4.2.3 Control of Kn

A natural choice for r
(i)
j,[p] defined in Lemma 4.3 is to use a leave one out estimator of γ̂. Hence, all the

work done in Theorem 3.1 becomes immediately relevant.

Lemma 4.4. Suppose we use for {r(i)j,[p]}j 6=i the residuals we would get by using a leave-one-out estimator

of γ̂, i.e excluding (Vi, εi) from problem (7).
With the notations of Lemma 4.3, we have

sup
i

(δn(i)) = OLk

(
polyLog(n)

n1/2

)
.

Therefore,

Kn = OLk

(
n−1/2polyLog(n)

)
Proof. The first statement of the Lemma is an application of Theorem 3.1 with Rj = rj,[p] and r̃j,(i) = r

(i)
j,[p].

The control of Kn follows immediately by using our assumptions on ψ′ and on the growth of Bn(i) and
L(Bn(i)) we had before, now applied to the situation with p− 1 predictors.

Important remark: the previous remark has important consequences for ci defined in Equation (5):
we just showed that supi | 1nV

′
i (Sp(i) + τ Id)−1Vi − cτ,p| = OLk(polyLog(n)/

√
n). Recalling the notation

cτ =
1

n
trace

[ 1

n

n∑
i=1

ψ′(Ri)XiX
′
i + τ Idp

]−1
 ,
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which is the analog of cτ,p when we use all the predictors and not only (p− 1), we see that supi |ci − cτ | =
O(n−1/2polyLog(n)). Indeed, ci in Equation (5) is defined, in the notation of the proof of Lemma 4.3 as
1
nV
′
i (AMi,p + τ Id)−1Vi, with the role of {r(i)j,[p]}j 6=i being played by the residuals obtained from the leave-

one-out estimate of β̂, excluding (Xi, εi) from the problem. Lemma 4.3 in connection with Theorem 4.1
shows that supi | 1nV

′
i (AMi,p + τ Id)−1Vi − cτ,p| = OLk(polyLog(n)/

√
n) under our assumptions. Passing

from the p − 1 dimensional version of this result, i.e Lemma 4.3, to the p-dimensional version gives the
approximation

sup
i
|ci − cτ | = OLk(n−1/2polyLog(n)) . (34)

4.2.4 Further results on ξn and bp

We can combine all the results we have obtained so far in the following proposition.

Proposition 4.3. We have, under Assumptions O1-O7 and P1,∣∣∣∣cτ,p(ξn + τ)− p− 1

n

∣∣∣∣ ≤ OLk

(
(sup
i
ψ′(ri,[p])

(
polyLog(n)
√
ncn

+
1

τ2
Kn|||Σ̂|||2 +

1

nτ

))
= OLk

(
polyLog(n)√

n

)
.

(35)
Furthermore, under our assumptions,( p

n

)2
nE
(
b2
p

)
=

1

n

n∑
i=1

E
(
(cτ,pψ(ri,[p])

2
)

+ o(1) . (36)

Proof. The proof of Equation (35) consists just in aggregating all the previous results and noticing that
cτ,p ≤ (p− 1)/(nτ) and therefore remains bounded. Indeed, we have

p− 1

n
− τcτ,p =

1

n
trace (Id−M) ≥ 0 .

This latter quantity was approximated in Lemma 4.2 by(
1

n
trace

(
D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

))
cτ,p .

And in Lemma 4.1, we approximated ξn by
(

1
ntrace

(
D

1/2
ψ′(r·,[p])

MD
1/2
ψ′(r·,[p])

))
.

We recall that

(τ + ξn)
√
nbp|{Vi, εi} =

1√
n

n∑
i=1

ψ(ri,[p])Xi(p) .

Therefore,

cτ,p(τ + ξn)
√
nbp|{Vi, εi} =

1√
n

n∑
i=1

cτ,pψ(ri,[p])Xi(p)

Now, cτ,pψ(ri,[p]), which depends only on {Vi, εi}ni=1, is independent of {Xi(p)}ni=1.
Since Xi(p)’s are independent with mean 0 and variance 1, we conclude that

E
(
(cτ,p(τ + ξn)

√
nbp)

2
)

=
1

n

n∑
i=1

E
(
(cτ,pψ(ri,[p])

2
)
.

Given the result in Equation (35) and our bound on
√
nbp in Proposition 4.2, this means that( p

n

)2
nE
(
b2
p

)
=

1

n

n∑
i=1

E
(
(cτ,pψ(ri,[p])

2
)

+ o(1) .

We now need to control di,p to show that our approximation of β̂ by b̃ in Proposition 3.1 will yield
sufficiently good results that they can be used to prove Theorem 1.1.
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4.2.5 On di,p

Recall the definition
di,p = [ψ′(γ∗i,p)− ψ′(ri,[p])] ,

where γ∗i,p ∈ (ri,[p], ri,[p] + νi), with

νi = bpX
′
i

[
(Sp + τ Id)−1up

−1

]
= bpπi .

We call B̃n(i) = supi |ri,[p]|+ supi |πi|.
We have the following result.

Proposition 4.4. We have, under Assumptions O1-O7 and P1, at fixed τ ,

sup
i
|di,p| = OLk

(
polyLog(n)
√
nc

1/2
n

L(B̃n(i))
[
ψ′(−B̃n(i)) ∨ ψ′(B̃n(i))

])
.

Hence,

sup
i
|di,p| = OLk

(
polyLog(n)√

n

)
.

Proof. Recall the definition
di,p = [ψ′(γ∗i,p)− ψ′(ri,[p])] ,

where γ∗i,p ∈ (ri,[p], ri,[p] + νi), with

νi = bpX
′
i

[
(Sp + τ Id)−1up

−1

]
= bpπi .

Therefore,
πi = V ′i (Sp + τ Id)−1up −Xi(p) .

Recall that up = 1
nV
′Dψ′(r·,[p])X(p). Using independence of X(p) with {(Vi, εi)}ni=1, and our concentration

assumptions on X(p) formulated in P1, we see that according to Lemma B-2, we have

sup
i
|V ′i (Sp + τ Id)−1up| = OLk

(
polyLog(n)

c
1/2
n

sup
i
‖ 1

n
Dψ′(r·,[p])V (Sp + τ Id)−1Vi‖

)
,

where we look at V ′i (Sp + τ Id)−1up as a linear form in X(p).
Now,

‖ 1

n
Dψ′(r·,[p])V (Sp + τ Id)−1Vi‖2 =

1

n
V ′i (Sp + τ Id)−1

V ′D2
ψ′(r·,[p])

V

n
(Sp + τ Id)−1Vi .

Since Sp =
V ′Dψ′(r·,[p])

V

n , we have
V ′D2

ψ′(r·,[p])
V

n � |||Dψ′(r·,[p])|||2Sp and we conclude that

1

n
V ′i (Sp + τ Id)−1

V ′D2
ψ′(r·,[p])

V

n
(Sp + τ Id)−1Vi ≤

‖Vi‖2

nτ
|||Dψ′(r·,[p])|||2 =

‖Vi‖2

nτ
sup
i
ψ′(ri,[p]) .

We also note that supiXi(p) = OLk(polyLog(n)/
√
cn) and conclude that

sup
i
|πi| = OLk

(
polyLog(n)

c
1/2
n

[
1 +

√
sup
i
ψ′(ri,[p]) sup

i

‖Vi‖2
nτ

])
,

= OLk

(
polyLog(n)

c
1/2
n

[
1 +

√
sup
i
ψ′(ri,[p])

])
.
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Recalling that bp = OLk(n−1/2polyLog(n)), we finally see that

sup
i
νi = OLk

(
polyLog(n)
√
nc

1/2
n

[
1 +

√
sup
i
ψ′(ri,[p])

])

As before, we can control supi ψ
′(ri,[p]) by using the work done in Proposition 3.3, since ri,[p] are the

residuals when we work with p− 1 predictors and n observations. The growth conditions we have imposed
on ψ′ and En therefore guarantee control of

[
supi ψ

′(ri,[p])
]

as polyLog(n) in Lk. Recall that B̃n(i) =
supi |ri,[p]|+ supi |πi|.

So we have shown that under our assumptions,

sup
i
|di,p| = OLk

(
polyLog(n)
√
nc

1/2
n

L(B̃n(i))
[
ψ′(−B̃n(i)) ∨ ψ′(B̃n(i))

])
.

Proposition 3.2 then allows us to conclude, by giving us polyLog bounds on B̃n(i).

4.3 Final conclusions

We can now gather together our approximation results in the following Theorem.

Theorem 4.1. Under Assumptions O1-O7 and P1, we have, for any fixed τ > 0,

‖β̂ − b̃‖ ≤ OLk

(
polyLog(n)

n

)
In particular,

√
n(β̂p − bp) = OLk(polyLog(n)/

√
n) ,

sup
i
|X ′i(β̂ − b̃)| = OLk

(
polyLog(n)√

n

)
,

sup
i
|Ri − ri,[p]| = OLk

(
polyLog(n)√

n

)
.

Proof. The theorem is just the aggregation of all of our results, using the key bound on ‖β̂−b̃‖ in Proposition
4.1.

The last statement is the only one that might need an explanation. With the notations of the proof of
Proposition 4.4, we have Ri − ri,[p] = X ′i (̃b− β̂) + νi. The results in the proof of Proposition 4.4 as well as

the bound on ‖b̃− β̂‖ give us the announced result.

We note that when the vectors Xi’s are i.i.d with i.i.d entries, all the coordinates play a symmetric
role. In particular,

E
(
‖β̂‖2

)
= pE

(
β̂2
p

)
.

We now recall that b̃p = bp and remind the reader that bp = OLk(polyLog(n)/
√
n). So using the results of

the previous theorem, Equation (36) and summing over all the coordinates, we have, asymptotically,

p

n
E
(
‖β̂‖2

)
=
p2

n
E
(
β̂2
p

)
=
p2

n
E
(
b2
p

)
+ o(1) =

1

n

n∑
i=1

E
(
(cτ,pψ(ri,[p])

2
)

+ o(1) . (37)

Furthermore, when {(Vi, εi)}ni=1 are exchangeable, it is clear that ri,[p]
L
= rj,[p], by symmetry. Since cτ,p

does not depend on i, we therefore see that in this case which corresponds to Assumption F1,

1

n

n∑
i=1

E
(
(cτ,pψ(ri,[p])

2
)

= E
(
(cτ,pψ(r1,[p])

2
)
.

33



4.3.1 On cτ,p and cτ

Proposition 4.5. We have
|cτ − cτ,p| = OLk(n−1/2polyLog(n)) .

Proof. Let us recall the notation

S =
1

n

n∑
i=1

ψ′(Ri)XiX
′
i , and cτ =

1

n
trace

(
(S + τ Idp)

−1
)
.

If we call Γ = 1
n

∑n
i=1 ψ

′(Ri)ViV
′
i and a = 1

n

∑n
i=1 ψ

′(Ri)X
2
i (p), we see that

S =

(
Γ v
v a

)
.

According to Lemma C-2, we have

|cτ −
1

n
trace

(
(Γ + τ Id)−1

)
| ≤ 1

n

1 + a/τ

τ
.

It is clear that under our assumptions, a = OLk(polyLog(n)) (using e.g Lemma 3.4). It is also clear that

sup
i
|ψ′(Ri)− ψ′(ri,[p])| = OLk(polyLog(n)/

√
n) .

Hence, using arguments similar to the ones we have used in the proof of Lemma 4.3 (i.e first resolvent
identity, etc...), we see that∣∣∣∣ 1ntrace

(
(Γ + τ Id)−1

)
− 1

n
trace

(
(Sp + τ Id)−1

)∣∣∣∣ = OLk(polyLog(n)/
√
n) .

Since cτ,p = 1
ntrace

(
(Sp + τ Id)−1

)
, the result we announced follows immediately.

In light of this result, we see, using Theorems 3.1 and 4.1 that Equation (37) can be re-written

p

n
E
(
‖β̂‖2

)
=

1

n

n∑
i=1

E
(
(cτψ(Ri))

2
)

+ o(1) =
1

n

n∑
i=1

E
(
(ciψ(proxci(ρ)(r̃i,(i))))

2
)

+ o(1) ,

where we have used the remark we made after Lemma 4.4 that showed that supi |ci−cτ | = OLk(n−1/2polyLog(n)).
(See also Lemma A-2 and its proof where we compute the derivative of proxc(ρ)(x) with respect to c.)

So we finally have:

Proposition 4.6. Under Assumptions O1-O7 and P1,

p

n
E
(
‖β̂‖2

)
=

1

n

n∑
i=1

E
(
(cτψ(proxcτ (ρ)(r̃i,(i))))

2
)

+ o(1) . (38)

This will give us the second equation of our system. We also note that for any x, cτψ[proxcτ (ρ)(x)] =
x − proxcτ (ρ)(x) = prox1((cτρ)∗)(x) - see e.g Moreau (1965). In Bean et al. (2013), we found that this
formulation was nicer when further analytic manipulations where needed.

If we further assume that (Xi, εi) are exchangeable and hence play a symmetric role - which is for

instance the case when (Xi, εi)’s are i.i.d - we see that r̃i,(i)
L
= r̃j,(j) and hence

1

n

n∑
i=1

E
(
(cτψ(proxcτ (ρ)(r̃i,(i))))

2
)

= E
(
(cτψ(proxcτ (ρ)(r̃1,(1))))

2
)
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5 Putting things together

5.1 On the asymptotic distribution of r̃i,(i)

We have the following lemma.

Lemma 5.1. Under Assumptions O1-O7 and P1, as n and p tend to infinity, r̃i,(i) behaves like εi +√
E
(
‖β̂‖2

)
Z, where Z ∼ N (0, 1) is independent of εi, in the sense of weak convergence.

Furthermore, if i 6= j, r̃i,(i) and r̃j,(j) are asymptotically independent.

Proof. The only problem is of course showing that β̂′(i)Xi is approximately N (0,E
(
‖β̂‖2

)
). Recall that

β̂(i) is independent of Xi and that Xi has mean 0, variance 1 and that the third absolute moment of its
entries are assumed to be bounded uniformly in n.

We recall that in the proof of Proposition 3.4, we showed that E
(
‖β̂‖2 − ‖β̂(i)‖2

)
→ 0. Recall that we

have also shown that var
(
‖β̂‖2

)
→ 0 and var

(
‖β̂(i)‖2

)
→ 0. Note also that our earlier bounds guarantee

that E
(
‖β̂‖2

)
and E

(
‖β̂(i)‖2

)
remain bounded.

The first part of the Lemma will be shown - by appealing to Slutsky’s lemma (Lehmann and Casella

(1998), Theorem I.8.10) - if we can show that β̂′(i)Xi behaves like N (0,E
(
‖β̂(i)‖2

)
).

This follows from a simple generalization of the standard Lindeberg-Feller theorem (see e.g Stroock

(1993)). Indeed, if an,p(k) are random variables with
√∑p

k=1 an,p(k)2 = An, E
(
A2
n

)
remains bounded

in n, and an,p(k)′s are independent of Xi, we see that: a) if Z ∼ N (0, Idp), independent of an,p(k), then
a′n,pZ ∼ AnN where N ∼ N (0, 1) and independent of An (conditionally and unconditionally on an,p); b)
Theorem 2.1.5 and its proof in Stroock (1993) hold provided

∑n
i=1 E

(
|an,p(k)|3

)
= o(1). The proof simply

needs to be started conditionally on an,p, and the final moment bounds are then taken unconditionally.
This very mild generalization gives, if φ is a C3 function, with bounded 2nd and third derivatives,

∀ε > 0 ,
∣∣E (φ(a′n,pXi)

)
−E (φ(AnN))

∣∣ ≤ K (ε‖φ(3)‖∞E

(
p∑

k=1

an,p(k)2

)
+
‖φ(2)‖∞

ε

p∑
k=1

E
(
|an,p(k)|3

))
,

where K is a constant that depend on the second and third absolute moments of the entries of Xi. It is
therefore independent of n and p under our assumptions on Xi.

In our setting, an,p(k) = β̂(i)(k). Recall that we have shown that

β̂p = OLk(
polyLog(n)√

nτ
) .

The same arguments we used apply also to (β̂(i))p, the p-th coordinate of the leave-one-out estimate β̂(i).
So it is clear that

E
(
|(β̂(i))p|3

)
= O(polyLog(n)n−3/2) .

We conclude that E
(∑p

k=1 |(β̂(i))k|3
)

= O(polyLog(n)n−1/2) = o(1). This, in connection with Corol-

lary 2.1.9 in Stroock (1993), shows that β̂′(i)Xi behaves asymptotically like ‖β̂(i)‖N in the sense of weak
convergence.

Since ‖β̂(i)‖ − E
(
‖β̂(i)‖

)
→ 0 in probability and E

(
‖β̂(i)‖

)
remains bounded, Slutsky’s lemma guar-

antees that
β̂′(i)Xi behaves like E

(
‖β̂(i)‖

)
N

asymptotically, in the sense of weak convergence. (In other words, the difference of the characteristic
functions of the random variables on the two sides of the statement above goes to 0 pointwise.)

This shows the first part of the lemma.
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Second part For the second part, we use a leave-two-out approach, namely we use the approximation
r̃i,(i) = εi− β̂′(i)Xi = εi− β̂′(ij)Xi+OLk(polyLog(n)/(

√
ncn)) and similarly for r̃j,(j) (this is clear from Theo-

rem 3.1; β̂(ij) is computed by solving Problem (2) without (Xi, εi) nor (Xj , εj)). Let us call ti = εi− β̂′(ij)Xi

and tj = εj− β̂′(ij)Xj . It is clear that ti and tj are independent conditional on (X(ij)) and {εk}k 6=(i,j) , ε(ij).

All we have to do to complete our proof is to show that αi = β̂′(ij)Xj and αj = β̂′(ij)Xi are asymptotically

independent (the arguments above establish their asymptotic normality). Essentially because their depen-
dence on X(ij) is asymptotically only through ‖β̂(ij)‖, which is asymptotically deterministic by arguments
similar to those used in the proof of Proposition 3.4, we see that ti and tj are asymptotically independent.
Let us now give a formal proof.

The arguments we gave above apply to β̂ij as they did to β̂(i). In particular, since

E

(
p∑

k=1

|(β̂(ij))k|3
)

= O(polyLog(n)n−1/2) = o(1) ,

we also have
p∑

k=1

|(β̂(ij))k|3 = oP (1).

Of course, β̂(ij) depends only on {X(ij), ε(ij)}. We call P(ij) the joint probability measure P(ij) =
∏
k 6=(i,j) PXk,εk ,

i.e probability computed with respect to all our random variables except (Xi, εi) and (Xj , εj) (we slightly
abuse notation and do not index this probability measure by n for the sake of clarity).

So we have found En(ij), depending only on (X(ij), ε(ij)), such that P(ij)(E
n
(ij))→ 1 and

∑p
k=1 |(β̂(ij))k|3 =

o(1) when (X(ij), {εk}k 6=(i,j)) ∈ En(ij). The arguments we gave above (treating an,p’s as deterministic

quantities) then imply that, when (X(ij), ε(i,j)) ∈ En(ij),

β̂′(ij)Xi|(X(ij), ε(ij)) behaves like ‖β̂(ij)‖N .

Let us now use characteristic function arguments. Let (wi, wj) ∈ R2 be fixed and

χ(wi, wj) = E
(

eı(w1αi+w2αj)
)

= E
(

eı(w1αi+w2αj)
[
1En

(ij)
+ 1[En

(ij)
]c

])
.

Since P ([En(ij)]
c) = P(ij)([E

n
(ij)]

c) → 0, we can just focus on E
(

eı(w1αi+w2αj)1En
(ij)

)
, since the modulus of

the functions we are integrating is bounded by 1.
Now

E
(

eı(w1αi+w2αj)1En
(ij)

)
= E

(
1En

(ij)
E
(

eı(w1αi+w2αj)|X(ij), ε(ij)

))
,

since 1En
(ij)

is a deterministic function of (X(ij), ε(ij).

Now independence of Xi and Xj implies that

E
(

eı(w1αi+w2αj)|X(ij), ε(ij)

)
= E

(
eıw1αi |X(ij), ε(ij)

)
E
(
eıw2αj |X(ij), ε(ij)

)
.

Also, our conditional asymptotic normality arguments above imply that

1En
(ij)

[
E
(
eıw1αi |X(ij), ε(ij)

)
− e−w

2
1/2‖β̂(ij)‖2

]
→ 0

in P(ij)-probability. We therefore have

1En
(ij)

[
E
(

eı(w1αi+w2αj)|X(ij), ε(ij)

)
− e−(w2

1/2+w2
2/2)‖β̂(ij)‖2

]
→ 0

in P(ij)-probability.
So we conclude that

E
(

1En
(ij)

eı(w1αi+w2αj)
)
−E

(
1En

(ij)
e−(w2

1/2+w2
2/2)‖β̂(ij)‖2

)
→ 0 .
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Since P (1En
(ij)

)→ 1 and ‖β̂(ij)‖2 is asymptotically deterministic by arguments similar to those used in

the proof of Proposition 3.4, we see that

E
(

1En
(ij)

e−(w2
1/2+w2

2/2)‖β̂(ij)‖2
)
− e−[(w2

1/2+w2
2/2)E(‖β̂(ij)‖2)] → 0 .

Therefore,

E
(

eı(w1αi+w2αj)
)
−E (eıw1αi) E (eıw2αj )→ 0 .

This proves that αi and αj are asymptotically independent. This implies that ti and tj are asymptotically
independent and so are r̃i,(i) and r̃j,(j) using e.g Slutsky’s lemma. The lemma is shown.

We are now in position to show that cτ = 1
ntrace

(
(S + τ Idp)

−1
)

is asymptotically deterministic. We
however need the following preliminary result.

Lemma 5.2. We work under Assumptions O1-O7, P1 and F2.
Consider the random function

gn(x) =
1

n

n∑
i=1

1

1 + xψ′(proxx(ρ)(r̃i,(i)))
, defined for x ≥ 0.

Let B > 0 be in R+. Call Fρ,B(u) = ([ψ′(0) + L(|u|)|u|] +BL(|u|)[|ψ(u)|+ |ψ(−u)|]), where L(|u|) is the
Lipschitz constant of ψ′ on [−|u|, |u|]. We have, for any (x, y) ∈ R2

+, and x ≤ B, y ≤ B

sup
(x,y):|x−y|≤η,x≤B,y≤B

|gn(x))− gn(y)| ≤ η 1

n

n∑
i=1

Fρ,B(r̃i,(i)) .

In particular, we have

P ∗

(
sup

(x,y):|x−y|≤η,x≤B,y≤B
|gn(x))− gn(y)| > δ

)
≤ η

δ

1

n

n∑
i=1

E
(
Fρ,B(r̃i,(i))

)
.

Hence, gn is stochastically equicontinuous on [0, B] for any B > 0 given, since under our assumptions
E
(
Fρ,B(r̃i,(i))

)
is uniformly bounded in n,

We used the notation P ∗ above to denote outer probability and avoid a discussion of potential measure
theoretic issues associated with taking a supremum over a non-countable collection of random variables
(see e.g van der Vaart (1998), Section 18.2). We refer the reader to e.g Pollard (1984) for more details on
stochastic equicontinuity. We note that relying on outer measure arguments to avoid potential measura-
bility issues is standard in the empirical process theory literature (see e.g van der Vaart (1998), Chapter
18).

Proof. Let us consider the function

hu(x) =
1

1 + xψ′(proxx(ρ)(u))
=

∂

∂u
proxx(ρ)(u) .

The last equality comes from Lemma A-3.
We have, since ψ′ is non-negative,

|hu(x)− hu(y)| ≤ |xψ′(proxx(ρ)(u))− yψ′(proxy(ρ)(u))| ∧ 1 .

Therefore, since x, y ≥ 0,

|hu(x)− hu(y)| ≤ |x− y|ψ′(proxx(ρ)(u)) + y|ψ′(proxx(ρ)(u))− ψ′(proxy(ρ)(u))| .
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In particular, if |x− y| ≤ η, and x ∨ y ≤ B

sup
y:|x−y|≤η;x∨y≤B

|hu(x)− hu(y)| ≤ ηψ′(proxx(ρ)(u)) +B sup
y:|x−y|≤η,x∨y≤B

|ψ′(proxx(ρ)(u))−ψ′(proxy(ρ)(u))| .

Under our assumptions, Lemma A-1 implies that, for y ≥ 0, supy |proxy(ρ)(u)| ≤ |u|. One of our
assumptions is that ψ′ is Lipschitz on any [−t, t] with Lipschitz constant L(t). Therefore,

|ψ′(proxx(ρ)(u))− ψ′(proxy(ρ)(u))| ≤ L(|u|)|proxx(ρ)(u)− proxy(ρ)(u)| .

We recall that, according to Lemma A-2,

∂

∂x
proxx(ρ)(u) = − ψ(proxx(ρ)(u))

1 + xψ′(proxx(ρ)(u))
.

Furthermore, since ψ is non-decreasing and changes sign at 0, we also have

sup
x
| ∂
∂x

proxx(ρ)(u)| ≤ |ψ(u)| ∨ |ψ(−u)| .

This naturally gives us a bound on the Lipschitz constant of the function x → proxx(ρ)(u). We finally
conclude that

|ψ′(proxx(ρ)(u))− ψ′(proxy(ρ)(u))| ≤ L(|u|)[|ψ(u)| ∨ |ψ(−u)|]|x− y| .

We therefore have, when x ∨ y ≤ B

sup
y:|x−y|≤η

|hu(x)− hu(y)| ≤ ηψ′(proxx(ρ)(u)) +BL(|u|)[|ψ(u)| ∨ |ψ(−u)|]η .

Of course, ψ′(proxx(ρ)(u)) ≤ ψ′(0) +L(|u|)|u|, by using again |proxx(ρ)(u)| ≤ |u|, proxx(ρ)(0) = 0 and the
fact that the Lipschitz constant of ψ′ on [−|proxx(ρ)(u)|, |proxx(ρ)(u)|] is less than L(u).

Therefore, if when x ∨ y ≤ B we have

sup
y:|x−y|≤η

|hu(x)− hu(y)| ≤ η
(
[ψ′(0) + L(|u|)|u|] +BL(|u|)[|ψ(u)|+ |ψ(−u)|]

)
.

Therefore, we also have

sup
(x,y):|x−y|≤η,x∨y≤B

|hu(x)− hu(y)| ≤ η
(
[ψ′(0) + L(|u|)|u|] +BL(|u|)[|ψ(u)|+ |ψ(−u)|]

)
.

We denote by Fρ,B(u) = ([ψ′(0) + L(|u|)|u|] +BL(|u|)[|ψ(u)|+ |ψ(−u)|]) . This analysis shows that for x
given, if |x− y| ≤ η and x ∨ y ≤ B, we have

sup
(x,y):|x−y|≤η,x≤B,y≤B

|gn(x))− gn(y)| ≤ η 1

n

n∑
i=1

Fρ,B(r̃i,(i)) .

We can now take expectations, and get the result in L1 provided E
(
Fρ,B(r̃i,(i))

)
is finite and remains

bounded in n. However, this holds since Fρ,B grows at most polynomially at∞, and εi, ‖β̂(i)‖ and Xi have

bounded moments for any given order, by Assumptions O4, F2 and our work on ‖β̂‖.
We have established stochastic equicontinuity of gn(x) on [0, B].

Lemma 5.3. Let us call Gn(x) = E (gn(x)). Let B > 0 be given. For any given x0 ≤ B,

gn(x0)−Gn(x0) = oL2(1) .

Under our assumptions O1-O7, P1 and F2, we also have

E∗

(
sup

0≤x≤B
|gn(x)−Gn(x)|

)
→ 0 .
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Note that when (Xi, εi)’s are further assumed to be i.i.d, Gn(x) can be written as the expectation of a
bounded continuous function of r̃1,(1), by symmetry between the r̃i,(i)’s.

Proof. Asymptotic pairwise independence of r̃i,(i) implies that

var (gn(x0))→ 0

and therefore gives the first result.
Let us pick ε > 0. By the stochastic equicontinuity of gn and our L1 bound, we can find x1, . . . , xK ,

independent of n, such that for all x ∈ [0, B], there exists l such that, when n is large enough,

E (|gn(x)− gn(xl)|) ≤ ε .

Note that
|gn(x)−Gn(x)| ≤ |gn(x)− gn(xl)|+ |gn(xl)−Gn(xl)|+ |Gn(xl)−Gn(x)| .

We immediately get

E∗

(
sup

0≤x≤B
|gn(x)−Gn(x)|

)
≤ 2ε+ E

(
sup

1≤l≤K
|gn(xl)−Gn(xl)|

)
.

Because K is finite, the fact that for all l, |gn(xl) − Gn(xl)| → 0 in L2 implies that sup1≤l≤K |gn(xl) −
Gn(xl)| → 0 in L2. In particular, if n is sufficiently large,

E

(
sup

1≤l≤K
|gn(xl)−Gn(xl)|

)
≤ ε .

The lemma is shown.

Lemma 5.4. Call cτ = 1
n trace

(
(S + τ Idp)

−1
)
. Call as before

gn(x) =
1

n

n∑
i=1

1

1 + xψ′(proxx(ρ)(r̃i,(i)))

Then cτ is a near solution of

p

n
− τx− 1 + gn(x) = 0 , i. e

p

n
− τcτ − 1 + gn(cτ ) = oLk(1) .

Asymptotically, near solutions of

δn(x) ,
p

n
− τx− 1 + gn(x) = 0 ,

are close to solutions of

∆n(x) =
p

n
− τx− 1 + E (gn(x)) = 0 .

More precisely, call Tn,ε = {x : |∆n(x)| ≤ ε}. Note that Tn,ε ⊆ (0, p/(nτ) + ε/τ). For any given ε, as
n→∞, near solutions of δn(xn) = 0 belong to Tn,ε with high-probability.

Our assumptions concerning the distribution of ε′is, specifically F1, guarantee that as n→∞, there is
a unique solution to ∆n(x) = 0.

Hence cτ is asymptotically deterministic.

We note that the deterministic equivalent of cτ is cρ(κ) in Theorem 1.1.
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Proof. Let δn be the function

δn(x) =
p

n
− τx− 1 + gn(x) ,

and ∆n(x) = E (δn(x)). Call xn a solution δn(xn) = 0 and xn,0 a solution of ∆n(xn,0) = 0.
These solutions exist, since δn is continuous, δn(0) = p/n > 0 and δn(p/(nτ)) ≤ 0. The same arguments

apply for ∆n.
Since 0 ≤ gn ≤ 1, we see that xn ≤ p/(nτ), for otherwise, δn(x) < 0. The same argument shows that if

x > (p/n+ ε)/τ , ∆n(x) < −ε and x /∈ Tn,ε. Similarly, near solutions of δn(x) = 0 must be less or equal to
(p/n+ ε)/τ .
• Proof of the fact that cτ is such that δn(cτ ) = oP (1)

An important remark is that cτ is a near solution of δn(x) = 0. This follows most clearly for arguments we
have developed for cτ,p so we start by giving details through arguments for this random variable. Recall
that in the notation of Lemma 4.2, we had

p− 1

n
− τcτ,p =

1

n
trace (Idn −M) .

Now, according to Equation (32),

1

n
trace (Idn −M) = 1− 1

n

n∑
i=1

1

1 + ψ′(ri,[p])
1
nV
′
i (Sp(i) + τ Id)−1Vi

.

According to Lemmas 4.3 and 4.4, we have

sup
i

∣∣∣∣ 1nV ′i (Sp(i) + τ Id)−1Vi − cτ,p

∣∣∣∣ = OLk(polyLog(n)n−1/2).

Of course, when x ≥ 0 and y ≥ 0, |1/(1 + x)− 1/(1 + y)| ≤ |x− y| ∧ 1. Using our bounds on ψ′(ri,[p]), we
easily see that,

p/n− τcτ,p − 1 +
1

n

n∑
i=1

1

1 + cτ,pψ′(ri,[p])
= OLk(n−1/2polyLog(n)) .

Exactly the same computations can be made with cτ , so we have established that

p/n− τcτ − 1 +
1

n

n∑
i=1

1

1 + cτψ′(Ri)
= OLk(n−1/2polyLog(n)) . (39)

Now we have seen in Theorem 3.1 that

sup
i
|Ri − proxci(ρ)(r̃i,i)| = OLk(n−1/2polyLog(n)) .

Through our assumptions on ψ′, this of course implies that

sup
i
|ψ′(Ri)− ψ′[proxci(ρ)(r̃i,i)]| = OLk(n−1/2polyLog(n))

We have furthermore noted that supi |ci − cτ | = OLk(n−1/2polyLog(n)) after Lemma 4.4. Using the proof
of Lemma A-2, this implies that

sup
i

∣∣ψ′[proxci(ρ)(r̃i,i)]− ψ′[proxcτ (ρ)(r̃i,i)]
∣∣ = OLk(n−1/2polyLog(n))

and therefore
sup
i

∣∣ψ′[Ri]− ψ′[proxcτ (ρ)(r̃i,i)]
∣∣ = OLk(n−1/2polyLog(n))

So we have established that δn(cτ ) = OLk(n−1/2polyLog(n)).
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• Final details

Note that for any given x, δn(x)−∆n(x) = oP (1) by using Lemma 5.3. In our case, with the notation of
this lemma, B = p/(nτ) + η/τ , for η > 0 given.

This implies that, for any given ε > 0

sup
x∈(0,p/(nτ)+η/τ ]

|δn(x)−∆n(x)| < ε ,

with high-probability when n is large. Therefore, for any ε > 0

|∆n(xn)| ≤ ε

with high-probability. This exactly means that xn ∈ Tn,ε with high-probability. The same argument applies
for near solutions of δn(x) = 0, which, for any ε > 0 must belong to Tn,ε as n→∞ with high-probability.
Of course, there is nothing random about Tn,ε which is a deterministic set. Note that Tn,ε is compact
because it is bounded and closed, using the fact that gn and E (gn) are continuous.

If Tn,0 were reduced to a single point, we would have established the asymptotically deterministic
character of cτ .

Given our work concerning the limiting behavior of r̃i,(i) and our assumptions about εi’s, we see that
Lemma C-1 applies to limn→∞∆n(x) under assumption F1. Therefore, as n → ∞, Tn,0 is reduced to a
point and cτ is asymptotically non-random.

Proof of Theorem 1.1
As we had noted in El Karoui et al. (2011),

∂

∂t
proxc(ρ)(t) = proxc(ρ)′(t) =

1

1 + cψ′(proxc(ρ)(t))
.

So ∆n can be interpreted as

∆n(x) =
p

n
− τx− 1 +

1

n

n∑
i=1

E
(
proxx(ρ)′(r̃i,(i))

)
.

The fact that cτ is asymptotically arbitrarily close to the root of ∆n(x) = 0 gives us the first equation in
the system appearing in Theorem 1.1.

The second equation of the system comes from Equation (38). Theorem 1.1 is shown under Assumptions
O1-O7, P1 and F1-F2.

6 Extensions

6.1 From the τ > 0 case to the case τ = 0

Our original motivation in El Karoui et al. (2011) and El Karoui et al. (2013) was to study the
“unpenalized” problem, namely β̂({Yi, Xi}) was defined as

β̂({Yi, Xi}) = argminβ
1

n

n∑
i=1

ρ(Yi −X ′iβ) .

We now explain how we can derive results in the unpenalized case from the ones we have obtained in the
penalized case, i.e τ > 0, when p/n < 1 and Yi = X ′iβ0 + εi.

We first note that when p < n, and when Xi’s are such that span{Xi}ni=1 = Rp, if Yi = X ′iβ0 + εi,

β̂({Yi, Xi})− β0 = argminβ
1

n

n∑
i=1

ρ(εi −X ′iβ) , β̂ ,

essentially by a change of variables (see El Karoui et al. (2011) and El Karoui et al. (2012) for details if
needed). So to understand the error we make when using regression M-estimates, i.e the vector β̂(Yi, Xi)−
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β0, it is enough to study the properties of the estimator β̂. In other words, we simply need to understand
the null case of the problem, i.e β0 = 0. Of course, we have previously studied the penalized version of this
particular problem.

(Note that under Assumptions O4 and P1, the classic result of Bai and Yin (1993) applies, which
guarantees that span{Xi}ni=1 = Rp with probability going to 1. If Xi’s have e.g continuous distributions,
this is guaranteed non-asymptotically with probability 1.)

The next result requires the notion of modulus of convexity of a function. We refer the reader to
Proposition 1.1.2 on p. 73 in Hiriart-Urruty and Lemaréchal (2001) for a definition. When ρ is twice
differentiable, the modulus of convexity is a lower bound on its second derivative (see Theorem 4.3.1 on p.
115 in Hiriart-Urruty and Lemaréchal (2001)).

We have the following theorem.

Theorem 6.1. Suppose our assumptions O1-O7, P1 and F1-F2 hold. Call, for τ > 0,

β̂τ = argminβ
1

n

n∑
i=1

ρ(εi −X ′iβ) + τ
‖β‖2

2
.

When τ1, τ2 > 0, we have

‖β̂τ1 − β̂τ2‖ ≤
√

2|τ2 − τ1|
τ2
√
τ1

√√√√ 1

n

n∑
i=1

ρ(εi) .

Suppose further that lim sup p/n < 1 and ρ is strongly convex with modulus of convexity C. We have, if

β̂ = argminβ
1

n

n∑
i=1

ρ(εi −X ′iβ) ,

‖β̂τ − β̂‖ ≤
√

2τ

Cλmin(Σ̂)

√√√√ 1

n

n∑
i=1

ρ(εi) .

Hence, under our assumptions, as n and p tend to infinity,

lim
τ→0
‖β̂τ − β̂‖ = oP (1) .

Recall that under our assumptions, if τ is fixed and p/n→ κ, 0 < κ <∞, limn,p→∞ |‖β̂τ‖ − rρ(κ; τ)| = 0,
where rρ(κ; τ) is deterministic and characterized by System (3).

Hence, when κ < 1, ‖β̂‖ is asymptotically deterministic and we have, if rρ(κ; 0) = limτ→0 rρ(κ; τ),

lim
n,p→∞

|‖β̂‖ − rρ(κ; 0)| → 0 in probability .

Proof. We call fτ (β) = − 1
n

∑n
i=1Xiψ(εi −X ′iβ) + τβ. Note that for any τ1, τ2 ≥ 0,

fτ2(β) = fτ1(β) + (τ2 − τ1)β .

Hence, fτ2(β̂τ1) = (τ2 − τ1)β̂τ1 . Using Proposition 2.1 with fτ2 playing the role of f , we have

‖β̂τ2 − β̂τ1‖ ≤
|τ2 − τ1|

τ2
‖β̂τ1‖ .

We now turn to approximations when ρ is strongly convex. Since by definition, β̂ is such that

n∑
i=1

Xiψ(εi −X ′iβ̂) = 0 ,
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we see that fτ (β̂) = τ β̂. By a similar token, we see that f0(β̂τ ) = −τ β̂τ .
If ρ is strongly convex with modulus of convexity C, we see, using Proposition 2.1 that by working with

f0 - along the same lines as in the proof of Proposition 2.1 - we get

‖β̂τ − β̂‖ ≤
1

Cλmin(Σ̂)
‖f0(β̂τ )‖ =

τ

Cλmin(Σ̂)
‖β̂τ‖ .

Recall that we showed in Equation (18) that

‖β̂τ‖ ≤
√

2

τ

√√√√ 1

n

n∑
i=1

ρ(εi) .

This shows that

‖β̂τ2 − β̂τ1‖ ≤
|τ2 − τ1|
τ2
√
τ1

√√√√ 1

n

n∑
i=1

ρ(εi) , and

‖β̂τ − β̂‖ ≤
√

2τ

Cλmin(Σ̂)

√√√√ 1

n

n∑
i=1

ρ(εi) .

Under our assumptions, 1
n

∑n
i=1 ρ(εi) = OP (1). Under the assumptions that, for instance, the entries of

Xi’s are i.i.d mean 0, variance 1, with 4+ε moments (which is always the case under our assumptions), it

is well known that λmin(Σ̂)→ (1−
√

p
n)2 in probability and a.s (Bai (1999)).

We conclude that ‖β̂τ − β̂‖ → 0 in probability as τ → 0 under the assumptions stated in the theorem.
It is also clear that the mapping τ 7→ ‖β̂τ‖ is continuous on [0,∞) with probability going to 1 as n, p→∞,
while p/n→ κ < 1. Furthermore, ‖β̂τ‖ is bounded in probability on [0,∞).

The other statements in the theorem follow easily. For instance, to show that rρ(κ; τ) is right-continuous
at 0 when κ < 1, we can use the bound

|rρ(κ; τ1)− rρ(κ; τ2)| ≤ |rρ(κ; τ1)− ‖β̂τ1‖|+ |‖β̂τ1‖ − ‖β̂‖|

+ |rρ(κ; τ2)− ‖β̂τ2‖|+ |‖β̂τ2‖ − ‖β̂‖| .

Given our previous results and bounds, it is clear that for any given ε > 0, we can find δ > 0, such that if
τ1 and τ2 > 0 are less than δ, the right hand side is less than ε with probability going to 1 as n, p → ∞
while p/n→ κ < 1. So the left-hand side, which is deterministic, is smaller than a random variable which
is less than ε with probability going to 1. The left-hand side must therefore be less than ε. This shows
that τ 7→ rρ(κ; τ) is right-continuous at 0. Therefore rρ(κ; 0) = limτ→0 rρ(κ; τ) is well defined.

The fact that |‖β̂‖ − rρ(κ; 0)| = oP (1) follows by similar bounds and arguments.

Under for instance Gaussian design assumptions (i.e Xi’s have distribution N (0, Idp)), it is possible to

bound E
(

1/λmin(Σ̂)
)

using essentially results in Silverstein (1985) as well as elementary but non-trivial

linear algebra (see the appendix of Halko et al. (2011) for instance). This would give an approximation in
L2, provided the random variable ρ(εi) has enough moment.

It seems possible with quite a bit of extra work to dispense with the assumption of strong convexity -
see Appendix D-3 for a brief discussion.

We note that convergence in probability of β̂ is enough for our confidence interval statements from Bean
et al. (2013) (details in the supplementary material of that paper) to go through. This is quite important
from the standpoint of statistical applications.

Finally, now that the probabilistic properties of β̂ and in particular its norm are well-understood
through regularization techniques, the simplest way to get an analog of Theorem 3.1 under Assumptions
O1-O7, P1, F1-F2, is to go through Section 3 without regularization, i.e using τ = 0, and hence relying
on the second bound in Proposition 2.1. All the approximations now hold with high-probability (since
they involve the smallest eigenvalue of a sample covariance matrix), but this is good enough to describe
the marginal behavior of the residuals.
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6.2 Other extensions

Heteroskedastic errors εi’s

In El Karoui et al. (2013), we considered many extensions of the basic problem, including that of εi’s
with different distributions.

Our approximation results make essentially no use of the assumption that εi’s have the same distribution
(Assumption F1 is only used in Lemma 5.4 at the very end of the proof). So all of our approximations
will go through for this more general case.

A case of particular interest is when εi’s are chosen from one distribution with probability 1 − α and
from another one with probability α - i.e there is “α-contamination” (Huber and Ronchetti (2009), Section
4.5). (Various symmetry arguments that appear in the proof will go through in this case, by applying them
to each subgroup of observations.)

Clearly the System (3) is changed then. And indeed, one key situation where we assume that εi’s have
the same distribution is in Lemma 5.4, when we show that ∆n(x) has asymptotically a unique zero. We
now explain briefly how to take care of this problem in the heteroskedastic case, i.e εi’s with different
distribution.

If εi’s are independent and such that Wi,r = εi + Zr, where Zr ∼ N (0, r2) is independent of εi, each
satisfy the conditions of Lemma C-1, it is clear that the same Lemma applies to

Fn(x) =
p

n
− τx− 1 +

1

n

n∑
i=1

E
(
(proxx(ρ))′(Wi,r)

)
,

since this function turns out to be decreasing as an average of decreasing functions.
Provided εi’s are such that Fn(x) above has a limit (which is decreasing), all of our arguments concerning

the first equation of the system in Theorem 1.1 will go through.
The key function in the second equation of the system becomes in the heteroskedastic case

Gn(x) =
1

n

n∑
i=1

E
(
[Wi,r − proxx(ρ)(Wi,r)]

2
)
.

If this function has a limit as n→∞, our arguments concerning the second equation of the system will go
through.

The functions Fn and Gn in the α-contamination discussed above are very well-behaved and so our
arguments can be adapted to this interesting situation.

More general assumptions on the Xi’s

Our proof makes very strong use of the independence of the predictor vectors Xi’s in Section 3 and of
the independence of the entries of Xi’s in Section 4. We also use strongly the fact that we assume that the
entries of each Xi have mean 0 and variance 1.

But we do not use strongly the assumption that the entries of Xi have the same distribution, and it
seems that most arguments go through without this assumption. The passage of Equation (36) to Equation
(37) appeals to the assumption of i.i.d-ness of the entries of Xi through a symmetry argument, but this
could be avoided at the cost of a little bit more technical work. So it is clear that, with a bit more work,
our approach could handle the case where Xi’s have independent but not identically entries.

Moving from random vectors Xi’s like the ones we have studied to vectors of the form X̃i = λiXi, where
λi are independent, mean 0, variance 1 random variables (i.e scalar) independent of Xi does not offer any
new technical difficulties. Indeed, our work in El Karoui et al. (2011) and El Karoui et al. (2013) handled
- heuristically - that case, so the arguments we gave here would be fairly easy to modify.

This extended class of models - which is akin to elliptical distributions in multivariate statistics (see
Anderson (2003)) - is interesting because it includes distributions that do not share the geometric properties
that “concentrated” random vectors have in common. In particular, elliptical distributions show clearly
that there is no hope to have universality results that are meaningful from a statistical point of view in
the problems we have studied. We refer the interested reader to El Karoui et al. (2013) and e.g Diaconis
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and Freedman (1984), Hall et al. (2005), El Karoui (2009), El Karoui (2010) and El Karoui and Koesters
(2011) for discussion of these matters in various contexts.

We do not solve the elliptical problem here in complete details because of the extra notational burden
involved. We just note that it appears that if λi’s are bounded, and so are 1/λi’s, the results of Section 3 go
through. In Section 4, a number of small adjustments are needed and easy to make in light of the arguments
in El Karoui et al. (2013). For instance, in Lemma 4.2, instead of subtracting cτ,p in the definition of ηi,
one would have to subtract λ2

i cτ,p. The system (3) would also change, as indicated in El Karoui et al.
(2013).

Other extensions

Another natural extension of the work presented here is to study the weighted regression case, i.e for
weights {wi}ni=1, β̂ is defined as

β̂ = argminβ∈Rp
1

n

n∑
i=1

wiρ(εi −X ′iβ) +
τ

2
‖β‖2 .

Once again, only minor modifications seem needed to our proof - the conceptual difficulties were dealt with
in El Karoui et al. (2013). More generally, working on the problem of understanding

β̂ = argminβ∈Rp
1

n

n∑
i=1

ρi(εi −X ′iβ) +
τ

2
‖β‖2 ,

where ρi are potentially different functions and Xi’s are “elliptical” (as defined above) seems to be within
relatively easy reach of the method developed and presented here.

As in the case of errors with different distributions, the main issue appears to be to make sure that the
functions that appear in the limiting system have the properties we require.

Finally, we see that when Yi = X ′iβ0 + εi, it would be interesting to understand better, for p and n
large, but p possibly larger than n,

β̂τ = argminβ∈Rp
1

n

n∑
i=1

ρi(Yi −X ′iβ) +
τ

2
‖β‖2 ,

i.e the “ridge-regularized robust regression” problem when the responses Yi are not independent of the
predictors Xi. This problem - a variant of the one we have studied here - should be amenable to analysis
with the method we used here. Some difficulties, both conceptual and technical arise however, owing to
the fact that when p/n > 1, span{Xi}ni=1 6= Rp, which prevents the use of some of the reduction to the
null case ideas we employed in Section 6.1. We are currently working on these extensions.
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APPENDIX

A Notes on the proximal mapping

Lemma A-1. Let ρ be differentiable and such that ψ changes sign at 0, i.e sign(ψ(x)) = sign(x) for x 6= 0.
Then,

proxc(ρ)(0) = 0 .

Furthermore,
|ψ(proxc(ρ)(x))| ≤ |ψ(x)| .

Also,
|ψ(proxc(ρ)(x))| ≤ |x|/c .

Proof. By definition, we have
proxc(ρ)(x) + cψ(proxc(ρ)(x)) = x .

Therefore,
proxc(ρ)(0) = −cψ(proxc(ρ)(0)) .

Hence, if we call y = proxc(ρ)(0), we have sign(y) = −sign(ψ(y)). The assumptions on ψ therefore
guarantee that y = 0, for otherwise we would have a contradiction.

We also note that sign(proxc(ρ)(x)) = sign(x), since sign[ψ(proxc(ρ)(x))] = sign(proxc(ρ)(x))).
Using contractivity of the prox (see Moreau (1965)), we see that

|proxc(ρ)(x)| = |proxc(ρ)(x)− proxc(ρ)(0)| ≤ |x| .

Since ρ is convex, we see that ψ is non-decreasing. If x > 0, proxc(ρ)(x) > 0, and therefore,

0 ≤ ψ(proxc(ρ)(x)) ≤ ψ(x) .

Similarly, if x < 0, x ≤ proxc(ρ)(x) < 0 and therefore, ψ(x) ≤ ψ(proxc(ρ)(x)) ≤ 0. The second statement
of the lemma is shown.

The last statement is a simple consequence of the fact that cψ(proxc(ρ)(x)) = x − proxc(ρ)(x), from
which it immediately follows that

|ψ(proxc(ρ)(x))| ≤ |x|
c
.

We will also need the following simple result.

Lemma A-2. Suppose x is a real and ρ is twice differentiable and convex. Then, for c > 0, we have

∂

∂c
proxc(ρ)(x) = − ψ(proxc(ρ)(x))

1 + cψ′(proxc(ρ)(x))
.

and
∂

∂c
ρ(proxc(ρ)(x)) = − ψ2(proxc(ρ)(x))

1 + cψ′(proxc(ρ)(x))
.

In particular, at x given c→ ρ(proxc(ρ)(x)) is decreasing in c.
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Proof. Using the fact that
proxc(ρ)(x) + cψ(proxc(ρ)(x)) = x,

we easily see that
∂

∂c
proxc(ρ)(x) = − ψ(proxc(ρ)(x))

1 + cψ′(proxc(ρ)(x))
.

It then follows immediately that

∂

∂c
ρ(proxc(ρ)(x)) = − ψ2(proxc(ρ)(x))

1 + cψ′(proxc(ρ)(x))
.

The denominator is positive, from which we immediately deduce that c→ ρ(proxc(ρ)(x)) is decreasing in
c.

We also make the following observation, which was essential to finding the system of equations (3) in
El Karoui et al. (2013)

Lemma A-3. We have
∂

∂x
proxc(ρ)(x) =

1

1 + cψ′(proxc(ρ)(x))
.

Moreover, at c fixed, when ψ′ is continuous, x→ 1
1+cψ′(proxc(ρ)(x)) is a bounded, continuous function of x.

A proof of the first fact follows immediately from the well-known representation (see Moreau (1965))

proxc(ρ)(x) = (Id + cψ)−1(x) .

The second result is also immediate, since ψ′ ≥ 0.
We finally make notice of the following simple fact.

Lemma A-4. The function c→ [cψ(proxc(ρ)(x))]2 (defined on R+) is increasing, for any x.

Proof. Let us consider fx(c) = cψ(proxc(ρ)(x)). Note that fx(c) = x− proxc(ρ)(x). So

∂

∂c
fx(c) =

ψ(proxc(ρ)(x))

1 + cψ′(proxc(ρ(x)))
.

Hence,
∂

∂c
f2
x(c) = 2c

ψ2(proxc(ρ)(x))

1 + cψ′(proxc(ρ(x)))
≥ 0

since c ≥ 0 and ψ′ ≥ 0.

Examples : for the sake of concreteness, we now give a couple examples of proximal mappings.

1. if ρ(x) = x2/2, proxc(ρ)[x] = x
1+c .

2. if ρ(x) = |x|, proxc(ρ)[x] = sgn(x)(|x| − c)+, i.e the “soft-thresholding” function.

B On convex Lipschitz functions of random variables

In this section, we provide a brief reminder concerning convex Lipschitz functions of random variables.

Lemma B-1. Suppose that {Xi}ni=1 ∈ Rp satisfy the following concentration property: ∃Cn, cn such that
for any Gi, a convex, 1-Lipschitz (with respect to Euclidean norm) function of Xi,

P (|Gi(Xi)−mi| ≥ t) ≤ Cn exp(−cnt2) ,

where mi is deterministic.
Let us now fix {Fi}ni=1, n functions which are convex and 1-Lipschitz in Xi. Then if Fn = supi |Fi(Xi)−

mi|, we have, even when the Xi’s are dependent:
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1. if un =
√

log(n)/cn, E (Fn) ≤ un + Cn/(2
√
cn
√

log n) =
√

logn√
cn

(1 + Cn/(2 log n)). Similar bounds

hold in Lk for any finite given k.

2. when Cn ≤ C, where C is independent of n, there exists K, independent of n such that Fn/un ≤ K
with overwhelming probability, i.e probability asymptotically smaller than any power of 1/n.

3. mi can be chosen to be the mean or the median of Fi(Xi).

In particular,
Fn = O(polyLog(n)/

√
cn)

in probability and any Lk, k fixed and given.

We note that similar techniques can be used to extend the result to situations where we have P (|Fi(Xi)−
mi| ≥ t) ≤ Cn exp(−cntα), with α 6= 2. Of course, the order of magnitudes of the bounds then change.

Proof. Item 3 of the previous Lemma follows from Proposition 1.8 in Ledoux (2001) - the impact of such
choice is simply to possibly change Cn and cn by constants (independent of p and n).

Clearly, by a simple union bound,

P (Fn ≥ t) ≤ 1 ∧ nCn exp(−cnt2) .

Hence, for any u ≥ 0,

E
(
Fkn
)
≤ uk +

∫ ∞
u

ktk−1nCn exp(−cnt2) ,

since E
(
Fkn
)

=
∫∞

0 ktk−1P (Fn ≥ t)dt. Standard computations show that when u2cn is large, and k ≥ 1,∫ ∞
u

tk−1 exp(−cnt2)dt = O(
uk

2cnu2
exp(−cnu2)) .

So we see that in that case, for a constant Kk that depends only on k,

E
(
Fkn
)
≤ uk(1 +Kk

nCn
cnu2

exp(−cnu2)) .

Taking un =
√

log n/cn, we see that

E
(
Fkn
)
≤ ukn(1 +Kk

Cn
log n

) .

We conclude that when Cn/ log n remains bounded, E
(
Fkn
)
/ukn remains bounded. In the case k = 1, it is

easy to see that Kk = 1/2 and we do not require
√
cnu to be large for our arguments to go through. This

gives the bound announced in the Lemma.
The probabilistic bound comes simply from the fact that, by a simple union bound,

P (Fn ≥ tun) ≤ nCn exp(−(log n)t2) ≤ Cn exp(−(log n)(t2 − 1)) .

Hence, when Cn remains bounded in n,

P

(
Fn
un
≥ K

)
≤ n−d ,

for any given d, if K is large enough. If we allow K to grow like a power of log n, we also see that the right
hand side above can be made even smaller.

We recall that we denote by X(i) = {X1, . . . , Xi−1, Xi+1, . . . , Xn}. If I is a subset of {1, . . . , n} of size
n − 1, we call XI the collection of the corresponding Xi random variables. We call XIc the remaining
random variable.

48



Lemma B-2. Suppose Xi’s are independent and satisfy the concentration inequalities as above. Consider
the situation where FIk(·) is a convex Lipschitz function of 1 variable; FIk(ξ) depends on X through XIk only
and we call LIk the Lipschitz constant of FIk(·) (at XIk given). LIk is assumed to be random, since XIk is.
Call mFIk

= mFIk (XIc
k

)|XIk , m being the mean or the median. As before, call Fn = supj=1,...,n |FIj (XIcj
)−

mFIj
| Then Fn = O(

√
log n/cn sup1≤j≤n LIj ) in probability and in Lk, i.e there exists K > 0, independent

of n, such that

E
(
Fnk

)
≤ K(

√
log n/cn)k

√√√√E

(
sup

1≤j≤n
L2k
Ij

)
.

Hence, Fn is polyLog(n)/c
1/2
n sup1≤j≤n LIj in Lk (provided, of course that

√
E
(

sup1≤j≤n L2k
Ij

)
is finite)

Remark : the previous lemma also applies when replacing Fn = supj=1,...,n |FIj (XIcj
) − mFIj

| by

F jn = supk=1,...,n |FIj ,k(XIcj
) −mFIj ,k

|, i.e considering n (random) functions of the same random variable

XIcj
, as the proof makes clear. Here the random functions FIj ,k(ξ) depend only on XIj .

Proof. We call L = supj LIj . By Holder’s inequality, we have

E
(
Fnk

)
= E

(
(Fnk/Lk)Lk

)
≤
√

E
(
Fn2k/L2k

)√
E (L2k) .

Let us call F̃n = Fn/L. Using the same idea as in the proof of the previous Lemma,

E
(
F̃kn
)
≤ uk +

n∑
j=1

∫ ∞
u

kxk−1P (|FIj (XIcj
)−mFIj

| ≥ Lx)dx ,

≤ uk +

n∑
j=1

∫ ∞
u

kxk−1P (|FIj (XIcj
)−mFIj

| ≥ LIjx)dx ,

= uk +

n∑
j=1

∫ ∞
u

kxk−1E
(
P (|FIj (XIcj

)−mFIj
| ≥ LIjx|XIj )

)
dx .

Now our assumptions guarantee that

P (|FIk(XIck
)−mFIk

| ≥ LIkx|XIk) ≤ Cn exp(−cnx2) ,

since FIk/LIk is 1-Lipschitz (and XIk is independent of XIck
). We conclude that

E
(
F̃kn
)
≤ uk + nCn

∫ ∞
u

kxk−1 exp(−cnx2) .

This is exactly the same situation as we had before and the conclusion follows.

Lemma B-3. Suppose the assumptions of the previous Lemma are satisfied. Consider QIj = 1
nX
′
Icj
MIjXIcj

,

where MIj is a random positive-semidefinite matrix depending only on XIj whose largest eigenvalue is
λmax,Ij . Assume that E (Xi) = 0, cov (Xi) = Idp and ncn →∞. Then, we have in Lk,

sup
1≤j≤n

∣∣∣∣QIj − 1

n
trace

(
MIj

)∣∣∣∣ = OLk(
polyLog(n)
√
ncn

sup
1≤j≤n

λmax,Ij ) .

The same bound holds when considering a single QIj without the polyLog(n) term.

Proof. Lemma B-2 applies to
√
QIj and sup1≤j≤n |

√
QIj −m√QIj |. The corresponding Lipschitz constant

if of course
√
λmax,Ij/n. Indeed, for v a vector and M a positive definite matrix, v →

√
v′Mv = ‖M1/2v‖

is convex and
√
|||M |||2-Lipschitz.
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So all we need to do is show that we can go from this control to the control of sup1≤j≤n |QIj −
1
ntrace

(
MIj

)
|.

Of course,

|QIj −
1

n
trace

(
MIj

)
| ≤ |QIj −m2√

QIj
|+ |m2√

QIj
− 1

n
trace

(
MIj

)
| .

The idea from there is simply to use the fact that for a and b non-negative, (a+ b)k ≤ 2k−1(ak + bk). Using
Proposition 1.9 in Ledoux (2001) and specifically the variance bound there, we know that, conditional on
XIj ,

|m2√
QIj
− 1

n
trace

(
MIj

)
| ≤ Cn

ncn
λmax(MIj ) .

Here, we have used the fact

E

((√
QIj

)2
|XIj

)
=

1

n
trace

(
MIj

)
.

On the other hand,

|QIj −m2√
QIj
| =

∣∣∣√QIj −m√QIj ∣∣∣ ∣∣∣√QIj +m√QIj

∣∣∣ ≤ ∣∣∣√QIj −m√QIj ∣∣∣2 + 2
∣∣∣√QIj −m√QIj ∣∣∣m√QIj ,

since m√QIj ≥ 0.

Therefore,

sup
1≤j≤n

|QIj −m2√
QIj
| ≤ sup

1≤j≤n

∣∣∣√QIj −m√QIj ∣∣∣2 + 2

[
sup

1≤j≤n

∣∣∣√QIj −m√QIj ∣∣∣
] [

sup
1≤j≤n

m√QIj

]

Lemma B-2 gives us control of sup1≤j≤n

∣∣∣√QIj −m√QIj ∣∣∣ in L2k and therefore control of

sup
1≤j≤n

∣∣∣√QIj −m√QIj ∣∣∣2
in L2k with a bound of the form polyLog(n)

(ncn) sup1≤j≤n λmax(MIj ).

The result will therefore be shown provided we control
[
sup1≤j≤n

∣∣∣√QIj −m√QIj ∣∣∣] [sup1≤j≤nm
√
QIj

]
.

By using Holder’s inequality and our control of
[
sup1≤j≤n

∣∣∣√QIj −m√QIj ∣∣∣] in L2k, it is clear that the

only issue remaining is control of
[
sup1≤j≤nm

√
QIj

]
in L2k.

Sincem√QIj = EXIc
j

(√
X ′Icj

MIjXIcj
/n

)
≤
√

EXIj

(
X ′Icj

MIjXIcj
/n
)

=
√

trace
(
MIj

)
/n, since cov

(
XIj

)
=

Idp, we see that [
sup

1≤j≤n
m√QIj

]
≤
√
p/n sup

1≤j≤n

√
λmax,Ij .

Therefore,[
sup

1≤j≤n

∣∣∣√QIj −m√QIj ∣∣∣
] [

sup
1≤j≤n

m√QIj

]
≤ K

polyLog(n)
√
p/n

√
ncn

sup
1≤j≤n

λmax,Ij in Lk ,

provided all the random quantities we work with have 2k moments.
The conclusions of the Lemma follow by recalling our assumption that p/n remains bounded and using

the fact that 1/cn ≥ K/
√
cn in the situations we are considering, i.e cn bounded but possibly going to

zero.
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On the spectral norm of covariance matrices

In this subsection, we show that under our initial concentration assumptions, we can control |||Σ̂|||2.
These results are very likely known but we did not find a reference covering precisely the same question
we consider. The proof is a simple adaption of the well-known ε-net argument explained e.g in Talagrand
(2003), Appendix A.4.

Lemma B-4. Suppose Xi’s are independent random vectors in Rp, satisfying our concentration assump-
tions in O4, and having mean 0 and covariance Idp. Let Σ̂ = 1

n

∑n
i=1XiX

′
i. Then,

|||Σ̂|||2 = OP (c−1
n ) .

The results hold also in Lk.

Proof. We study the largest singular value, σ1 of the matrix X/
√
n, where the i-th row of X is Xi. Of

course,

σ1(X/
√
n) = sup

u,v,‖u‖=1,‖v‖=1

1√
n
u′Xv .

Note that

u′Xv =
n∑
i=1

ui(X
′
iv) .

Consider first the case where cn = 1. Under our assumptions, X ′iv are independent subGaussian random
vectors, with mean 0. Note that var (X ′iv) = 1 if cov (Xi) = 1 and ‖v‖ = 1. Computing the moment
generating function of u′Xv, we see that this random variable is itself subGaussian and has variance 1.
Therefore, we have for all t, and constants c1 and c2,

P (|u′Xv| > t) ≤ c1 exp(−c2t
2) .

The ε-net argument given in the proof of Lemma A.4.1 in Talagrand (2003) then can be applied and the
conclusions of that Lemma reached. (A slight adaption is needed to handle the fact that u ∈ Rn and v ∈ Rp
but it is completely trivial and omitted). The fact that the results hold in Lk is a simple consequence of
the proof.

In the case where cn 6= 1, we just need to note that the moment generating function of u′Xv is smaller
than that of a Gaussian random variable with variance 1/cn. The result follows immediately.

C Miscellaneous results

C-1 An analytic remark

One of our assumptions concerns the existence and uniqueness of a solution of the equation F (x) = 0,
where

F (x) =
p

n
− τx− 1 + E

(
(proxx(ρ))′(W )

)
where W is a random variable and (proxx(ρ))′(t) = ∂

∂tproxx(ρ)(t) = 1
1+xψ′(proxx(ρ)(t)) .

We now show that under mild conditions on W this equation has a unique solution. This guarantees
that our assumptions are not terribly strong and in particular apply to problems of interest to statisticians.

Lemma C-1. Suppose that W has a smooth density f with sign(f ′(x)) = −sign(x). Suppose further that
lim|t|→∞ tf(t) = 0 and that sign(ψ(x)) = sign(x). Then, if

F (x) =
p

n
− τx− 1 + E

(
(proxx(ρ))′(W )

)
,

the equation F (x) = 0 has a unique solution.
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Proof. We call
G(x) , E

(
(proxx(ρ))′(W )

)
.

Of course,

E
(
(proxx(ρ))′(W )

)
=

∫
(proxx(ρ))′(t)f(t)dt.

Using contractivity of the proximal mapping (see Moreau (1965)) we see that lim|t|→∞ proxx(ρ)(t)f(t) = 0
under our assumptions.

Integrating the previous equation by parts, we see that

E
(
(proxx(ρ))′(W )

)
= −

∫
(proxx(ρ))(t)f ′(t)dt .

To compute G′(x), we differentiate under the integral sign (under our assumptions the conditions of
Theorem 9.1 in Durrett (1996) are satisfied) to get

G′(x) =

∫
ψ(proxx(ρ)(t))f ′(t)

1 + xψ′(proxx(ρ)(t))
dt .

Under our assumptions, sign(ψ(proxx(ρ)(t))) = sign(t) and sign(f ′(t)) = −sign(t), so that

∀t 6= 0, sign(ψ(proxx(ρ)(t))f ′(t)) = −1 .

Since the denominator of the function we integrate is positive, we conclude that

G′(x) ≤ 0 .

Since F ′(x) = −τ +G′(x), we see that F ′(x) < 0. Therefore F is a decreasing function on R+. Of course,
F (0) = p/n and limx→∞ F (x) = −∞. So we conclude that the equation F (x) = 0 has a unique root.

Remark: the conditions on the density of W are satisfied in many situations. For instance if W =
ε+rZ, where ε is symmetric about 0 and log-concave, Z is N (0, 1) and r > 0, it is clear that the density of
W satisfies the conditions of our lemma. Similar results hold under weaker assumptions on ε of course but
since the paper is already a bit long, we do not dwell on these issues which are well-known in the theory
of log-concave functions (see e.g Karlin (1968), Prékopa (1973) and Ibragimov (1956)).

C-2 A linear algebraic remark

We have the following lemma.

Lemma C-2. Suppose the p× p matrix A is positive semi-definite and

A =

(
Γ v
v′ a

)
.

Here a ∈ R. Let τ be a strictly positive real. Call Γτ = Γ + τ Idp−1. Then we have

trace
(
(A+ τ Idp)

−1
)

= trace
(
Γ−1
τ

)
+

1 + v′Γ−2
τ v

a+ τ − v′Γ−1
τ v

.

In particular, ∣∣trace
(
(A+ τ)−1

)
− trace

(
Γ−1
τ

)∣∣ ≤ 1 + a/τ

τ
.

Proof. The first equation is simply an application of the block inversion formula for matrices (see Horn and
Johnson (1990), p.18) and the Sherman-Morrison-Woodbury formula (Horn and Johnson (1990), p.19).
Suppose temporarily that A is positive definite. Then the Schur complement formula guarantees that
a ≥ v′Γ−1v ≥ v′Γ−1

τ v. The fact that a ≥ v′Γ−1
τ v in general is obtained by a continuity argument (change

A to Aε = A+ εIdp and let ε tend to 0). This implies that

1

a+ τ − v′Γ−1
τ v
≤ 1

τ
.

Since v′Γ−2
τ v ≤ 1

τ v
′Γ−1
τ v ≤ a/τ , we get the second equation.
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D Sketch of proof and discussion of statistical issues

D-1 Sketch of proof and explanations

We give some explanations about our proof in case it is helpful for the reader. For simplicity of
notations, we consider the unpenalized problem (τ = 0) in the case β0 = 0 and hence consider β̂ defined as

β̂ :

n∑
i=1

−Xiψ(εi −X ′iβ̂) = 0p . (D-1)

We recall that the probabilistic heuristics developed in El Karoui et al. (2013) suggested the following:

let r̃j,(i) = εj −X ′j β̂(i) ,∀j, 1 ≤ j ≤ n .

Call Si = 1
n

∑
j 6=i ψ

′(r̃j,(i))XjX
′
j . Then, first order perturbation arguments suggest that we “should have”

β̂ − β̂(i) '
1

n
S−1
i Xiψ(εi −X ′iβ̂) . (D-2)

Measure concentration for quadratic forms in Xi’s would then imply that X ′i(β̂ − β̂(i)) ' ciψ(εi − X ′iβ̂),

where ci ' 1
ntrace

(
S−1
i

)
. Furthermore it is plausible that ci ' c, where c does not depend on i. This

would yield
r̃i,(i) −Ri ' cψ(Ri) ,

and hence for i-th residual,
Ri = εi −X ′iβ̂ ' prox(cρ)(r̃i,(i)) .

Section 3 makes all this precise, though it does not address the question of whether c is asymptotically
deterministic (i.e whether it can be approximated by a deterministic quantity). Two main issues arise: a
key one is, of course, how to verify an approximation like Equation (D-2). The key tools for this task are
developed in Section 2. Equation (D-2) suggests an approximation of β̂ by a function of β̂(i). However, it
turns out that this approximation is too coarse to carry out rigorously all the steps needed in the proof;
other issues arise when trying to approximate ci by trace

(
S−1
i

)
. So we came up with much more precise

approximations than the ones we just discussed that allow us to rigorously prove all the results we need to
carry the proof out. Technically, working with τ > 0 simplifies a number of arguments. This is also quite
natural statistically and analytically, since it makes the problem strongly convex. In particular, this leads

to the proof of the fact var
(
‖β̂‖22

)
→ 0 (through the Efron-Stein inequality, which is nothing else than a

version of Burkholder’s inequality) and hence ‖β̂‖22 can be approximated by a deterministic quantity. This
part of the proof does not require the Xi’s to have independent entries (this partly motivated our decision
to work under assumptions we chose for Xi’s, namely O4).
The second part of the proof, Section 4 can be understood in part in the following light. Call ri,[p] the
residuals based on first p− 1 predictors, called {Vi}ni=1. Call

Sp =
∑
i

ψ′(ri,[p])ViV
′
i , and up =

∑
i

ψ′(ri,[p])ViXi(p) ,

Intuitively it is reasonable to think that in many situations ri,[p] ' Ri, when p is large. Then, first order
approximations to Equation (D-1) suggest that

β̂p '
∑
Xi(p)ψ(ri,[p])∑

X2
i (p)ψ′(ri,[p])− u′pS−1

p up
.

After somewhat fine manipulations, the denominator appears to be approximately equal to p−1
c , where c

is defined as above.
After further work, this suggests the second equation of the system - ignoring for a moment the issue
of whether β̂′(i)Xi is approximately normal. Section 4 justifies all the approximations we just discussed.
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Furthermore, parts of Section 4 lay the ground work for proving the first equation of the system with
Lemma 4.2 - which is closest technically to techniques used to prove Marchenko-Pastur style results in
random matrix theory by the method of Stieltjes transforms.
Section 5 proves the first equation of the system and addresses two further questions: asymptotic normality
of β̂′(i)Xi as well as asymptotically deterministic character of c.
One potential difficulty with this proof is that many quantities of interest cannot be studied independently
of one another - the system characterizing the quantity of main interest to us illustrates this point clearly.
We hope this short discussion sheds some light on the proof strategy.
The random matrix point of view is of course essential to both understanding the problem and carrying
out of the proof. While we borrowed ideas and tools from this area of probability, our work is not a straight
application of existing results: the main idea of our work is that even though Equation (D-1) does not
look like a random matrix question, it can be cast as one (and therefore allows us to treat the problem
of interest in great generality when it comes to Xi’s, for instance). Furthermore the random matrices
appearing in our work are non-standard: some of them are weighted covariance matrices, i.e of the form
1
n

∑n
i=1wiXiX

′
i. This makes them look somewhat classical except that wi’s here are basically ψ′(Ri), and

hence they depend on Xi’s and furthermore it is not clear at the beginning of the proof how the empirical
distribution of those wi’s behaves. Understanding this latter question is one of the main problems here.
Hence, our work is far from being a straight application of standard random matrix results; but it shows
how versatile tools developed in this area of probability are and how they can be brought to bear on a new
class of problems.

D-2 Statistical issues

D-2.1 Reminder and setup explanation

A classic result (Huber (1973)) in low dimension (i.e p fixed, n → ∞) is the fact that, under mild
technical conditions and when εi’s are i.i.d, the performance of methods similar to the ones we studied
here when τ = 0 is governed by the quantity

r(ε, ψ) =
E
(
ψ2(ε)

)
[E (ψ′(ε))]2

, ε having the same distribution as ε′is , ψ = ρ′ .

Further analysis (see e.g Huber and Ronchetti (2009)) shows that if fε is the density of ε, the previous
quantity is minimized for ρ = − log(fε), once again under regularity conditions. Note that almost by defi-
nition this function ρ is convex only if ε has a log-concave density. Since our analysis was partly motivated
by similar considerations, it is therefore important that we allow ψ’s and ρ’s that grow relatively fast at
infinity so that ρ = − log(fε) be part of the functions covered by our theorem for many log-concave densi-
ties. While some statisticians will not think of this setup as standard “robust” statistics, it is nonetheless
central to the classical (i.e low dimensional) understanding of optimality in statistics. This latter topic was
part of our statistical motivation here.
This is partly why working with log-concave errors and hence dealing with ρ’s that are allowed to grow
polynomially at infinity is, on top of its probabilistic interest, part of the setup we chose.
We further note that the so-called Huber function (see Huber and Ronchetti (2009), p. 84) which often
comes to mind when discussing robust statistics arose from an analysis of the quantity r(ε, ψ) described
above, in the so-called Gaussian contamination problem (see Huber and Ronchetti (2009), p. 83). This
is not the type of questions we are concerned with in this paper - we are mostly concerned with the
probabilistic analysis of β̂ defined in Equation (2). Even in the case of Huber’s work, the corresponding
probabilistic analysis was a necessary first step towards the statistical question of understanding the Gaus-
sian contamination problem. This “first step” is what we undertook in the current paper, and it is much
more difficult than in the low-dimensional setting. In the type of optimality questions in statistics that
were a motivation for us for first considering this problem, where fε is assumed to be known, the Huber
function is not a natural choice, since it has no optimality property in that setting in general. Hence, the
fact that in the setup considered here, our theorem does not cover the Huber function is not much of an
issue because, among other things : a) of the Huber function lack of naturalness in high-dimension in light
of the results of Bean et al. (2013) b) it seems possible that with quite a bit of further approximation
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theoretic work, as discussed in the main text and below, we might be able to get results for the Huber
function by viewing it as a limit of smooth (and strongly convex) functions, at least for the kind of εi’s we
work with here (e.g having a log-concave density, or, in any case having many moments).
To summarize, our aim with this paper was the development of a probabilistic understanding of regression
M-estimates when the errors εi’s are for instance log-concave, since this type of errors where the ones used
in the analytic results of the paper Bean et al. (2013) and give rise to convex optimal loss functions in the
classical low-dimensional setting. Understanding this type of questions is a necessary first step to develop
a theory of robust statistics (as seen from the work of Huber) - but the development of that theory in
high-dimension is not the aim of the current paper, whose aims are once again probabilistic. This explains
our choice of probabilistic setup.

D-2.2 About ‖β̂ − β0‖

The fact that ‖β̂ − β0‖ in Lemma (A) (i.e in the setup τ = 0) does not converge to zero has been a
source of confusion for some statisticians working on sparse modeling (i.e assuming that β0 has finitely
many non-zero coordinates, even as p → ∞). Of course, this very fact is what renders the problem
interesting probabilistically (and in the author’s opinion also statistically: these estimators perform very
well as explained in the paper when projected on most directions, but there are data-dependent directions
where they encounter “problems”; so they are good for the most important statistical tasks, but not
uniformly good.).

One line of argument is that because ‖β̂ − β0‖ does not go to zero, β̂ is of no interest statistically (!).
However, this objection is simply overcome by the following points : 1) consider for the sake of simplicity
the case where Xi,j are i.i.d N (0, 1). As shown in El Karoui et al. (2011), we then have

β̂ − β0
L
= ‖β̂ − β0‖2u ,

where u is uniform on the unit sphere in Rp and independent of ‖β̂ − β0‖2. Hence, using the fact that

u
L
= Z/‖Z‖, where Z ∼ N (0, Idp), we see that

sup
1≤k≤p

√
p|β̂(k)− β0(k)| = OP (

√
log(p)) ,

since max1≤k≤p |Zk| = OP (
√

log(p)) where Zk’s are i.i.d N (0, 1). In other words, for each i, β̂(i) is
√
p-

consistent for β0(i) and the coordinates of β̂ contains a lot of information about those of β0. In the case
where Xi,j are simply i.i.d and satisfy our assumptions, similar arguments can be made in the case of
strongly convex ρ, based on Theorem (C) via permutation-symmetry arguments and approximations as
τ → 0 but they require a bit more care. We leave them to the interested reader, since that has very little
to do with the main efforts of this paper.
We also note that the stochastic representation above makes it clear that ‖β̂ − β‖2+ε → 0 for any ε > 0.
And we just explained, other norms may be more important for certain statistical tasks than the Euclidean
norm.
2) Furthermore, if β0 is not sparse, and for instance all its coordinates of size roughly p−1/2 (concretely
β0(i) = ui/

√
p with

∑p
i=1 u

2
i = K, |ui| > η for some η for all i’s, K fixed independently of p, for instance),

sparse methods (returning an estimate s of β0 with s(i) = 0 for all but finitely many i’s even as p → ∞)
would be such that ‖s−β0‖2 does not converge to zero. Hence, sparse estimators fall themselves under the
scope of the criticism levied by their advocates. Here we do not require sparsity of β0- for instance in the
context of Lemma (A) - and still understand the probabilistic behavior of the quantities of interest to us.
This is what allowed us (as explained in e.g Bean et al. (2013)) to then propose new statistical methods,
using non-standard functions ρ. Without a probabilistic understanding of the problem, this would not
have been possible.
3) In the context of Lemma (A), and using the previous remarks for Xi,j e.g i.i.dN (0, 1), if β0 is sparse, i.e it
is supported on finitely many coordinates with relatively large entries on those coordinates, we can threshold
β̂ at level C = (log(p))1/2+η/

√
p for some η > 0, i.e apply the function fC such that fC(x) = x1|x|≥C to
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each coordinate of β̂, to create a new estimator T
β̂

such that

‖T
β̂
− β0‖2 → 0 .

This is a simple application of the stochastic representation result we mentioned a few lines above. Un-
derstanding ‖β̂ − β0‖2, as we do in this paper, is a way to pick better thresholds C than the conservative
one just described. Furthermore, the methods we just described may be numerically more efficient than
many sparse methods than rely on solving other optimization problems than the ones we are concerned
with here.

D-2.3 About prediction error

In a number of machine learning/statistics setting, a quantity of interest is the prediction error, i.e the
error made when we use β̂ as a proxy for β0 on a new data: more concretely, one considers

PredError = Ynew −X ′newβ̂ .

Here (Xnew, Ynew) are not part of the initial dataset {(Xi, Yi)}ni=1. In general, the practitioner gets to
observe only Xnew and wants to predict the corresponding Ynew which is assumed to not be known. If
the linear model holds, i.e Ynew = X ′newβ0 + εnew, we have PredError = εnew − X ′new(β̂ − β0), so that if
var (εnew) = σ2

εnew and Xnew has mean 0 and covariance Idp, conditional on the observed data {(Xi, Yi)}ni=1,

EXnew,εnew(PredError) = σ2
εnew + ‖β̂ − β0‖22 .

Hence, understanding the probabilistic properties of ‖β̂−β0‖22 is key in assessing how accurate our method
is at predicting Ynew. This is another motivation for our study, beside its probabilistic interest.

D-3 Non-smooth ρ and ψ, strong convexity question

It seems that based on the results of the current paper, in particular Theorem 1.1, one could handle
certain non-smooth functions of potential interest through some further approximation-theoretic work -
essentially showing that approximating the non-smooth function ρ by a family of smooth functions does
not change very much ‖β̂‖ as a function of ρ.
For instance the Huber function is differentiable, but not twice differentiable at exactly two points. For the
sake of concreteness, let us take ψH to be such that ψH(x) = x1−1≤x≤1 + sign(x)1|x|>1. At these points,
i.e −1 and 1, we could smooth ψH to create a family of functions ψsmooth,η, η > 0 such that ψsmooth,η

is close to ψH (arbitrarily so as η → 0) and our results apply to ψsmooth,η. A natural example would

be to use ψsmooth,η such that ψ′smooth,η(x) = 1|x|≤1−η + 1−|x|
η 11−η<|x|≤1. (Note that ψ′smooth,η is Lipschitz

with Lipschitz constant 1/η.) Approximation theoretic work would then be required to show that we can
transfer our results concerning β̂ψsmooth,η

to β̂ψ. This is the strategy we used in Section 6.1 to go from the
`2-regularized to the un-regularized (τ = 0) problem. Because these arguments have not much to do with
probability theory and because they are, as we explained above, really of secondary importance for us, we
leave them for future work. (We note that our current results apply for any η > 0, such as η = 10−9.)
We believe that similar ideas should allow us to extend Lemma (A) to certain functions that are not strongly
convex, by approximating them by a family of strongly convex functions, such as the ones described in the
discussion on p. 10: we could try approximating ρ by ρη = ρ+ηp2, where p2 = x2/2 - at least when working
with errors εi’s that have two moments. Another approach to handle the situation where ρ is not strongly
convex could be to refine the second part of Proposition 2.1 to functions that are strongly convex but only
on a subset of R where, in the notation of Proposition 2.1 “most” of the intervals (εi−X ′iβ1, εi−X ′iβ2) fall,
for “well-chosen” β1 and β2 . This would naturally entail to refine quite considerably a number of results
of Sections 3 and 4.

D-4 Examples of distributions satisfying Assumptions O4 and P1

• The fact that assumption O4 is satisfied when Xi has independent entries that are supported on
an interval of width

√
cn/2 is a simple application of Corollary 4.10 in Ledoux (2001) - which is itself
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a consequence of results in Talagrand (1995). Our statement concerning the situation where Xi’s has
independent entries with strongly log-concave density - following Theorem 1.1 - is a consequence of Theorem
2.7 in Ledoux (2001). The same results justify the fact that P1 holds for the situation where the entries
of the n× p matrix X are i.i.d with the distributions we just considered.
• For a broader discussion of distributions satisfying Assumption O4, we refer the reader to El Karoui
(2009), p.. 2386-2387.
• Geometric consequences of these concentration assumptions. Using in O4, G(x) = ‖x‖2/

√
p shows under

our assumptions that sup1≤i≤n |‖Xi‖/
√
p − mp| = oP (1), where mp is a median of the random variable

‖X1‖/
√
p. Our Lemma B-3 shows furthermore that sup1≤i≤n |‖Xi‖2/p−1| = oP (1) under the assumptions

we work with (simply use MIj = Idp in Lemma B-3 and the proof goes through). This means that the data
vector Xi/

√
p’s all have essentially unit norm, and hence are located near the unit sphere in Rp. Similarly,

one can establish the fact that the vector Xi is nearly orthogonal to any {Xj}j 6=i under these conditions.
Hence working under the assumptions like O4 and P1 allow us to show what is the gist of the arguments,
while also understanding some of the key geometric assumptions that are made about the vectors {Xi}ni=1.
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Hiriart-Urruty, J.-B. and Lemaréchal, C. (2001). Fundamentals of convex analysis. Grundlehren Text
Editions. Springer-Verlag, Berlin. Abridged version of ıt Convex analysis and minimization algorithms.
I [Springer, Berlin, 1993; MR1261420 (95m:90001)] and ıt II [ibid.; MR1295240 (95m:90002)].

Horn, R. A. and Johnson, C. R. (1990). Matrix analysis. Cambridge University Press, Cambridge.
Corrected reprint of the 1985 original.

Huber, P. J. (1972). The 1972 Wald lecture. Robust statistics: A review. Ann. Math. Statist. 43,
1041–1067.

Huber, P. J. (1973). Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Statist. 1,
799–821.

Huber, P. J. and Ronchetti, E. M. (2009). Robust statistics. Wiley Series in Prob-
ability and Statistics. John Wiley & Sons Inc., Hoboken, NJ, second edition. URL
http://dx.doi.org/10.1002/9780470434697.

Ibragimov, I. A. (1956). On the composition of unimodal distributions. Teor. Veroyatnost. i Primenen.
1, 283–288.

Johnstone, I. (2001). On the distribution of the largest eigenvalue in principal component analysis. Ann.
Statist. 29, 295–327.

58



Karlin, S. (1968). Total positivity. Vol. I. Stanford University Press, Stanford, Calif.

Ledoux, M. (2001). The concentration of measure phenomenon, volume 89 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI.

Lehmann, E. L. and Casella, G. (1998). Theory of point estimation. Springer Texts in Statistics.
Springer-Verlag, New York, second edition.

Mammen, E. (1989). Asymptotics with increasing dimension for robust regression with applications to the
bootstrap. Ann. Statist. 17, 382–400. URL http://dx.doi.org/10.1214/aos/1176347023.
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