Social Choice and Social Networks

Bayesian Martingale Models

Elchanan Mossel
UC Berkeley
All rights reserved
The Bayesian View of the Jury Theorem

• Recall: we assume +/- with prior probability (0.5,0.5).

• Each voter receives signal x_i which is correct with probability p independently.

• Note that if this is indeed the case, then after the vote has been cast, all voters can calculate:

 • $P[s = + \mid x] / P[s = - \mid x]$.

• Obtain posterior probability of +,-.

• Everybody agree about the posterior.
Critique of The Bayesian View

• The main critique is:

• In real elections people don’t all converge to the same posterior!

• The common prior assumption is obviously violated

• However, the Bayesian setup may still be useful:
Usefulness of the Bayesian View

• However, the Bayesian setup is still useful:

• Since it is has nice theory.

• It allows to compare different networks, modes of communication etc.

• Allows to test in what way people deviate from “rational behavior”

• Perhaps more applicable to learning: ask people to predict outcome of elections

• Perhaps more applicable to computational agents.
Challenges in The Bayesian View

• In Condorcet Jury Theorem - the theory was easy.

• Why?
Challenges in The Bayesian View

• In Condorcet Jury Theorem - the theory was easy.

• In general: the theory is easy if every agent can see the information of all other agents at some finite time.

• Theory is more interesting if only partial information is revealed. Examples:

 • Each player only says how much she believes in something and not why.

 • You only see some of the agents and not all.
A few examples of Bayesian Analysis

• In the first family of examples the goal is to evaluate the expected value of some function (prob. of some event).

 • 2 players - agreeing to disagree (Aumann 1976)
 • General directed graph (Parikh Krasucki 90s)
 • Guassian signals (P. DeMarzo, D. Vayanos, and J. Zwiebel, M+Tamuz)

• In the 2nd family of examples the actions of players are very limited (binary) while the signal space is very rich (continuous).

 • Voting on social networks (Gale Kariv 2003)
 • The complete graph case (M + Tamuz)
Aumann’s example

• Two agents have a complete common prior.
• Agent i=1,2 initially receives signal s(i).
• There is a bounded function f from the space to R say.
• Then for each time t:
 • Agent 1 declares $f(2t) = E[f \mid s(1), f(1), ..., f(2t-1)]$
 • Agent 2 declares $f(2t+1) = E[f \mid s(2), f(1), ..., f(2t)]$
• Th (Aumann 76, Geanakoplos & Polemarchakis 82)
• The sequence $f(t)$ converges almost surely.

• Interpretation: let f be the indicator of some event.
• By repeatedly announcing their beliefs of the event the two agents will converge to the same posterior probability.
• Examples: Biased dice and samples.
Aumann’s example

• Agent 1 declares \(f(2t) = \mathbb{E}[f | s(1), f(1), ..., f(2t-1)] \)
• Agent 2 declares \(f(2t+1) = \mathbb{E}[f | s(2), f(1), .., f(2t)] \)
• Th (Aumann 76, Geanakoplos & Polemarchakis 82)
• The sequence \(f(t) \) converges almost surely.

Proof idea
• Let \(F(t) \) denote the sigma algebra generated by the functions \(\{f(1), ..., f(t)\} \).
• Then \(\mathbb{E}[f | F(t)], \ t \geq 0 \) is bounded martingale = view from the outside.
• Moreover: \(f(t) = \mathbb{E}[f | F(t)] \) a.s.

Comment: Note that the same argument applies to \(n \) agents as well.
A generalization to directed graphs

• We now consider the same story but with n agents on a directed graph G:
 • At time t each vertex v declares its expected value of f conditioned on its signal and what it has seen up to time t:
 $$f(v,t) := E[f | s(v), f(w,s), w \in N(v), 1 \leq s \leq t-1]$$
• Directed/Undirected ↔ Phone vs. Email.
• Social Network aspect.
• Assume social network is known.

• Example: interval of length 3 and dice.

• Q: Do f(v,t) all converge to the same value?
A generalization to directed graphs

• **Q:** Is it the case that $f(v,t)$ all converge to the same value?

• Obviously not:
 • If there are two connected components they will not converge to the same value.
 • In fact the graph $u \rightarrow v$ also does not converge.

.
A generalization to directed graphs

Q: Is it the case that $f(v,t)$ all converge to the same value?

- Obviously not:
- If there are two connected components they will not converge to the same value.
- In fact the graph $u \rightarrow v$ would also not converge.

Thm (Parikh, Krasucki):
- In the graph G is strongly connected, all agents will a.s. converge to the same value.

Recall: Strongly connected means that for every pair of vertices there is a directed path connecting them.
A generalization to directed graphs

Proof Sketch: :
• Let $F(v,t)$ be generated by $\{f(v,s) : s \leq t\}$ and conclude that $f(v,t)$ converges to $f(v) = E[f | F(v)]$, $F(v) = \{f(v,s) \}$
• $f(v)$ is the function closest in $L^2(F(v))$ to f.
• Next we do the same with $F'(v,t)$ generated by
 • $\{f(v,s) : s \leq t\} \cup \{f(w,s) : s < t : w \in N(v)\}$
• Again we get that $f(v,t)$ converges to $f(v) = E[f | F'(v)]$
• Implies that if $v \rightarrow w$ in G then $|f(v)-f|_2 \leq |f(w)-f|_2$.
• Strongly connectivity $\Rightarrow \forall u,v: |f(v)-f|_2 = |f(w)-f|_2$
• If $v \rightarrow w$ and $f(v) \neq f(w)$ then $g = 0.5(f(v)+f(w)) \in F'(v)$ and g closer to f than either $f(v)$ or $f(w)$.
• Strongly connectivity $\Rightarrow \forall u,v: f(v) = f(w)$.
Some Things we do know about the model

• Players do not have to converge to the correct posterior.

• Example (Greg): prior (0.5,0.5) two players are given uniformly at random two bits whose e-xor is the state.

• For a finite state space: # of steps to convergence is at most # of sigma-algebras on the state.
• Pf: (Geanakoplos & Polemarchakis; Joe):
 • When the two sigma-algebras remain the same for both players this will remain like that forever.

• More in GP: Examples where for n steps nothing happen and then converge to the same opinion.
Some Things we do know about the model

- Example: State space \([n^2]\) with uniform prior.
- Player 1 observes groups \(\{1,...,n\},\{n+1,\ldots,2n\}\) etc.
- Player 2 observes groups \(\{1,\ldots,n+1\},\ldots, n^2\}\)
- True value is 1.
- The event is \(\{1,n+2,2n+3,\ldots, n^2\}\).

- What will happen?
 - Player 1 will say \(1/n\)
 - Player 2 will say \(1/(n+1)\)
 - Player 1 learns that it is not \(n^2\) but will still say \(1/n\).
 - Player 2 learns that player 1 was not in the last group but will still say \(1/(n+1)\).
- etc.
Many things we do not know about this model
Many things we do not know about this model

• We do not know how long it takes to converge.
• We do not if it converges to a “good answer”.
• What is the computational complexity of the Bayesian process?
• It is known that if the original space is finite convergence will hold after finitely many steps.
Some aspects of the Bayesian approach

- We do not know how long it takes to converge.
- We do not if it converges to a “good answer”.
- What is the computational complexity of the Bayesian process?

- Some partial answers are known.

- We will talk about a Gaussian model which is:
 - Computationally feasible
 - Has rapid convergence.
 - Converges to the optimal answer for every connected network.

- Following model was studied in P. DeMarzo, D. Vayanos, and J. Zwiebel. and by Mossel and Tamuz.
The Gaussian Model

- The original signals are $N(\mu = ?, 1)$.
- In each iteration
 - Each agent action reveals her current estimate of μ to her neighbors.
 - E.g. set price by min utility $(x - \mu)^2$
 - Each agent calculates a new estimate of μ based on her neighbors’ broadcasts.
- Assume agents know the graph structure.
- Repeat *ad infinitum*
- Assume agents know the graph structure.
- Example: interval of length 4.
Utopia

- “Network Learns” $\text{Avg}(X_v)$
- Variance of this estimator is $1/n$.
- Could be achieved if everyone was friends with everyone.
- Technical comments: This is both the
 - ML estimator &
 - Bayesian estimator with uniform prior on $(-\infty, \infty)$
Results

• For **every connected network**:
• The best estimator is reached within n^2 rounds where $n = \#\text{nodes}$ (DVZ & MT)
• Convergence time can be improved to $2\times n \times \text{diameter}$ (MT)
• All computations are efficient (MT)
Pf: ML and Min Variance.

- **Claim 1**: At each iteration
 \[X_v(t) = \text{Bayes Estimator} = \text{Maximum Likelihood estimator} \]
- Moreover, \(X_v(t) \in L_v(t) \), where
 \[L_v(t) = \text{span} \{ X_w(0), \ldots, X_w(t-1) : w \sim v \} \]
- \(X_v(t) \) is argmin of
 \[\{ \text{Var}(X) : X \in L_v(t), E[X] = \mu \} \]
- **Claim**: Can be calculated efficiently
Pf: ML and Min Variance.

- **Cor:** \(\text{Var}(X_v(t)) \) decreases with time
- **Note:** If \(X_v(t) \neq X_u(t) \), dim of either \(L_v \) or \(L_u \) goes up by 1 (\(v \sim u \))
- \(\implies \) Converges in \(n^2 \) rounds.
- **Claim:** Weight that agent gives own estimator has to be at least \(1/n \) (prove it!)
- \(\implies \) converges to optimal estimator
Convergence in $2n*d$ steps

- **Claim:** If an agent u estimator X remains for $2*d$ steps $t, t+1, \ldots t+2d$ then the process has converged.

- **Pf:**
 - Let $L = L_u(t+2d)$
 - Let v be a neighbor of u.
 - $X_{t+1}(v), \ldots X_{t+2d-1}(v) \in L$.
 - $X \in L_v(t+1)$
 - So $X_{t+1}(v) = \ldots = X_{t+2d-1}(v) = X$
 - If w is a neighbor of u then:
 - $X_{t+2}(v) = \ldots = X_{t+2d-2}(v) = X$
 - By induction at time $t+d$ all estimators are X.
Why could we analyze the cases so far?

A main feature was that agents declarations were martingales.

A more difficult case is where agents declarations are more limited.

Example: +/- actions / declarations.

This will be discussed next week.